STATE OF MISSOURI

DEPARTMENT OF NATURAL RESOURCES

MISSOURI CLEAN WATER COMMISSION

CONSTRUCTION PERMIT

The Missouri Department of Natural Resources hereby issues a permit to:

Expiration Date

City of Unionville

1611 Grant Street Unionville, MO 63565
for the construction of (described facilities):
See attached.
Permit Conditions:
See attached.
Construction of such proposed facilities shall be in accordance with the provisions of the Missouri Clean Water Law, Chapter 644, RSMo., and regulation promulgated thereunder, or this permit may be revoked by the Department of Natural Resources.
As the department does not examine structural features of design or the efficiency of mechanical equipment, the issuance of this permit does not include approval of these features.
A representative of the department may inspect the work covered by this permit during construction. Issuance of a permit to operate by the department will be contingent on the work substantially adhering to the approved plans and specifications.
This permit applies only to the construction of water pollution control components; it does not apply to other environmentally regulated areas.
September 29, 2025 Effective Date
September 28, 2027

Heather Peters, Director, Water Protection Program

CONSTRUCTION PERMIT

I. <u>CONSTRUCTION DESCRIPTION</u>

The proposed force main and pump station will carry raw wastewater from the Unionville North Wastewater Treatment Facility (WWTF) (Missouri State Operating Permit No. MO-0054569) to the Unionville South WWTF (MO-0026646). Improvements also include the addition of a double helix dual auger screen to a proposed manhole, reshaping earthen lagoon berms, piping from the remaining lagoon cell to the proposed lift station, two manholes, site work, electrical service to the site, decommissioning of an existing lagoon cell, and all appurtenances.

Project components include approximately 50 linear feet (lf) of 12-inch diameter reinforced concrete pipe (RCP) gravity sewer; 2,990 lf of 6-inch diameter PVC SDR-26 and 4005 lf 8-inch diameter PVC SDR-26 force mains with cleanouts and air release valves; one duplex lift station with each pump capable of operating at 340 gallons per minute (gpm) at 107 feet of total dynamic head (TDH) and at least 250 gpm at 114 feet of TDH with 50 percent efficiency, and all necessary appurtenances to make a complete and usable wastewater collection system to serve an estimated design average flow of 110,250 gallons per day. The project will also include general site work appropriate to the scope and purpose of the project.

These activities will be in the area east of the City of Unionville, Putnam County, at and between the Unionville North WWTF (northeast of the intersection of Range Rd. and North 10th St.) and the Unionville South WWTF (east of the intersection of 8th Street and 180th Street). Following the completion of the project, treatment of all collected wastewater will occur at the Unionville South WWTF. All pipes abandoned at the north treatment plant will be capped, one lagoon cell with be decommissioned, and the other lagoon cell with be utilized as an overflow basin.

II. CONSTRUCTION PERMIT CONDITIONS

The permittee is authorized to construct, subject to the following conditions:

- 1. This construction permit does not authorize discharge.
- 2. All construction shall be in accordance with the plans and specifications submitted by Benton and Associates, Inc. on May 29, 2025, and June 13, 2025, and signed and sealed by Christopher Howe, P.E. and C. Cameron Jones, P.E. on May 23, 2025, and approved by the department on September 29, 2025.
- 3. Regulation 10 CSR 20-4.040(18)(B)1 requires that projects be publicly advertised, allowing sufficient time for bids to be prepared and submitted. Projects should be advertised at least 30 days prior to bid opening.

- 4. The department must be contacted in writing prior to making any changes to the approved plans and specifications that would directly or indirectly have an impact on the capacity, flow, system layout, or reliability of the proposed project or any design parameter that is addressed by 10 CSR 20-8, in accordance with 10 CSR 20-8.110(11).
- 5. As per 10 CSR 20-4.040, all changes in contract price or time within the approved scope of work must be by change order in accordance with Section 19 of this rule.
- 6. Manholes shall be located with the top access at or above grade level.
- 7. State and federal law does not permit bypassing of raw wastewater; therefore, steps must be taken to ensure that raw wastewater does not discharge during construction. If a sanitary sewer overflow or bypass occurs, report the appropriate information to the department's electronic Sanitary Sewer Overflow/Bypass Reporting system at https://dnr.mo.gov/mogem/ or Northeast Regional Office per 10 CSR 20-7.015(9)(G).
- 8. Protection of drinking water supplies shall be in accordance with 10 CSR 20-8.120(5), which includes by reference the provisions of 10 CSR 23-3.010. Separation distance requirements between water mains and sanitary sewers in 10 CSR 60-10.010 are also applicable.
- 9. In addition to the requirements for a construction permit, 10 CSR 20-6.200 requires land disturbance activities of 1 acre or more to obtain a Missouri State Operating Permit to discharge stormwater. The permit requires best management practices sufficient to control runoff and sedimentation to protect waters of the state. Land disturbance permits will only be obtained by means of the department's ePermitting system available online at https://dnr.mo.gov/data-e-services/missouri-gateway-environmental-management-mogem. See https://dnr.mo.gov/data-e-services/water/electronic-permitting-epermitting-epermitting-for-more information.
- 10. A United States Army Corps of Engineers (USACE) Section 404 Department of Army permit (§404) along with the department's Section 401 Water Quality Certification or waiver (§401) may be required for the activities described in this permit. This permit is not valid until these requirements are satisfied. If construction activity will disturb any land below the ordinary high water mark of jurisdictional waters of the U.S., then a §404/§401 will likely be required. Since the USACE makes determinations on what is jurisdictional, you must contact the USACE to determine permitting requirements. See https://dnr.mo.gov/water/business-industry-other-entities/permits-certification-engineering-fees/section-401-water-quality for more information or you may contact the department's Water Protection Program at 573-522-4502, or wpsc401cert@dnr.mo.gov.
- 11. If this project eliminates a wastewater treatment facility under the jurisdiction of the department, then a full closure plan shall be submitted with a Facility Closure Request Form, Form MO 780-2512 to the department's appropriate regional office for review and approval. In accordance with 10 CSR 20-6.010(12), the closure plan must meet the

requirements outlined in Standard Conditions Part III, of the Missouri State Operating Permit. Closure shall not commence until the submitted closure plan is approved by the department.

- 12. All construction must adhere to applicable requirements in 10 CSR 20-8 (Chapter 8).
- 13. Upon completion of construction:
 - A. The City of Unionville will become the continuing authority for operation and maintenance of these facilities;
 - B. Submit an electronic copy of the as-builts if the project was not constructed in accordance with previously submitted plans and specifications; and
 - C. Submit the enclosed form Statement of Work Completed to the department in accordance with 10 CSR 20-6.010(5)(N). When the receiving facility applies for their next operating permit renewal, they will be expected to include updated information about the sanitary sewer collection system on their application.

Angie Garcia, E.I. Financial Assistance Center angie.garcia@dnr.mo.gov

APPENDICES

APPENDIX - SUMMARY OF DESIGN

APPENDIX – SUMMARY OF DESIGN

Benton & Associates, Inc.
Consulting Engineers/Land Surveyors 2414
South Franklin Street
Kirksville, MO 63501
Voice 660-665-3575 • Fax 217/245-4149
email: info@bentonassociates.com

To: Missouri Department of Natural Resources

From: Cameron Jones, P.E., PLS

Josh Stewart, P.E.

Subject: Design Basis - Unionville, MO, Phase 1 - Wastewater Treatment System Improvements - (Revision 1)

www.bentonassociates.com

Date: June 26, 2024

This technical memo is provided to supplement the City of Unionville's May 2022 Wastewater Facility Plan ("FP") and May 2024 Construction Permit application. The goal of the memo is to provide additional technical and basis of design information to review the City's plans for construction permit approval. Additional sheets can be provided for your consideration and review upon request.

The approved facility plan identified the City's best path toward regulatory compliance is a project to include two phases, to be funded separately and constructed in rapid succession.

Phase 1 (funded by DNR-ARPA):

- Sludge will be removed from both the South Treatment Facility.
- A Mechanical screen will be added to the gravity influent at the South Treatment Facility.
- Lagoon aeration will be added to the Unionville South Wastewater Treatment Facility.
- Ammonia removal treatment will be added to the Unionville South Wastewater Treatment Facility
 using a Moving Bed Bio Reactor (MBBR).
- Ultra-violet disinfection will be added to the Unionville South Wastewater Treatment Facility.
- Effluent flow measurement will be added to the Unionville South Wastewater Treatment Facility.
- Overland flow fields will be decommissioned at the North Wastewater Treatment Facility.
- Replacement of pump for wastewater irrigation at golf course existing Outfall #004. See Exhibit 5.
- Associated pipes, valves, and structures will be installed and or decommissioned as needed.

Phase 2 (Funded by SRF): Permitted Separately due to funding.

- Sludge will be removed from the North Treatment Facility.
- A Mechanical screen will be added to the gravity influent at the North Treatment Facility.
- Wastewater flows will be diverted from the existing Unionville North Wastewater Treatment Facility (MO-0054569) to the existing Unionville South Wastewater Treatment Facility (MO-0026646) with the addition of a proposed Lift Station and corresponding forcemain. The secondary lagoon at the north facility will be converted into emergency storage and flow equalization for the proposed lift station and an emergency overflow outfall will be retained.
- Overland flow fields will be decommissioned at the North Wastewater Treatment Facility.
- Associated pipes, valves, and structures will be installed and or decommissioned as needed.

North Flow Characteristics and NPDES Requirements

The following tables contain a summary of the City's NPDES limits and describes the anticipated design flows into the North Wastewater Treatment Facility (WWTF).

Dariga Darameter	Unit Design Current Effluent Limit		Current Daily				
Design Parameter	Onit	Influent	Average	Daily Maximum	Weekly Average	Monthly Average	Average Effluent
Flow (DAF) [DMF]	MGD	0.110	0.106			0.110	0.106 [1.2]
CBOD5	mg/L (ppd)				65	45	
BODs	mg/L (ppd)	300(275)	235(208)				13
TSS	mg/L (ppd)	320(294)	230(203)		110	70	16
E. Coli	#/100mL				1030	206	
Oil & Grease	mg/L			15		10	4.7
Ammonia Nitrogen (as N)	mg/L (ppd)	50(46)					5
April-September	mg/L (ppd)			4.9		1.3	
October-March	mg/L (ppd)			8.4		2.9	
TKN	mg/L (ppd)	76(70)					
Dissolved Oxygen	mg/L						
рН	S.U.	7		6.5 Min.			7

K:\Active Projects\20E3430\Documents\Reports\[North Lagoon Combined DMR Data_11-11-2021.xlsx]Summary Tables

Table 1: North Wastewater Treatment Facility

A peaking factor of 3.63 was used for the North WWTF based on population, as outlined in 10 CSR 20-8.110(3)(B)1. B. Using the Design Average Flow (DAF) of 0.110 MDG, shown above in Table 1, the peak design hourly flow rate for the North WWTF is 0.399 MGD. Historical flow measurements have been recorded at as high as 1.2 MGD, therefore the Peak Hydraulic Flow (PHF) of 1.2 MGD will be used to determine pipe sizes and high-level emergency overflows.

