STATE OF MISSOURI

DEPARTMENT OF NATURAL RESOURCES

MISSOURI CLEAN WATER COMMISSION

CONSTRUCTION PERMIT

The Missouri Department of Natural Resources hereby issues a permit to:

City of Rosebud Rosebud South Lagoon Wastewater Facility South Terminus of S. Park Street Rosebud, MO 63091

for the construction of (described facilities):				
See attached.				
Permit Conditions:				
See attached.				

Construction of such proposed facilities shall be in accordance with the provisions of the Missouri Clean Water Law, Chapter 644, RSMo., and regulation promulgated thereunder, or this permit may be revoked by the Department of Natural Resources.

As the department does not examine structural features of design or the efficiency of mechanical equipment, the issuance of this permit does not include approval of these features.

A representative of the department may inspect the work covered by this permit during construction. Issuance of a permit to operate by the department will be contingent on the work substantially adhering to the approved plans and specifications.

This permit applies only to the construction of water pollution control components; it does not apply to other environmentally regulated areas.

November 13, 2025

Heather Peters, Director, Water Protection Program

November 12, 2027

Expiration Date

Effective Date

CONSTRUCTION PERMIT

I. CONSTRUCTION DESCRIPTION

This construction permit will require additions to the treatment process consisting of an influent bar screen, Triplepoint Nitrox TM (MBBR) system, polishing clarifier, and UV disinfection. The third existing lagoon will be decommissioned while the other two lagoon cells will have the addition of aerators. Sludge will be removed from the lagoons and berms will be regraded to reestablish 2 feet of freeboard. The project will increase the design average flow to 50,700 gallons per day (gpd) and serve a population equivalent of 507.

The Rosebud South Lagoon Wastewater Treatment Facility (WWTF) project is located at the South Terminus of South Park Street, Rosebud, Missouri, in Gasconade County. The current facility has a design average flow of 38,000 gpd and serves a population equivalent of approximately 380 people. The collection system has approximately 6 miles of sewer mains.

This project will also include general site work appropriate to the scope and purpose of the project and all necessary appurtenances to make a complete and usable wastewater treatment facility.

II. COST ANALYSIS FOR COMPLIANCE

Pursuant to Section 644.145, RSMo, when issuing permits under this chapter that incorporate a new requirement for discharges from publicly owned combined or separate sanitary or storm sewer systems or publicly owned treatment works, or when enforcing provisions of this chapter or the Federal Water Pollution Control Act, 33 U.S.C. 1251 et seq., pertaining to any portion of a publicly owned combined or separate sanitary or storm sewer system or [publicly owned] treatment works, the Department of Natural Resources shall make a "finding of affordability" on the costs to be incurred and the impact of any rate changes on ratepayers upon which to base such permits and decisions, to the extent allowable under this chapter and the Federal Water Pollution Control Act. This process is completed through a cost analysis for compliance. Permits that do not include new requirements may be deemed affordable.

The department is not required to determine cost analysis for compliance because the permit contains no new conditions or requirements that convey a new cost to the facility.

III. CONSTRUCTION PERMIT CONDITIONS

The permittee is authorized to construct subject to the following conditions:

- 1. This construction permit does not authorize discharge.
- 2. All construction shall be in accordance with the plans and specifications and Change Order No. 1 submitted by Bartlett & West on April 14, 2023, and May 1, 2024 and signed and sealed by Matthew Vander Tuig, P.E. on April 14, 2023, and approved by the department on June 28, 2023.