South Flow Characteristics and NPDES Requirements

The following tables contain a summary of the City's NPDES limits and describes the anticipated design flows into the South WWTF.

Design Desameter	Unit Design Current Effluent Limit		Current Daily					
Design Parameter	Unit	Influent	Average	Daily Maximum	Weekly Average	Monthly Average	Average Effluent	
Flow (DAF) [DMF]	MGD	0.132	0.190				0.190 [0.95]	
CBOD5	mg/L (ppd)				65	45		
BODs	mg/L (ppd)	200(220)	105(166)				7.8	
TSS	mg/L (ppd)	270(297)	124(197)		110	70	90	
E. Coli	#/100mL				1030	206		
Oil & Grease	mg/L			15		10		
Ammonia Nitrogen (as N)	mg/L (ppd)	30(33)					4.2	
April-September	mg/L (ppd)			4.4		1.4		
October-March	mg/L (ppd)			9.1		2.8		
TKN	mg/L (ppd)	50(55)						
Dissolved Oxygen	mg/L							
рН	S.U.	7.1		6.5 Min.			7.2	

 $K:\Active\ Projects\ 20E3430\ Documents\ Reports\ [South\ Lagoon\ Combined\ DMR\ Data_12-10-2021.x lsx] Summary\ Tables$

Table 2: South Wastewater Treatment Facility

A peaking factor of 3.63 was also used for the South WWTF using 10 CSR 20-8.110(3)(B)1. B. When considering a DAF of 0.132 MDG, shown above in Table 2, the peak design hourly flow rate for the South WWTF is 0.479 MGD. Historical flow measurements have been recorded at as high as 0.95 MGD, therefore a Peak Hydraulic Flow (PHF) of 0.95 MGD will be used to determine pipe sizing high level emergency overflows.

Combined Flow Characteristics and NPDES Requirements

The following tables contain a summary of the City's anticipated NPDES limits and design flows into the south WWTF facility under a combined flow scenario.

Decima Peremeter	Unit	Design		Effluent Limit			
Design Parameter		Influent	Daily Maximum	Weekly Average	Monthly Average		
Flow - DAF (DMF) [PHF]	MGD	0.242 (0.878) [1.67]					
CBODs	mg/L(ppd)			65	45		
BODs	mg/L(ppd)	245(495)					
TSS	mg/L(ppd)	292(591)		110	70		
E. Coli	#/IOOmL			1030	206		
Oil & Grease	mg/L		15		10		
Ammonia Nitrogen (as N)	mg/L(ppd)	40(80)					
April-September	mg/L(ppd)		4.4*		1.4*		
October-March	mg/L(ppd)		9.1*		2.8*		
TKN	mg/L(ppd)	62(125)					
Dissolved Oxygen	mg/L						
рН	S.U.	7.1	6.5 Min.				

^{*}Subject to MDNR Review

P:\20E3430\Documents\Reports\[South Lagoon Combined DMR Data_12-10-2021.xlsx)Combined Summary Table

Table 3: Combined Wastewater Treatment Facility

Influent Pump Stations

As stated within the City's FP, the City's wastewater collection system is divided into north and south sewer sheds. Each subsection directs wastewater to the corresponding lagoon treatment plant via gravity. In the FP's selected alternative, flow from the North Sewer Shed would be conveyed to the centralized treatment at the existing South WWTF via a lift station and associated forcemain.

The North Master Lift Station is proposed to be outfitted with two 340 gpm submersible pumps to meet the existing peak and design flows. Please see *Exhibit 1* for pump calculations. Flows above the rated capacity of the pumps will be stored in the existing Unionville North WWTF and eventually pumped to the Unionville South WWTF for treatment. The lift station pumps will be utilized in lead, lag, and alternate fashion where the lead pump will turn on until the wet well has drained and the lead pump will alternate with each cycle. In the case of high flows, the lead pump will be out paced by influent flows until the "lag" pump set point is reached. In this case, the lag pump set point will be set within the operating range of the excess flow lagoon to effectively utilize the flow equalization lagoon. In practice, only one pump will operate at a time, except on

very rare occasions of peak flows of nearly 4.4 days.

Considering a PHF to the North WWTF of 1.2 MGD and a firm capacity of 0.5 MGD at the Master Lift Station. There is a potential for flows up to 0.7 MGD into the proposed excess flow lagoon. The excess flow lagoon has a capacity of approximately 3.76 million gallons. Therefore, the excess flow lagoon has enough volume to comfortably handle over 5.4 days of peak hydraulic flows with one pump out of service. Once the peak flow event is over, the lagoons will drain by gravity back into the wet well to be pumped to the South WWTF for treatment. During the event of a power outage, 10 CSR 20-8.130(7) requires 2 hours of retention of peak hourly flow when receiving WWTF > 100,000 gpd. Based on the calculations above, we have much greater retention time than required by statute. Please see *Exhibit 2* for Equalization Lagoon Calculations.

<u>Treatment Design</u>

The existing South WWTF will be modified to accept flows from the entire City. The treatment scheme will be modified from two separate facultative lagoon facilities followed by overland flow, to a single treatment facility utilizing a two-cell aerated lagoon system with a moving bed bioreactor (MBBR) between the cells for ammonia removal and UV disinfection for E. coli control. Construction of the aerated lagoon involves installation of approximately 19 aeration diffusers throughout the lagoons. The new aerated lagoon cells will help increase wastewater treatment effluent quality. Please see *Exhibit 3* and the attached plans for the proposed equipment layout.

B&A has performed a preliminary design analysis in consultation with MDNR's "Recommended Standards" to determine if the two cells are adequately sized to meet BODs, ammonia, and fecal coliform treatment requirements, and the calculations are detailed on the following pages.

Aeration Design

Minimum design standards utilized for the design of the aerated lagoon are as follows:

1.4 lbs of oxygen per lb of BODs removed

4.6 lbs of oxygen per lb of NH3 removed

Considering the City's design population of 2,420 people, design removal values for BOD and NH3 are as follows:

BODs = 245 mg/Lor 495 ppdNH3 = 40 mg/L or 80 ppd

Therefore, the minimum pounds of oxygen required for daily treatment is as follows:

BODs: 495 PPD BODs NH3: 80 X 1.4 PPD 02 = 693 PPD 02 PPD NH3 X 4.6 PPD 02 = 368 PPD 02

TOTAL = 1,061 PPD O2

Aeration Design includes: (Calculations Shown Below)

TOTAL			=	1,329 PPD 02 > 1,061 PPD OK!
		Stage 2	=	248 PPD 02
	MBBR Aeration AOR	Stage 1	=	328 PPD 02
		Cell 2	=	103 PPD 02
	Lagoon Aeration AOR	Cell 1	=	650 PPD 02

Biological Treatment

The following design assumptions were utilized based on standard treatment conditions generally accepted within the wastewater treatment industry based on common waste characteristics, load variation, and maximum temperature.

Ke	= 0.122	at minimum temperature conditions of 0.5°C
Ke	= 0.280	at maximum temperature conditions of 20°C

Alpha and Beta factors consistent with domestic waste where:

Alpha	=	0.60	
Beta	=	0.95	
Theta	=	1.02	
рН	=	6.5	minimum
рН	=	9.0	maximum
DO	=	2.0 mg/l	minimum
Site Elevation	=	1063 ft.	

Considering the lagoon geometry and preceding assumptions, the aeration design calculations are as follows. Note that the aeration system upon which the lagoon has been preliminarily designed is Triplepoint Ares Aeration & Nitrox Nitrification using equations 1-3 below to determine proposed effluent water quality.

TRIPLEPOINT ENVIRONMENTAL

Detailed Design Calculations: Aerated Lagoons

SUMMARY - General Design Parameters

v4.1	A	Design Scenario Name		Combined S&N
	1	Influent Flowrate	MGD	0.242
	2	Influent Concentration BOD	mg/L	245.0
	3	Effluent Cone. (Summer) BOD	mg/L	6.7
	4	Effluent Cone. (Winter)BOD	mg/L	19.5
	5	Actual Oxygen Supplied	lb/day	752.5
	6	Air included for nitrification?		No
	7	Number of Aerators		19
	9	Standard Airflow	SCFM	675.35
	10	Inlet Airflow	ICFM	799.00
	11	Design Presure (w/cushion)	psig	5.00
	12	Projected Brake Hp	bhp	15.09
	13	Estimated Design He	he	25.0

1.	$FTE = \alpha \; (SOTE) \; \theta^{ T }$	·20) (β C*∞T − DO) ÷ C*∞20	field transfer efficiency
	Where,		
	α	contaminant factor (contar	minants, depth, bubble size} (range: 0.40-0.70)
	β	TDS factor (total dissolved)	solids} (range: 0.90-1.00)
	$\theta = 1.024$	temperature factor	
	DO	target dissolved oxygen lev	rel (mg/L)
	C*∞ _T	saturation oxygen concentr	ration at site—adjusted for water depth
	C*-20	sat. oxygen concentration a	at STP conditions—adjusted for water depth
	Т	water temperature (Celsius	i)
2.	Airflow = AOR / (2	(5.056 * FTE)	
3.	E = 2.3 * k * t / (1	+ 2.3 * k * t)	biological treatment efficiency
	Where,		
	k = varies	kinetic coefficient {related	to temperature) (range: 0.06 to 0.12)
	t = time	treatment time in days	

Table 4: Aerated Lagoon Calculations

				Combine
_		Description	Units	S&I
	1	Number of Treatment Cells		5
	2	Flow Regime		Serie
_	3	Site Elevation - HWL	ft	106
Ce	11 1			
	4	Wastewater Flowrate	MGD	0.
	5	Treatment Volume	M-Gal	6.
	6	Treatment Time	days	25.
	7	Treatment Type		Partial Mi
_	8	Std Reaction Rate, k ₂₀	days ⁻¹	0.2
	9	Design Water Temp	°C	2
	10	Design Reaction Rate, k _T	days ⁻¹	0.12
ĕ	11	Biological Treatment Eff.	%	87.79
Summer	12	Influent BOD Loading	lb/day	49
ŝ	13	Influent BOD Concentration	mg/L	245.
	14	BOD Removed	lb/day	43
	15	Effluent BOD Loading	lb/day	6
	16	Effluent BOD Concentration	mg/L	30.
_	17	Design Water Temp	°C	0.
Winter	18	Biological Treatment Eff.	%	78.29
Š	19	BOD Removed	lb/day	386.
	20	Effluent BOD Concentration	mg/L	53.
	N1	Influent NBOD Loading	lb/day	12
	N2	Influent NBOD Conc.	mg/L	61.
	N3	Assumed NBOD Removed	lb/day	
	N4	Effluent NBOD Loading*	lb/day	12
_	N5	Assumed Eff. NBOD Conc.	mg/L	6
Ce	21	Wastewater Flowrate	MGD	
	22	Treatment Volume	M-Gal	0.
	23	Treatment Volume Treatment Time		3.
	24	Treatment Type	days	12. Partial Mi
	25		alassa d	
	26	Std Reaction Rate, k ₃₀ Design Water Temp	days ⁻¹ °C	2
	27			
		Design Reaction Rate, k₁	days ⁻¹	0.12
ě	28 29	Biological Treatment Eff.	96	77.69
Summer		Influent BOD Loading	lb/day	6
ิดี	30	Influent BOD Concentration BOD Removed	mg/L	30. 4
	32	Effluent BOD Loading	lb/day lb/day	1
	33	Effluent BOD Concentration	mg/L	5.
	34	Design Water Temp	°C	0.
ë	35	Biological Treatment Eff.	%	63.55
Winter	36	BOD Removed	lb/day	68.
>	37	Effluent BOD Concentration	mg/L	19.
	N6	Influent NBOD Loading	lb/day	12
	N7	Influent NBOD Conc.	mg/L	61
	N8	Assumed NBOD Removed	lb/day	12
	N9 N10	Effluent NBOD Loading* Assumed Eff. NBOD Conc.	lb/day mg/L	12

Table 5: Biological Treatment Calculations

SUMMAR	Y - Aeration Calculations		
Item	Description	Units	Combined S&N
1	Site Elevation	ft	1063
		O2/B	
2	O ₂ Loading Factor (BOD ₅)	OD	1.5
3	Alpha-value, α		0.60
4	Beta-value, β		0.95
5	Theta-value, θ		1.02
Cell 1			
6	Lagoon Side Water Depth	ft	6.00
7	Air Release Depth	ft	5.25
8	AOR - Total	lb/day	650
9	SOTE/ft	%/ft	2.10%
10	SOTE	%	11.03%
11	Design DO Concentration	mg/L	2.0
12	FTE		4.44%
13	Air requirement	scfm	585
14	Airflow per aeration unit	scfm	36.5
15	Aerator Type		7507
16	Number of aeration units	units	16
17	Water Pressure	psig	2.27
18	Aerator Pressure Loss	psig	0.55
19	Header/Feeder P Loss	psig	1.17
20	Total Operating Pressure	psig	4.00
21	Design Motor Pressure	psig	5.00
Cell 2			
22	Lagoon Side Water Depth	ft	6.00
23	Air Release Depth	ft	5.25
24	AOR - Total	lb/day	103
25	SOTE/ft	%/ft	2.14%
26	SOTE	%	11.24%
27	Design DO Concentration	mg/L	2.0
28	FTE		4.52%
29	Air requirement	scfm	9'
30	Airflow per aeration unit	scfm	30.2
31	Aerator Type		7507
32	Number of aeration units	units	
33	Water Pressure	psig	2.27
34	Aerator Pressure Loss	psig	0.55
35	Header/Feeder P Loss	psig	1.03
36	Total Operating Pressure	psig	3.85
37	Design Motor Pressure	psig	4.85

Table 6: Aeration Calculations

NITRIFICATION EQUIPMENT - Combined (South and North)

SU	MMARY - Design Input Values		
	Plant Influent Characteristics	Units	Values
1	Annual Average Daily Flow	gpd	242,000
2	Maximum Monthly Average Daily Flow	gpd	242,000
3	Peak Daily Flow	gpd	726,000
4	Peak Hourly Flow	gpd	968,000
5	Influent BOD	mg/L	245
6	Influent BOD	lbs/day	494.5
7	Influent TSS	mg/L	292
8	Influent TSS	lbs/day	589.3
9	Influent NH3-N	mg/L	40.0
10	Influent NH3-N	lbs/day	80.7
11	Influent TKN	mg/L	62.0
12	Influent TKN	lba/day	125.1
13	Influent pH		7
14	Water Temperature	deg Č	12
	NitrOx Influent Characteristics	Unite	Values
15	Annual Average Daily Flow	gpd	242,000
16	Maximum Monthly Average Daily Flow	gpd	242,000
17	Peak Daily Flow	gpd	484,000
18	Peak Hourly Flow	gpd	605,000
19	Influent BOD	mg/L	30
20	Influent TSS	mg/L	30
21	Influent NH3-N	mg/L	53.4
22	Influent TKN	mg/L	53.4
23	Design Influent TKN	mg/L	63.4
Α4	Alkalinity Required as CaCO3 (Minumum)	mg/L	477
24	Influent pH		7
25	NitrOx Water Temperature	deg-C	5

SU	MMARY - General Design Parameters		
	NitrOx Tank Sizing Summary	Unita	Values
26	Number of Treatment Trains Proposed		1
27	Number of Tanks Per Train		2
28	Total Number of Tanks		2
29	Length of Each	ft	16.0
30	Width of Each	ft	16.0
31	Side Water Depth of Each	ft	12
32	Tank Height of Each	ft	15
33	Volume of Each	gallons	22,979
34	Volume Total	gallons	45,957
35	Hydraulic Retention Time at Max Month Flow	hours	4.6
36	Hydraulic Retention Time at Peak Hourly Flow	hours	1.8
40	Number of Ares Units per Tank		4
41	Total Number of Ares Units		8

Table 7: Nitrification Equipment Calculations

	NitrOx Air Requirement (Per Treatment Train)	Stage 1	Stage 2
42	AOR (lbs/day)	328	248
43	Assumed Diffuser Subm. at AWL (ft.)	11.25	11.25
44	Elevation (ft.)	1,063	1,063
45	Alpha	0.60	0.60
46	Beta	0.9	0.9
47	Target DO Residual (MBBR Process) (mg/L)	5.0	6.0
48	SOR (lbs/day)	1,363	1,346
49	Target Diffuser Efficiency/ft. Submergence	1.7	1.7
50	Airflow (scfm)	286	283
	NitrOx Blower Requirement Summary	Units	Values
51	No. of Blowers		2
52	Airflow Requirement per Blower	scfm	569
53	Airflow per 1,000 scfm	scfm/1,000 cf	93
54	Water Pressure at Air Release Depth	psig	4.87
55	Piping and Diffuser Losses	psig	0.25
56	Cushion	psig	0.75
57	Maximum Design Discharge Pressure	psig	6.37
58	Assumed Overall Efficiency		0.62
59	Approximate BHP Requirement/Blower	bhp	25.4
60	Approximate BHP Requirement Total	bhp	25.4
61	Estimated Nameplate HP / Blower	hp	40
62	Blower Type		Tri-Lobe PD

SUI	SUMMARY - Calculated Output Values							
	NitrOx Effluent Parameters	Units	Values					
63	Effluent SCBOD	mg/L	7.5					
64	Effluent SCBOD	lbs/day	15.1					
65	Effluent NH3-N in Winter (Monthly Average)	mg/L	2.8					
66	Effluent NH3-N in Winter (Monthly Average)	lbs/day	5.7					
67	Effluent NH3-N in Summer (Monthly Average)	mg/L	1.4					
68	Effluent NH3-N in Summer (Monthly Average)	lbs/day	2.8					

Table 7: Nitrification Equipment Calculations Continued

Ultraviolet Disinfection

UV Disinfection system selection included manufacturer proposals, cost comparisons, and owner input on operational considerations. A manufacturer was designated as the Basis of Design and multiple manufacturers will be considered for construction bids on a performance basis. Manufacturers will need to meet or exceed design parameters listed below in the basis of design based around equipment manufactured by Enaqua.

UV dosage is based on Average Daily Flow, where peak hour flows will be equalized by a combination of upstream lagoon surface area and hydraulics between the lagoons, UV Disinfection, flow and level control structure, and outfall piping. Hydraulic modeling using Visual Hydraulics confirms that the MDF of 0.88 MGD can be maintained through the UV channel while maintaining freeboard on the lagoons.

As a facility with seasonal bacterial effluent limits, one (1) stored spare module for maintenance will be provided.

The details of the UV design criteria, process configuration, and UV reactor are provided in the following tables.

Average Flow Rate	0.242/168	MGD/GPM		
Peak Design Flow Rate (Peak Disinfection Flow Rate)	1.45/1,007	MGD/GPM		
UV Transmittance	55.0	% UVT (Minimum)		
Total Suspended Solids*	<30.0	mg/l (30-day average)		
BOD*	<30.0	mg/I (30-day average)		
Target Indicator Organism	E. Coli/ Fecal	Coliform		
Permit Criteria	206/1030	(CFU/100 ml) monthly geomean/ 7-day geomean		
UV Dose (manufacturer calculated)	30.0	Minimum UV dose of 30.0 mJ/cm ² . After applying certified Lamp End of Lamp Life (EOLL) of .87, Fouling Factor of .89.		
Plant Process	Lagoon with	NITROX Process		
Particle Size*	30.0	Microns		
Total Iron*	0.3	mg/l		
Turbidity*	5	NTU		
Equipment Redundancy	Two UV channels, each with a two-bank reactor capable of treating 50% of the PHWWF.			