- 3. Regulation 10 CSR 20-4.040(18)(B)1 requires that projects be publicly advertised, allowing sufficient time for bids to be prepared and submitted. Projects should be advertised at least 30 days prior to bid opening.
- 4. The department must be contacted in writing prior to making any changes to the approved plans and specifications that would directly or indirectly have an impact on the capacity, flow, system layout, or reliability of the proposed wastewater treatment facilities or any design parameter that is addressed by 10 CSR 20-8, in accordance with 10 CSR 20-8.110(11).
- 5. As per 10 CSR 20-4.040, all changes in contract price or time within the approved scope of work must be by change order in accordance with Section 19 of this rule.
- 6. State and federal law does not permit bypassing of raw wastewater; therefore, steps must be taken to ensure that raw wastewater does not discharge during construction. If a sanitary sewer overflow or bypass occurs, report the appropriate information to the department's electronic Sanitary Sewer Overflow/Bypass Reporting system at https://dnr.mo.gov/mogem/ or the St. Louis Regional Office per 10 CSR 20-7.015(9)(G).
- 7. In addition to the requirements for a construction permit, 10 CSR 20-6.200 requires land disturbance activities of 1 acre or more to obtain a Missouri state operating permit to discharge stormwater. The permit requires best management practices sufficient to control runoff and sedimentation to protect waters of the state. Land disturbance permits may only be obtained by means of the department's ePermitting system available online at https://dnr.mo.gov/data-e-services/missouri-gateway-environmental-management-mogem. See https://dnr.mo.gov/data-e-services/water/electronic-permitting-epermitting-epermitting-for-more information.
- 8. A United States Army Corps of Engineers (USACE) Section 404 Department of Army permit (§404) along with the department's Section 401 Water Quality Certification or waiver (§401) may be required for the activities described in this permit. This permit is not valid until these requirements are satisfied. If construction activity will disturb any land below the ordinary high water mark of jurisdictional waters of the U.S., then a §404/§401 will likely be required. Since the USACE makes determinations on what is jurisdictional, you must contact the USACE to determine permitting requirements. See https://dnr.mo.gov/water/business-industry-other-entities/permits-certification-engineering-fees/section-401-water-quality for more information or you may contact the department's Water Protection Program at 573-522-4502 or wpsc401cert@dnr.mo.gov.

9. Upon completion of construction:

- A. The City of Rosebud will become the continuing authority for operation and maintenance of these facilities.
- B. Submit an electronic copy of the as-builts if the project was not constructed in accordance with previously submitted plans and specifications.

C. Submit the enclosed form Statement of Work Completed to the department in accordance with 10 CSR 20-6.010(5)(N) and request the operating permit modification be issued. When the facility applies for their next operating permit renewal, they will be expected to include an updated facility description on their application.

IV. REVIEW SUMMARY

1. CONSTRUCTION PURPOSE

The project includes modifications to the existing wastewater treatment system to better meet effluent limitations. The new NitrOx TM system will allow for ammonia reduction while the UV disinfection system will help meet *E. coli* limits consistantly. Sludge removal will allow for better treatment and help meet new 5-day biochemical oxygen demand (BOD₅) and total suspended solids (TSS) limits as well as percent removal.

2. FACILITY DESCRIPTION

The exisiting facility has a three-cell lagoon, chlorination/dechlorination system, and sludge is retained in the cells. Additions to the wastewater treatment process include Triplepoint NitrOx TM system, polishing clarifier, bar screen, and UV disinfection system. Sludge will be removed from the lagoons and berms will be regraded to reestablish 2 feet of freeboard. The project also involves the modification and rehabilitation of the collection system to reduce inflow and infiltration. The upgrades will help meet *E. coli*, ammonia, BOD₅, and TSS limits as well as percent removal. The third cell will be decommissioned and closed.

The Rosebud South Lagoon WWTF is located at the south terminus of South Park Street, Rosebud, Missouri, in Gasconade County. The existing facility has a design average flow of 38,000 gpd and serves a population equivalent of approximately 380 people.

3. COMPLIANCE PARAMETERS

The existing facility can meet BOD₅, TSS, and ammonia weekly and monthly averages. The proposed project is required to meet final effluent limits established in Missouri State Operating Permit No. MO-0091375 and established in the Antidegradation review dated April 29, 2022.

The following limits will be applicable to the facility after construction is completed:

Parameter	Units	Monthly Average Limit
Biochemical Oxygen Demand ₅	mg/L	30
Total Suspended Solids	mg/L	30
Ammonia as N (Jan 1 – Mar 31)	mg/L	2.3
Ammonia as N (Apr 1 – Jun 31)	mg/L	1.4
Ammonia as N (Jul 1 – Sep 30)	mg/L	1.1
Ammonia as N (Oct 1 – Dec 31)	mg/L	2.1
BOD ₅ Percent Removal	%	85
TSS Percent Removal	%	85

4. ANTIDEGRADATION

The department has reviewed the antidegradation report for this facility and issued the Water Quality and Antidegradation Review dated April 29, 2022, due to increasing design flow to 50,700 gallons per day (gpd). See **APPENDIX 1 – ANTIDEGRADATION**.