	0000 • • • • • • • • • • • • • • • • •
Reactor model number	C2t.06032
Reactor type	In-Pipe
Installation notes	Indoor/ Outdoor - Covered
	Installation
Process connection	12.00" ø CL 150 Flange
Reactor configuration	Standard
UV Lamps - Enaqua part #:	145-Watt LPHO Non-
001.0617045 XUV60L	Amalgam Smart Lamps
UV Lamp output at 253.7 nm	55.00 Watts
(Nominal Watts)	
Ballasts - Enaqua part #:	145-Watt Enlight High
502.5V2427M	Efficiency Ballast
Non-Contact Reactor Material	C-Series AFP 840 Tube
Material of Construction	304 SS
UV REACTOR(S)	000
# of proposed UV reactors	1
# of banks per reactor	2
# of AFP tubes per reactor	18
# of lamp racks per bank	4
# of lamps per lamp rack	8
Total # of lamps per bank	32
Total # of ballasts per bank	32
Total #of lamps per reactor	64
Total # of lamps in system	64
REACTOR THERMAL CONTROL M	ECHANISM
Air to air heat exchangers	2 (One per bank)

Lagoon Hydraulics

The "freeboard" height for the lagoons is <u>2 feet</u>, which is the standard minimum.

It should be noted that the lagoon depths for both aeration cells are controlled via an effluent control structure featuring a five foot (5') broad crested weir for treatment volume retention during low-average flows and low head loss during peak flows. The weir will also include an operator control valve which can be used during periods of high flows during storm events, when having significant freeboard is most important. The operator will have the ability to lower the pond depths to allow more room for flow fluctuation and treatment capacity. Additionally, the South Cell #1 will act as Flow Equalization for storm flows across the 3.9 acres of surface area. Hydraulic calculations performed for the Hydraulic Profile shown on Sheet G-004 of the plans were performed at steady state flows, however, peak flows would have to continue for multiple days to reach elevations shown on G-004. Please see *Exhibit 4* for lagoon volume calculations.

Summary

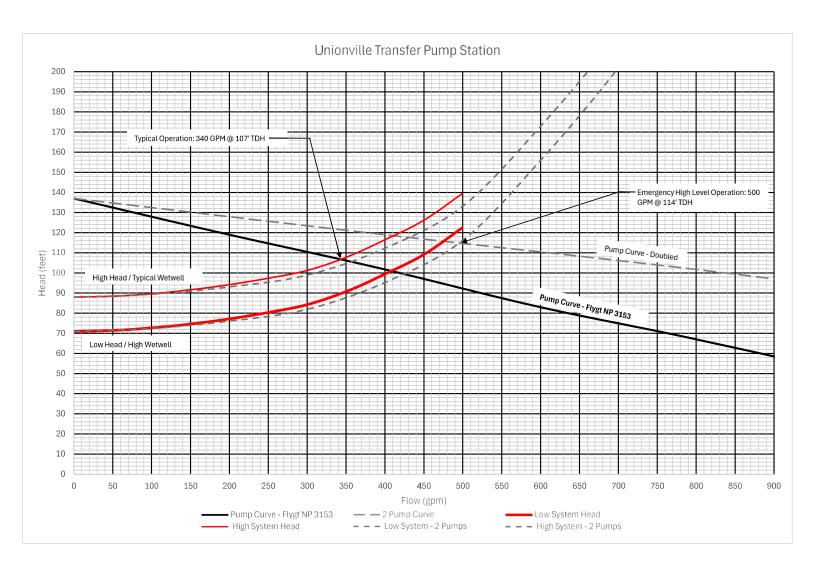
As is shown in these design basis calculations, the proposed aerated lagoon, MBBR, and UV Disinfection can adequately meet and exceed NPDES permit limits. Preceding discussions within this memo and the Unionville FP also demonstrate that this proposed treatment plant will provide operational efficiencies and be able to be modified efficiently to meet anticipated future effluent goals if required.

^{*}Note: Industry standard parameters used for this proposal.

Exhibit 1

North Lagoon Transfer Pump Calculations

North Lagoon Transfer Pump Station Unionville, MO


5/8/2024

Low Water Level= 952 High Water Level= 962 (Lag Pump Set Point) Invert at outlet= 986.5 8" to 6" force main C = 120

System Head - 1 pump					
Flow	Low Head	High Head			
(gpm)	(feet)	(feet)			
0	71.0	88.0			
50	71.5	88.5			
100	72.7	89.7			
150	74.6	91.6			
200	77.2	94.2			
250	80.4	97.4			
300	84.3	101.3			
350	90.8	107.8			
400	99.5	116.5			
450	109.2	126.2			
500	122.6	139.6			

System Head - 2 pumps						
Flow	Low Head	High Head				
(gpm)	(feet)	(feet)				
0	71.0	88.0				
100	72.4	89.4				
200	76.1	93.1				
300	81.9	98.9				
400	95.3	112.3				
500	116.2	133.2				
600	155.9	172.9				
700	201.9	218.9				
800	253.8	270.8				

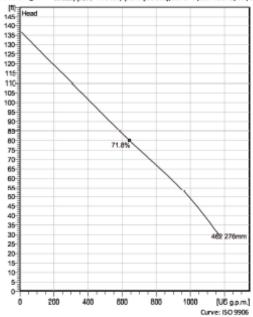
Pump Curve						
Flow (gpm)	Head (feet)	2Pump Flow (gpm)				
0	137	0				
200	119	400				
386	103	772				
600	83	1,200				
800	67	1,600				
1,000	49	2,000				
1,160	28	2,320				

Project Details Project: Project Number: Pump 4/24/2024 Station: Date: Doc Number: File N/A P:120E3430\Design\Design\Design\Hydraulics\[TDH - Pump HP - System Head Curve - LS Design.xlsx]Wetwell Calculations 340 gpm Designation: II. **Design Capacity** A Average Daily Flow (A.D.F.) # of Units Demand Rate Demand 350 gpd/unit* SF Units Gravity to LS 110250 gpd gpd/unit* 0 gpd 0 gpd 0 gpd gpd/unit* 0 gpd/unit* Future Flows gpd gpm Notes: *100gal/day/cap with Total A.D.F. 110,250 gpd an average of 3.5 cap/unit 76.56 gpm (24 hr day) B. Peak Hour Flow Peak factor per utility technical manual: Population in Thousands (PI = 1.1025 1103 P.E. QPeakHourly 18+SQRT(P) Ooesign Average 4+SQRT(P) Peaking Factor= 3.8 A.D.F. x Peak Factor Total P.H.F. = Total GPD 288.8 gpm 1440 415,894 gallons per day C. Design Minimum Flow A.D.F. x 0.20 1440 Design min flow = 15.3 gpm D. Minimum Required Pump Capacity 288.8 gpm E. Required Flow to Meet Minimum Velocity in Force Main Diameter of Main (d) 8 in Minimum Velocity Required (v) Required flow to meet minimum velocity 2 fl/s 313.3 gpm 451,183 GPD v*60*7.48*3.14d² Q= F. Required Flow to Meet Historical Flows Historical Maximum Day Flow = 1,200,000 GPD Average Hour = Design Peak 50,000 gallons 833 gpm GPD Hour na

Project: Project Number:	Unionville MO 20e3430				
-	Wet well Design (Duplex	System)		#VALUE! gpm	
III.		p motor cycle rate = 10 S ntion time at average flow			
	B. Pump Control Level				
	1. Pump cycling rate:	s are at a maximum wher one-ha� the design pu			
	2. Wet well volume re	equired between lead pur pump s	mp start and hut off level:		
If S (inflow) = Half the	design pumping rate and cyc	le period selected			
		V= <u>T*Q</u> 4	850.0 gallons		
	where:	T= cycle period=	10 min. 15 min. 30 min.	2 - 50 HP 51 - 75 HP 76- 250 HP	
		Q=pump rate=	340.0 gpm		
Starts per pump per ho	ur:				
2			60 min/hour	10.00 min.	3.0
lf S (inflow) = Typical Q=PumpRate	Minimum Flow:				
Pump Starts Every (T)	Minutes:				
		+ Q-S	<u>V</u> S		
		<u>T=</u>	850.00 340.00	gal 15.31)gpm	
+			850.00	gal	58.13 min.
15.31				gpm	
Starts per pump per ho	ur:				
			60 min/hour		0.5
2			pumps	58.13 min.	

Project: Project Number:	Unionville MO 20e3430							
Adjusted Volume:	423	gallons						
If S (inflow) = half the design pumping rate Q=Pu	mpRate							
Pump Starts Every (T) Minutes:								
	V	+	V					
O-S			S	•				
T=			423.00	gal				
340.00				170.00)gpm	-		
+			423.00	gal	_	4.98	min.	
170.00				gpm				
Starts per pump per hour:								
			60 min/hour				6.0	min.
2		pumps	00 11111711041	4.98	min.	_	0.0	
If S (inflow) = Typical Minimum Flow: Q=PumpRate								
Pump Starts Every (T) Minutes:								
	V	+	V	•				
O-S			S					
T=			423.00	gal		_		
340.00				15.31)gpm			
+			423.00	gal	_	28.93	min.	
15.31				gpm				
Starts per pump per hour:								
			60 min/hour			=	1.0	
2		pumps		28.93	min.			
If S (inflow) = Average Daily Flow: Q=PumpRate								
Pump Starts Every (T) Minutes:								
	V	+	V					
O-S	<u> </u>		S	•				
T=			423.00	gal				
340.00				76.56)gpm	-		
+ 76.56			423.00	gal gpm	_	7.13	min.	
Starts per pump per hour:								
			60 min/hour				4.2	
2		numno		7 12	min	-		

Project: Project Number:	Unionville MO 20e3430 If S (inflow) = Peak Hour Flow Q=PumpRate Pump Starts Every (T) Minutes					
	V 0-S T=	340.00	V S 423.00 288,81 423.00	gal gal)gpm	 9.73 min .
Starts per pump per hour:			288.81	gpm		
Starts per pump per nour.			60 min/hour			3.1
		2 pum	ps 9.73		min.	<u> </u>
	3. Wet well Diameter (D) = Wet well Volume (Vw)	6 ft				
	Vw=	Aw•7.48	211 gal/ft of dep	th		approx 6.25' square
	where:	Aw=area of wet well (ft^3) Aw=3.14(D^2)/4				
					4	. Wet well level change between pump stop and lead pump start
pump shut off level wet well	volume	Therefore use: V	Vet we <mark>ll volume</mark> :	2.00 ft 24.00 in = 2.00 ft 423		
	5. Control Elevations			High Point of F.M. = Top of wet well elev. = Top of slab elev. =	986.50 968,00 968,50	at receiving manhole
		Depth mea	asured from bott	om		
	Top of Wet Well- Influent Invert- High Water Alarm- Lag Pump On: Lead Pump On (H.W.L.)- Pump off (L.W.L.)- Bottom of Wet Well-	= 968,00 = 956,00 = 956.00 = 955.00 = 954.00 = 952.00	18.00 6.00 6.00 5.00 4.00 2.00		423 423	gals. Provided Pump Cycle Volume
than 30 min at ADF = Is Provided Volume cycle les	than Required Volume = Is Provi	Pump Design Flow=	uhmerge numn		Yes Yes Yes	


Patented self cleaning semi-open channel impeller, ideal for pumping in waste water applications. Modular based design with high adaptation grade.

Technical specification

Curves according to: Water, pure Water, pure [100%], 39.2 °F, 62.428 lb/ft3, 1.6889E-5 ft

Nominal (mean) data shown. Under and over-performance from this data should be expected due to standard manufacturing tolerances. Please consult your local Rygt representative for performance guarantees.

Configuration

Motor number N3153.185 21-18-4AA-W 20hp

Impeller diameter 276 mm

Installation type P - Semi permanent, Wet

Discharge diameter 4 inch

Pump information

Impeller diameter 276 mm

Discharge diameter

4 inch

Inlet diameter

150 mm

Maximum operating speed

1755 rpm

Number of blades

Material

Impeller Hard-Iron™

Max. fluid temperature

40 °C

Project	Xylect-22174160	Created by		
Block	0	Created on	4/19/2024 Last update	4/19/2024

Technical specification

Motor - General

Motor number N3153.185 21-18-4AA-W 20hp

ATEX approved

No Frequency

Version code 185

60 Hz

Phases

Number of poles

Rated voltage 440 V

Rated speed 1755 rpm

Rated current 26 A

Insulation class

Rated power 20 hp

a xylem brand

Stator variant 9

Type of Duty

Motor - Technical

Power factor - 1/1 Load

0.85

Power factor - 3/4 Load 0.80

Power factor - 1/2 Load

0.70

Motor efficiency - 1/1 Load

87.5 %

Motor efficiency - 3/4 Load

89.0 %

Motor efficiency - 1/2 Load 89.0 %

Total moment of inertia 2.38 lb ft²

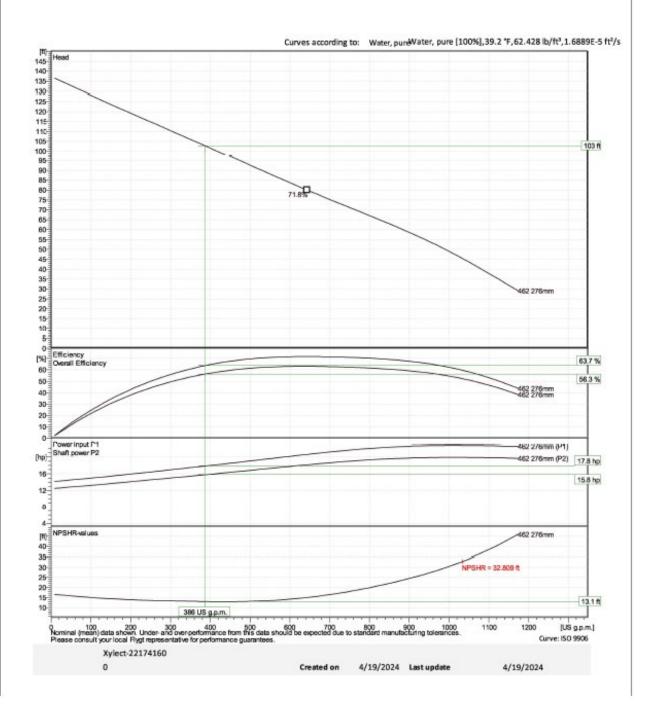
Starting current, direct starting

158 A

Starting current, star-delta 52.7 A

Starts per hour max. 30

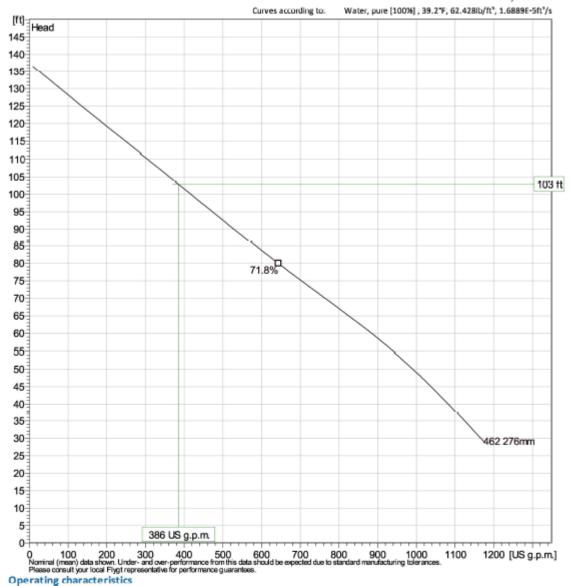
Created by Xylect-22174160 Project Created on 4/19/2024 Block 4/19/2024 Last update


U:oe19ro...,p{:o) XylemUSA-8IT 72.0-2/20!2024(B.lilc17!i) 3/2412024 18A8 A3P3

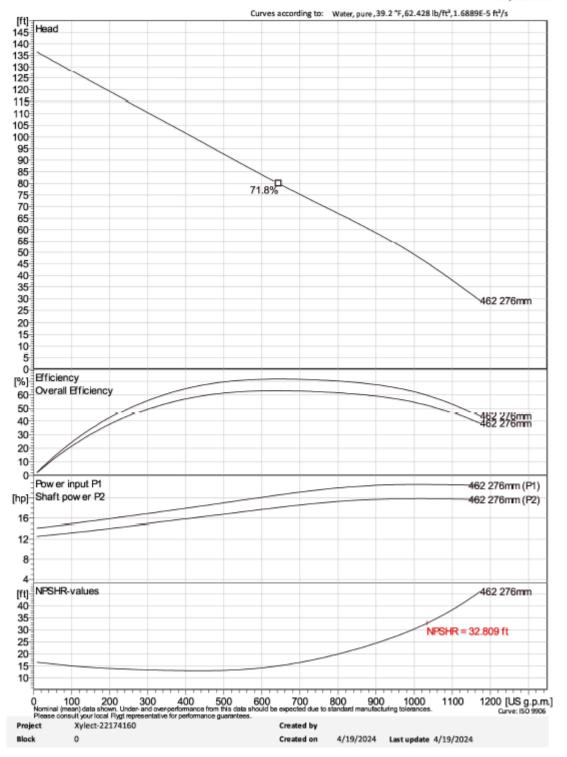
Performance curve

Duty point

Flow Head 386 US g.p.m. 103 ft

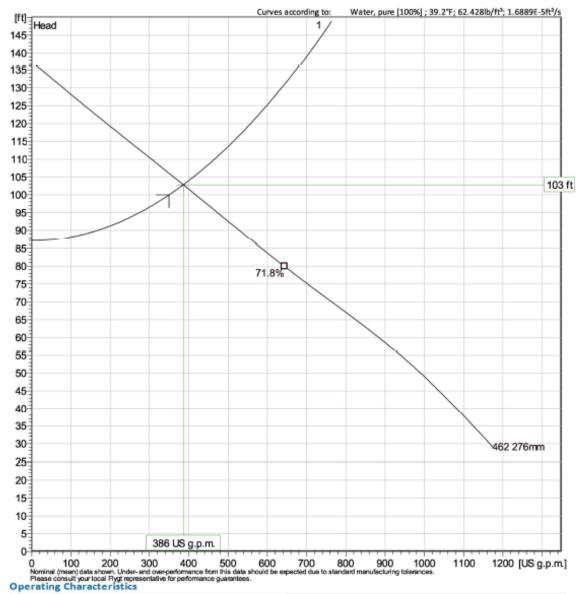


Duty Analysis

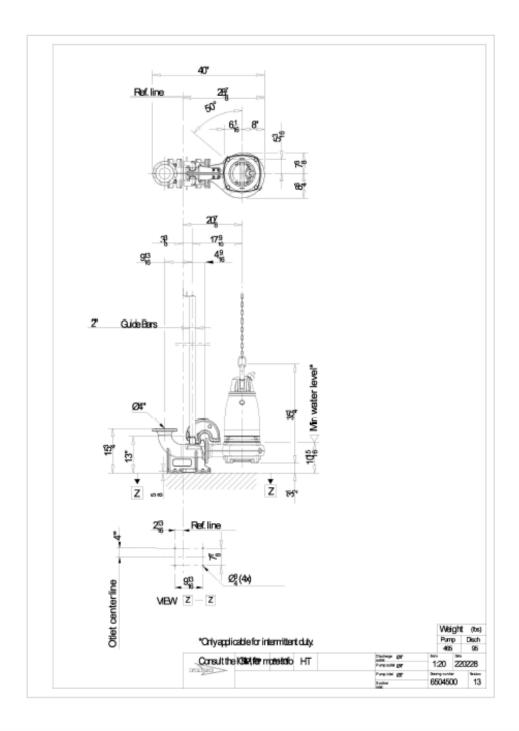


Pumps /	Flow	Head	Shaft power	Flow	Head	Shaft power	Hydr.eff.	Spec. Energy	NPSHre
Systems	US g.p.m.	ft	hp	US g.p.m.	ft	hp		kWh/US MG	ft
1	386	103	15.8	386	103	15.8	63.7 %	574	13.1

Project		Created by				
Block	Xylect-22174160	Created on	4/19/2024	Last update	4/19/2024	


VFD Curve

VFD Analysis



Pumps /	Frequency	Flow	Head	Shaft power	Flow	Head	Shaft power	Hydr.eff.	Specific energy	NPSHre
Systems		USg.p.m.	ft	hp	US g.p.m.	ft	hp		WWWUSMG	R
1	58.5 Hz	386	103	15.8	386	103	15.8	63.7 %	574	13.1

Project	Xylect-22174160	Created by			
Block	0	Created on	4/19/2024	Last update	4/19/2024