5. <u>REVIEW OF MAJOR TREATMENT DESIGN CRITERIA</u>

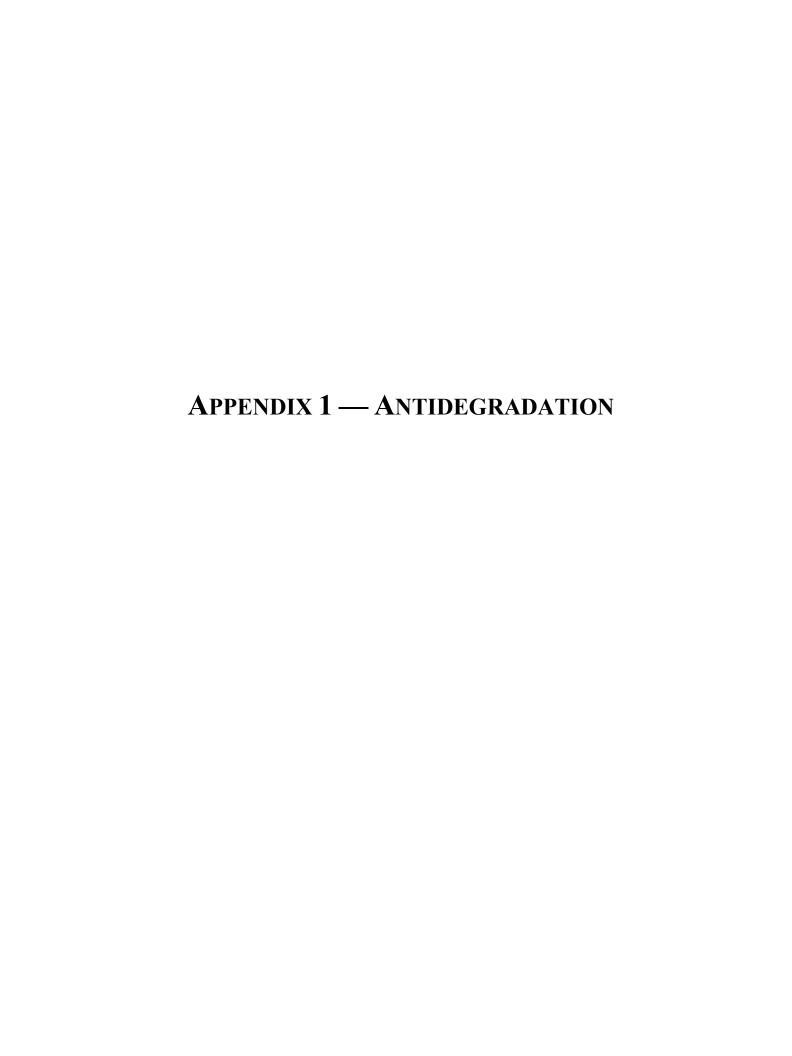
Existing Components: Lagoon Cell Nos. 1, 2, and 3 are non-aerated.

- Cell No. 1 has a wastewater volume of 2,134,300 gallons, 3 feet (ft) side water depth, and a sludge depth of 19.6 inches.
- Cell No. 2 has a wastewater volume of 573,540 gallons gallons, 3 ft side water depth, and a sludge depth of 21.8 inches.
- Cell No. 3 has a wastewater volume of 220,530 gallons, 3 ft side water depth, and a sludge depth of 14.1 inches.
- This provides approximately 57.76 days of total retention at the proposed design flow.