Dimensional drawing

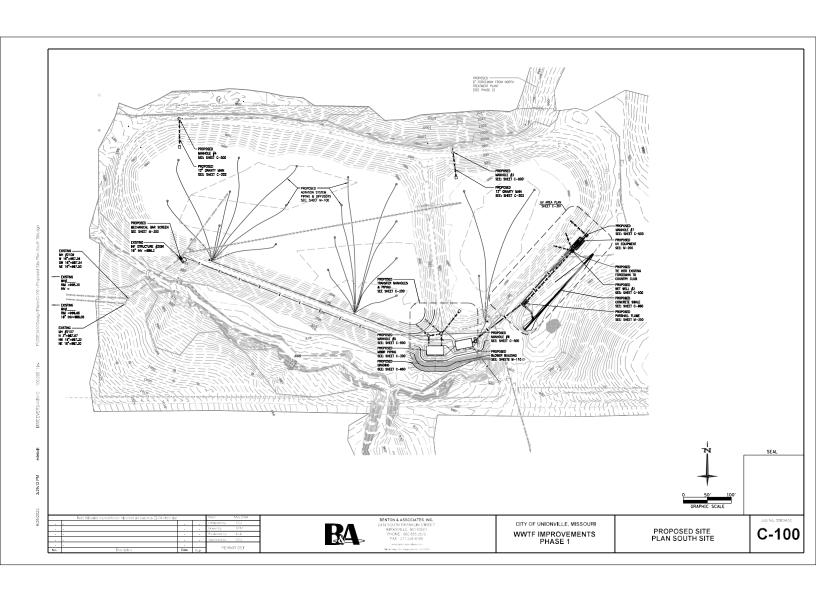
Project	Xylect-22174160	Created by		
Block	0	Created on	4/19/2024 Last update	4/19/2024

Exhibit 2

Equalization Lagoon Calculations

Basis of Design

Unionville North - Cell #2 Basis of Design - Lagoon Volume Calculator May 2024


Existing Cell No. 2 - Full Capacity - Flow Equilization Lagoon

Lagoon Geometries	in Feet	Volume of Lagoon	Volume of Water	Dimension
ength (a)	580	6,084,939	3,764,976	Gallons
Vidth (b)	190	813,438	503,304	Ft^3
epth of Lagoon (h)	9	18.67	11.55	acre-feet
epth of Water (h,,)	6	30,127	18,640.89	CY
ide Slope (run/rise) (Sl _a)	3			
nd Slope (run/rise) (SI _e)	3			
affle Wall includes (%)	100%			
		cre	ss check	813,438 813,438
:) :)	526 136	Wa	ter Surface Acreage	2.37
93)	562		ter sorroce nereoge	2.27
5 ₂)	172			100% of the first cell
m EUD	DATE 12/16		723232	
		BENTON AND ASSOCIATES, INC. CONSULTING ENGINEERS / LAND SURVEYORS	SHEET NO.	OF
DHKD BY	DATE	JACKSONVILLE, ILLINOIS	108 NO	
Y _{1-y}	where $t = \frac{1}{6} \times h_W$	Sib Caa a (a x b + (a + c) x (b + d) (B + (a + c) x (b + d) + T) B = a x b and T = c) C = a - 2 (h x Sla) d = b - 2 (h x Sla) x (a2 x b2 + (a2 + c) x (b2 re a2 = C + 2 (h x x Sla) b2 = d + 2 (h x x Sla)	ed .	

P:\20E3430\Design\Design\[Unionville Design Calculations 4-21-22.xlsx]North Cell #2

P:\20E3430\Design\Design\[Unionville Design Calculations 4-21-22.xlsx]\]North Cell #2

Exhibit 3 South WWTF Site Plan

Exhibit 4 Lagoon Volume Calculations

Basis of Design

Unionville South - Cell #1 Basis of Design - Lagoon Volume Calculator May 2024

Existing Cell No. 1

Lagoon Geometries	In Feet	Volume of Lagoon	Volume of Water	Dimension
ength (a)	610	9,164,415	6,643,061	Gallons
Vidth (b)	285	1,225,104	888,048	Ft^3
epth of Lagoon (h)	8	28.12	20.39	acre-feet
epth of Water (h,,)	6	45,374	32,890.67	CY
ide Slope (run/rise) (Sl _o)	3			
ind Slope (run/rise) (SI _e)	3	-		
Baffle Wall includes (%)	100%			
		cros	s check	1,225,104 1,225,104
:)	562	Charles Company		20.000
d)	237	Wat	er Surface Acreage	3.87
92)	598			
b ₂)	273			100% of the first cell
W EUD	DATE 17/16	BENTON AND ASSOCIATES, INC.	SHEET NO.	OF.
OHKD BY	DATE	CONSULTING ENGINEERS / LAND SURVEYORS JACKSONVILLE, ILLINOIS	JOB NO.	1000
(
		Volume of a lagoon		
		SI .		
		S a		
	T	SIB		
	4 /	V2/3'6		
	1 1			
1-	777	clan a		
	h ha	Class In		
		1 4		
	1	1 4 1 1 1		
	19	most of the second		
		6		
11	I to I to I	(axb+(a+c)x(b+d	1	
∀.	= 7 x.h x	(a x 5+ (a+C) x 6+d	1+CXd	
A lagar	1 6		1	
		1-1 1 1 1		
	= xhx	(B+(a+c) x (b+d)+T)		
	6	(3 (2)		
	122	B= axb and T = cx	0	
			a	
	Lea	c = a-2(h×Sla)		
	mure			
		d = b-2(h x Slb)		
		0 = P- [(N V 2) P)		
				1
A.	- L - I x	1 1 1 1	11 0	
"Ww	w = 6 x h.	$x (a_2 \times b_2 + (a_1 + c) \times (b_2)$	+ d) + C X d	
	W.	1 1 1 1 2	1	1
		0 = (12/1 × (1)		
	wher	e az = C+2(hwxSla)		
		b, = d + 2 (hw X516)		

 $P:\ 20E3430\ Design\ Calculations\ 4-21-22.xlsx] South\ Cell\ \#1$

Basis of Design

Unionville South WWTP - Cell #2 Basis of Design - Lagoon Volume Calculator May 2024

Existing Cell No. 2

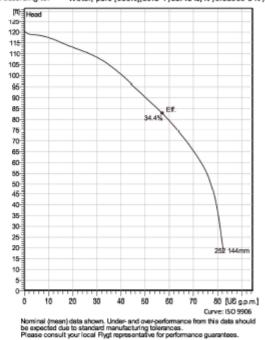
Lagoon Geometries	in Feet	Volume of Lagoon	Volume of Water	Dimension
ength (a)	280	3,933,437	2,810,042	Gallons
Vidth (b)	280	525,824	375,648	Ft^3
epth of Lagoon (h)	8	12.07	8.62	acre-feet
epth of Water (h,)	6	19,475	13,912.89	CY
ide Slope (run/rise) (Sl _b)	3	20.000		
nd Slope (run/rise) (Sl _e)	3			
Saffle Wall includes (%)	100%			
		cros	s check	525,824
				525,824
c)	232	002000		10.00011
d)	232	Wat	er Surface Acreage	1.72
93)	268			
b ₂)	268			100% of the first cell
BY ECO	DATE 12/16	BENTON AND ASSOCIATES, INC.	SHEET NO.	OF.
CHKO, BY	DATE	CONSULTING ENGINEERS / LAND SURVEYORS	JOB NO.	
-	The last of the la		555,75	
(Volume of a lagorni		
		SI a		
		- a		
	1	SI 8		
	1 /	Y Y Y		
1	AN I	Man a		
	W No.	l clas la		
	14.4	1 141		
		1 4		
		Vinter X		
		ь		
V	- X 2	x (axb+(a+c)x(b+d	1+ cva1	
y _{1-x}	6	(0,00)	1.000)	
	= - x h	(B+(a+c) x (5+d)+T)		
	10			
	when	B= axb and T= C)	d	
	where	c = a - 2(h x Sla)		
		d = 6-2 (4 × 516)		
7		7 2 2		.1
¥.	· · · ·	x (a, x b, + (a,+c) x (b,	1111000	
"W	der = 6 x h	x (a2 x b2 + (a1+c) x (b2	+ of) + C XC	X
	, W			
	y h	ere az = C+2(hw x Sle)		
		b2 = d + 2 (h~ XSIb)		
		2		

Exhibit 5

Golf Course Irrigation Pump Calculations

Computation of Total Dynamic Head for irrigation pond influent sump pump

Diameter of Friction Co	Flowrate f Suction Piping f Effluent Piping efficient (inside wet well) "C" on Coefficient (force main) "C"	= = = =	60 gpm 2.047 in. 2.047 in. 120 120	
A.	Static Suction Lift	=	1 ft.	
B.	Friction, Suction			
1.	Pipe Total Length	=	1 ft.	
2. a. b.	Fittings in Eq. Length of Pipe 2" 90 degree elbows 2" check valve	= = =	4 ft. 13.4 ft. ft.	1@ at 4' each 1 @ at 13.4' each
3.	Total Pipe Equivalent	=	18.4 ft.	
4.	Total Friction Loss	=	1.62 ft.	
C. Use (round	Total Dynamic Suction Lift led up)	= =	2.62 ft. 3.00 ft.	
D.	Static Discharge Head	=	25 ft.	
E.	Friction, Discharge or Force Main	n Line		
1.	Pipe Total Length	=	650 ft.	
2. a. b. c. d.	Fittings in Eq. Length of Pipe 2" 90 degree elbows	= = =	16 ft. ft. ft. ft.	4@ at 4' each
3.	Total Pipe Equivalent	=	666 ft.	
4.	Total Friction Loss	=	58.76 ft.	
F. Use (round	Total Dynamic Discharge Head led up)	= =	83.76 ft. 84.00 ft.	
G.	Total Dynamic Head (TOH)	=	87 ft.	


Semi-open multi-channel impellers with integral grinder cutter in single volute casing for liquids containing solids and fibres.

Technical specification

Curves according to: Water, pure [100%],39.2 *F,62.42 lb/ft3,1.6891E-5 ft2/s

Configuration

Motor number M3059.170 13-10-288-W 3.8hp

Impeller diameter

144 mm

Installation type P - Semi permanent, Wet

Discharge diameter 2 inch

Pump information

Impeller diameter

144 mm

Discharge diameter 2 inch

Inlet diameter 40 mm

Maximum operating speed

3395 rpm

Number of blades

Throughlet diameter

Max. fluid temperature

40 °C

Materials

Impeller Grey cast iron

Stator housing material Grey cast iron

Xylect-22224895 Block

Created by

Tyler Menzel

4/30/2024 Last update

4/30/2024

Technical specification

4/30/2024

Motor - General

Motor number M3069.170 13-10-288-W 3.8hp

ATEX approved

60 Hz Version code 170

Frequency

Phases 3~

Number of poles

Rated voltage 460 V

Rated speed 3395 rpm

Rated current 5.1 A

Insulation class

Rated power 3.8 hp

Stator variant

Type of Duty 51

Motor - Technical

Power factor - 1/1 Load

84.5 %

Motor efficiency - 1/1 Load Motor efficiency - 3/4 Load Total moment of inertia 0.0759 lb ft2

Starting current, direct starting

Starts per hour max.

Power factor - 3/4 Load 0.78

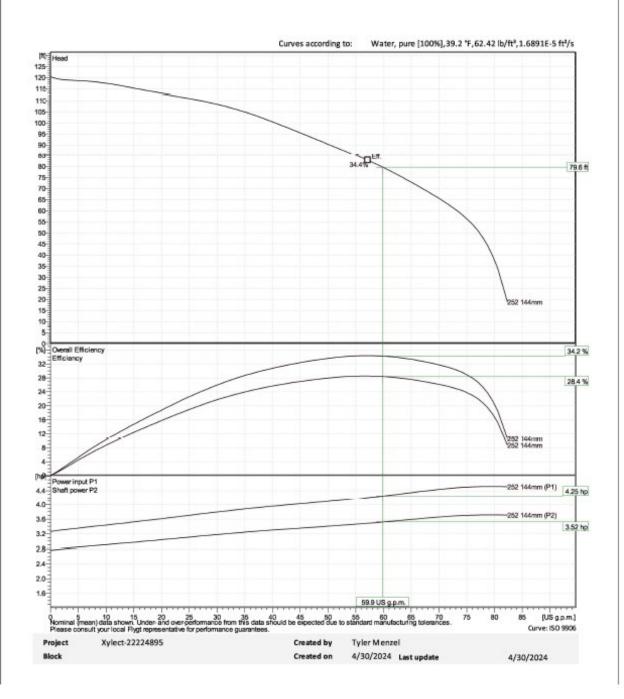
Power factor - 1/2 Load

0.67

Motor efficiency • 1/2 Load 84.5 %

32 A Starting current, star-delta 10.7 A

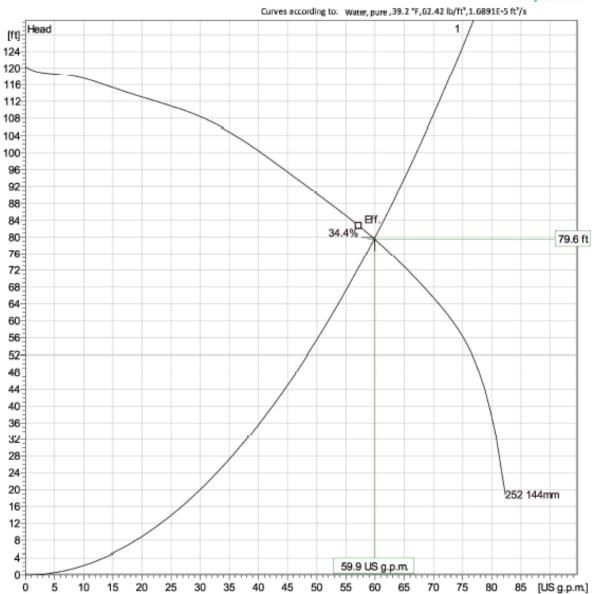
Project Xylect-22224895 Created by Tyler Menzel Created on 4/30/2024 Last update


U:oe19ro...,p{:o) XylemUSA-8IT 73.0-4f23l2024(B.lilc12!i) 4/23/202412:36MP4

Performance curve

Duty point

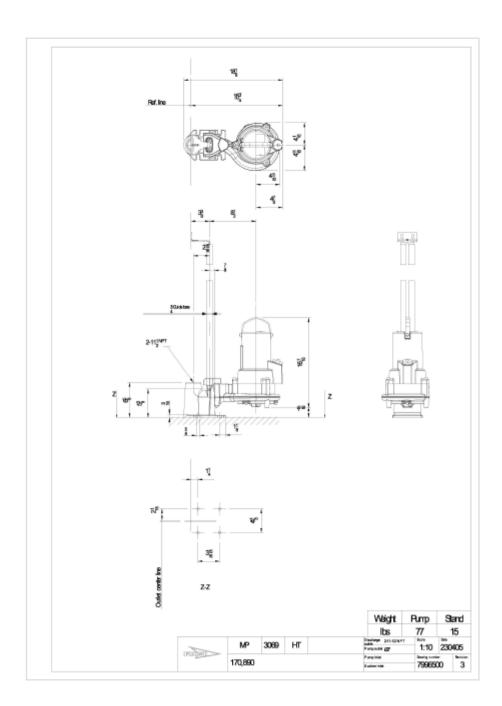
Flow 59.9 US g.p.m. Head 79.6 ft



 Poll_st:Invension
 Uoe19m-p(s)

 73.0-4f2310024(B.lik121i)
 4/23/202412:36MP4
 XylemUSA-8IT

Duty Analysis


Operating characteristics

Pumps / Systems	Flow	Head	Shaft power	Flow	Head	Shaft power	Hydr.eff.	Specific Energy	NPSHre
1	59.9 US g.p.m.	79.6 ft	3.52 hp	59.9 US g.p.m.	79.6 ft	3.52 hp	34.2 %	882 kWh/US M1	

Project	Xylect-22224895	Created by	Tyler Menzel		
Block		Created on	4/30/2024	Last update	4/30/2024

Dimensional drawing

 Project
 Xylect-22224895
 Created by
 Tyler Menzel

 Block
 Created on
 4/30/2024 Last update
 4/30/2024

MISSOURI DEPARTMENT OF NATURAL RESOURCES WATER PROTECTION PROGRAM

APPLICATION FOR CONSTRUCTION PERMIT – SEWER EXTENSION

5-1		
FOR DEPAR	TM	ENT USE ONLY
APP NO.	CF	NO.
FEE RECEIVED		CHECK NO.
300		35442
DATE RECEIVED		

NOTE ► Please Read the accompanying i										
1.0 APPLICATION INFORMATION (Note – If any of the questions in this section are answered NO, this application may be considered incomplete and returned.)										
1.1 Is this a Federal/State funded project?	☑ YES ☐ N/A Fundin	g Agency: SRF	Pro	ject #: C295920-01						
	.2 Has the Department of Natural Resources approved the proposed project's engineering report*? ✓ YES Date of Approval: 08/15/22 □ NO □ N/A									
I.3 Is a copy of the appropriate plans* and specifications* included with this application? ✓ YES ☐ NO										
If the project is using standard specificati	ons, name of community:									
1.4 Is a summary of design* included with the	is application?	□ NO								
1.5 Is the appropriate fee or JetPay confirma See Section 7.0	tion included with this applic	ation? 🗹 YES	□NO							
* Must be affixed with a Missouri registered p	rofessional engineer's seal,	signature and date).							
2.0 PROJECT INFORMATION 2.1 NAME OF PROJECT										
City of Unionville - Wastewater Treatment Fac	cility Improvements - Phase	2								
ADDRESS 1611 Grant Street	CITY Unioville	STATE MO	ZIP CODE 63565	COUNTY Putnam						
	4, SE 1/4, Sec. 36	-1	R 19W	Futilatii						
Z.Z Zogal Booshphon, SE 74, SW	-, SE 74, 000.00	, , , , ,	1. 1944							
2.3 Project Components (check all that apply Gravity sewers Pumping station 2.4 PROJECT DESCRIPTION		ternative sewer sy	vstem ☐ Other (D	escribe below.)						
Phase 2 includes the installation a mechanical screen and master lift station constructed to collect flow currently being received by the North Treatment Plant. From the lift station, a corresponding force main will convey flow to the South Treatment Plant. Upon project completion and startup, the North Wastewater Treatment Facility will no longer need an NPDES permit. Existing Cell #2 at the North facility will be re-purposed as a retention / flow equalization basin.										
2.5 DESIGN INFORMATION A. Population or number of lots to be served	by this extension: 315 lots									
B. Estimated flow to be contributed by this ex	ktension: Design Average F	low: 110k gpd	Design Peak Hourl	y Flow: 17.3k gph						
C. Industrial Wastes: Type: Residential	Flow: gpd N/	Ά								
D. Receiving Sewer: Size: 12 inches	Capacity: 1400 gpm	ı								
E. Does this project (check all that apply):										
✓ Connect to an existing treatment plant	Resolve enforcement issu	e 🗹 Eliminate or	consolidate an exis	ting treatment plant						
F. Estimated number of onsite systems being removed: Unionville North Wastewater Treatment Facility										
G: Estimated costs associated with piping: \$	550,000 Estimated c	osts associated wi	th lift station(s): \$ 80	00,000						
3.0 PROJECT OWNER	Qr.									
NAME City of Unionville	660-947-2437	275	tpayne@nemr.net							
ADDRESS 1611 Grant Street	CITY Unionville	MO STATE	ZIP CODE 63565							
CHARTER NUMBER (SECRETARY OF STATE) or REGISTERED	AGENT		(1							

4.0 CONTINUING AUTHORITY: A continuing for ensuring compliance with the permit required Continuing authority should be a relatively permitted facility or activation of the permitted facility or activation of the permitted facility or activated by the permittee to sample or operate analytical laboratory. To access the regulato Water Commission Chapter 6. A continuing (SoS's) webpage: Missouri Secretary of State required to register with the SoS.	irements a ermanent e vity. A con and mainta ry requiren authority's	and provide entity respor- tinuing auth ain the syste ment regardi name must	continuous nsible for the ority is not, em for a defi ing continuir be listed ex	stable overs ongoing op however, an ned time per ng authority, actly as it as	ight of the permitted facility or activity. The peration, maintenance and modernization, entity or individual that is contractually iod, such as a certified operator or 10 CSR 20-6.010(2), please visit Clean operator on the Missouri Secretary of State's	
NAME Other of University		1	NUMBER WITH A	REA CODE	EMAIL ADDRESS	
City of Unionville	CITY	660-947-2	437	STATE	tpayne@nemr.net	
1611 Grant Street	Unionville	е		МО	63565	
CHARTER NUMBER (SECRETARY OF STATE)						
4.1 Has appropriate continuing authority acc A letter from the continuing authority accepti different than the original owner of the constr Treatment Facility Acceptance" Form 780-25	ng respons ruction), or	sibility for co	ontinued mai executed "C	intenance of ontinuing Au	the sewer (if the continuing authority is uthority and Receiving Wastewater	
5.0 ENGINEER ENGINEER NAME / COMPANY NAME		TELEPHONE	NUMBER WITH A	REA CODE	EMAIL ADDRESS	
C. Cameron Jones P.E Benton & Associate		660-665-3			cjones@bentonassociates.com	
ADDRESS 2414 S. Franklin Street	CITY Kirksville)	•	STATE MO	ZIP CODE 63501	
6.0 RECEIVING WASTEWATER TREATME	NT FACIL	.ITY				
NAME Unionville South Wastewater Treatment Faci	ility	660-947-2	NUMBER WITH A 437	REA CODE	EMAIL ADDRESS tpayne@nemr.net	
MISSOUR! STATE OPERATING PERMIT # NPDES Permit No. MO-0026646		Putnam			REMAINING CAPACITY (GPD) 68,500	
6.1 If different from the owner, has a letter be accept the expanded flow or has a properly MO 780-2584 form been provided? YE 6.2 A letter from the receiving wastewater tree.	executed (S	Continuing A	Authority and	d Receiving	Wastewater Treatment Facility Acceptance	
☐ YES ☐ NO ☑ N/A 6.3 If the receiving treatment plant or continu Certificate of Convenience and Necessity ha			ted by the P] Yes – Date		e Commission (PSC) for sewer activities, a ☐ No ☑ N/A	
OPTIONAL QUESTIONS REGARDING MIL	ITARY SE	RVICE				
Have you or an immediate family member ev U.S. Armed Forces?	er served	in the		/es	□No	
If yes, would you like information about milita in Missouri?	ıry-related	services		/es	☐ No	
7.0 Application Fee						
☐ Check Number			☐ JetPay	Confirmatio	n Number	
8.0 PROJECT OWNER: I certify under pena supervision in accordance with a system des submitted. Based on my inquiry of the persor gathering the information, the information sul aware there are significant penalties for subriviolations. PROJECT OWNER SIGNATURE	signed to a n or persor bmitted is,	ssure qualifi ns who man to the best	led personn lage the sys of my knowl	el properly g tem, or thos ledge and be	ather and evaluate the information e persons directly responsible for elief, true, accurate and complete. I am	
Charley Bul Poter					DATE	
Charley Bill Pittnan 5-23-25						
TITLE OR CORPORATE POSITION Mayor		TELEPHONE 1 660-947-24	NUMBER WITH A	REA CODE	EMAIL ADDRESS	
***************************************		1000-947-24	437			
Mail completed copy to: MISSOURI DEPARTMENT OF NATURA WATER PROTECTION PROC PO BOX 176	AL RESOU	RCES	Submit completed electronic copy to: Missouri Department of Natural Resources at DNR.WPPEngineerSection@dnr.mo.gov			
JEFFERSON CITY, MO 65102-0176						

MO 780-1632 (10-22)

		ESIGN CERTIFICATION: Answer all questions yes or N/A. Answer N/A only if the question is	clearly r	not
appli	REGULATION	of the proposed sewer extension.	YES	N/A
1.	8.110(3)(A)	Is the design flow based on actual flow data for an existing system?	-	IN/A
2.	8.110(3)(B)	Are average design flows, peak hourly flows and I&I contributions for new systems	V	님
		calculated?	✓	Ш
3.	8.110(9)(B)	Is there a detailed plan showing tributary area, boundaries, pertinent elevations, topography, existing and proposed facilities?	V	
4.	8.120(2)	Does the sewer exclude water from roofs, streets, groundwater from foundation drains and combined wastewater?	V	
5.	8.120(3)(A)	Is the pipe installation, embedment and backfill designed to prevent damage to the pipe and its joints?	V	
6.	8.120(3) (A)1	Is all sewer pipe constructed with a slope to obtain mean velocities of not less than 2 feet per second?	V	
7.	8.120(3)(A)2	Is the pipe covered with at least 36" of soil or sufficiently insulated to prevent freezing?	V	
8.	8.120(3)(B)	Is deflection testing specified to ensure no pipe exceeds a deflection of 5% of the inside diameter?	V	
9.	8.120(4)(A)	Are manholes located at the end of each line, at all changes in grade, size or alignment and at all intersections?	✓	
10.	8.120(4)(C)	Are manholes at least 42 inches in diameter with a clear opening of 22 inches on sewer line larger than 8"?	V	
11.	8.120(4)(C)	Where cleanouts are used at the end of a lateral instead of a manhole, they are a minimum diameter of 8 inches or larger and equal to the diameter for pipes < 8"?		1
12.	8.120(4)(E)	Are the manholes watertight, constructed and installed in accordance with the	V	
13.	8.120(4)(F)	manufacturer's recommendations and procedures? Do the specifications include a requirement for inspection and testing for manholes?		<u> </u>
14.	8.120(5)(A)	Is the sewer free from physical connections to a potable water supply system and no water	✓	<u> </u>
15.	8.120(5)(B)	pipes come in contact with a sewer manhole? Are sewers and manholes located at least 50 feet horizontally from any existing or	✓	
10.	0.120(0)(D)	proposed water supply well, sources, structures?	V	
10.0		RS, GRINDER PUMP, STEP AND STEG SEWER CHECKLIST		
4.0	REGULATION		YES	N/A
16.	8.125(5)(A)1.	Does the cleaning velocity of ≥ 2 ft/s happen more than once per day?	V	
17.	8.125(5)(A)2.	Is the diameter of the pressure sewer main pipe at least 1.5"?	V	
18.	8.125(5)(B)	Are appurtenances compatible with the piping system?	~	
19.	8.125(5)(B)2.	Are isolation valves located: upstream of major pipe intersections; both sides of stream, bridge and RR crossings; at terminal end of system?	V	
20.	8.125(5)(C)	Do service line pipes have a minimum diameter of 1.25"?	П	✓
21.	8.125(5)(D)1.A	Do simplex grinder pump stations service only a single equivalent dwelling unit (EDU)? i.e. 1 residence – 1 grinder pumpt.		V
22.	8.125(5)(D)1.B	Are multiple unit pump stations owned, operated and maintained by an approved continuing authority?		~
23.	8.125(5)(D)3.	Is there at least 70 gallons of storage in the grinder pump unit?		V
24.	8.125(5)(D)4.	Do grinder pump stations have shutoff valves, check valves and anti-siphon valves (where siphoning could occur) that are accessible from the ground surface?		V
25.	8.125(5)(D)7., 8.130(3)(B)2.	Are units serviceable and replaceable under wet conditions without electrical hazard and is electrical equipment suitable for hazardous locations (National Electrical Code, Class I, Group D, Division 1 location)?	~	
26.	8.125(5)(D)8., 8.125(2)(F)6.	Are provisions in place to avoid interruption of service due to mechanical or power failure by providing standby power, storage capacity, or interconnection with another disposal system?	V	
27.	8.125(6)(D)	In a STEP system is at least one septic tank (1,000 gallons or more) provided for each EDU with 20% of tank volume dedicatied to freeboard and ventillation?		V
28.	8.125(6)(F)	Are duplex pumps provided for the design flow of 1,500 gallons or greater?	1	

11.0 P	UMP STATION C	HECKLIST						
	REGULATION					YES	N/A	
29.	8.125(7)(C)		ameter sewer main pipe		EG sewer at least 4"?		1	
30.	8.130(2)(A) 8.140(2)(B)		n designed to withstand			✓		
31.	8.130(3)(A)	access provided to	each?		itable and safe means of		V	
32.	8.130(3)(B)	provided?			ps or pneumatic ejectors	✓		
33	8.130(3)(D)	Are valves located	outside wet well unles	s integral to a pump or	its housing?	V		
34.	8.130(3)(F) 8.140(8)(J)	Do wet and dry we	lls have separate venti	lation systems?			V	
35.	8.130(3)(G)	Does all potable w	ater brought to pump s	tations comply with 8.1	I40(7)(D)?		V	
36.	8.130(6)		s an alarm system provided with uninterrupted power?					
37.	8.130(7)(A)		tention of the peak hou ak hourly flow for a des		ow > 100,000 gpd or 4 hrs d?	V		
38.	8.130(7)(B)	Are there independ		provided for emergenc	y power capable of starting		V	
39.	8.130(8)(A)		relocity of ≥ 2 ft/s maint			V	П	
40.	8.130				ons provided that include and spare parts that may be	V		
12.0 8	SUCTION LIFT PU	MP AND SUBMER	SIBLE PUMP STATIO	N CHECKLIST				
	REGULATION					YES	N/A	
41.	8.130(4)	Are the suction lift	Are the suction lift pumps of the self priming or vacuum priming type?				1	
42.	8.130(4)(A)	Is the combined total of dynamic suction lift at the "pump off" elevation and required net positive suction head at design operating conditions less than or equal to 22 feet?					V	
43.	8.130(4)(B)	Are there dual vacuum pumps capable of removing air from the suction lift pump?					1	
44.	8.130(5)(A)	Are submersible p	umps readily removabl		out personnel entering, or			
40.00	DEMED EXTENS		pipe in the wet well?	CEMENT			V	
			DERTIFICATION STAT		al comments regarding desig	n for rev	view	
engine		ciou IVA provide a	in oxpiditation. Also pro	ao any addiai gonere	a. 25o. rogarang addig			
31 & 3	4: This submersibl	e pump station inclu	des an above-grade va	alve vault (no drywell),	and vent.			
	potable water on a ere are electrical p	site rovisions for a porta	ble generator.					
	Į.		-					
						No.		
Misso	uri Professional E	ngineer's seal, signa	ture and date:		STE OF MISS	ON		
					C. CAMERO	VER		
					D. JONES	1	<u>}</u>	
					NUMBER			
Name	e: C. Cameron Jon	es, PE PLS			PE-2020013720			
Addre	ess: 2414 S. Franl	klin Street			OVALE	2		
City: I	Kirksville		State: MO		ZIP Code: 63501			
Telep	Telephone Number with Area Code: 660-665-3575 Email:cjones@bentonassociates.com							

CONTOUR INTERVAL 10 FEET NORTH AMERICAN VERTICAL DATUM OF 1988 CONTOUR SWOOTHNESS = Medium

7.5-MINUTE TOPO, MO