New Components:

- Bar Screen The bar screen has a width of 2 ft, depth of 4.61 ft, and bar spacing is one and a half inch. The screen will be positioned at an angle of 45 degrees from the horizontal to allow for manual raking of the screen.
- Lagoon aerators and blowers Two lagoons cell will have 12 Ares 750T aerators. Cell No. 1 will be supplied ten aerators and Cell No. 2 will have the remaining two. The aerators will supply 105.6 pounds per day of oxygen. Blowers shall be designed to supply a standard air flow of 171.85 standard cubic feet per minute (scfm) per blower. The discharge pressure shall be 3.0 pounds per square gauge (psig) and the minimum horsepower (HP) will be 5.0 HP for each blower. There shall be a minimum of two blower units, one for duty and one standby/backup.
- Airlift airflow for the primary airlift will be 12.05 cubic feet per minute (cfm) and the secondary airlift will provide 6.89 cfm. The air lift will push recycled flow from the clarifier and Cell 2 to the NitrOx TM unit. The secondary air lift will be accompanied with a 24-inch HDPE pipe.
- Triplepoint Water Technologies, LLC NitrOxTM The lagoon-treated effluent will be pumped to the NitrOxTM system. The NitrOxTM system is capable of treating a design average flow of 50,700 gpd. The system is composed of two tanks with each approximately 8 ft x 8 ft x 18 ft with a sidewater depth of 15 ft. Total volume of the two tanks is 14,362 gallons. The average flow hydraulic retention time is 5.4 hours and the peak flow hydraulic retention time is 1.2 hours. A floating insulating cover shall be installed in each tank. An immersion tank heater will be installed to maintain a minimum wastewater temperature of 5°C. Each tank shall be filled with high surface area media. Aeration by means of trilobe or bi-lobe positive displacement blowers each capable of supplying 76 scfm with 5 HP motors. The effluent from the NitrOxTM basins will flow by gravity to the clarifier for polishing prior to disinfection and discharge.

- Polishing Clarifier There will be one polishing clarifier following the NitrOxTM treatment. The basin will be 12 ft by 10 ft with approximately 14.95 ft of sidewater depth. The surface overflow rate at the average daily flow of 50,700 gpd equals 422.5 gpd per square foot.
- Ultraviolet Disinfection Disinfection is the process of removal, deactivation, or killing of pathogenic microorganisms. A two bank UV disinfection system with low pressure mercury slimline lamps shall be provided and capable of treating a peak flow of 285,000 gpd while delivering a minimum UV intensity of 30.0 mJ/cm² with an expected ultraviolet transmissivity of 60 percent minimum.
- Flowmeters Installation of an electro-magnetic flow measurement device will aid in wastewater service. An electromagnetic flow meter shall measure the flow from the UV disinfection to the outfall. A manhole will be constructed between the flowmeter and outfall.


6. OPERATING PERMIT

The Missouri State Operating Permit for Rosebud South Lagoon WWTF, MO-0091375, will require a modification to reflect the construction activities, and was successfully public noticed from March 17 to April 17, 2023, with no comments received. Submit the Statement of Work Completed to the department in accordance with 10 CSR 20-6.010(5)(N) and request the operating permit modification be issued.

Angie Garcia Financial Assistance Center angie.garcia@dnr.mo.gov

APPENDICES

- 1. Antidegradation
- 2. Process Flow Diagram
- 3. Summary of Design

Water Quality and Antidegradation Review

For the Protection of Water Quality and Determination of Effluent Limits for Discharge to

Tributary to Soap Creek by City of Rosebud South Lagoon WWTF

May 2022

Table of Contents

<u>1.</u>	PURPOSE OF ANTIDEGRADATION REVIEW REPORT	2
$\overline{2}$.	FACILITY INFORMATION	
<u>2.</u> <u>3.</u>	FACILITY HISTORY	
	A. FACILITY PERFORMANCE HISTORY:	
	B. RECEIVING WATERBODY INFORMATION	
	C. EXISTING WATER QUALITY	3
	D. MIXING CONSIDERATIONS	3
4.	PERMIT LIMITS AND MONITORING INFORMATION	
<u>4.</u> <u>5.</u>	RECEIVING WATER MONITORING REQUIREMENTS	
<u>6.</u>	ANTIDEGRADATION REVIEW INFORMATION	
_	A. TIER DETERMINATION	
	B. NECESSITY OF DEGRADATION.	
	i. Regionalization	5
	ii. No Discharge Evaluation	
	iii. Alternatives to No discharge	
	C. SOCIAL AND ECONOMIC IMPORTANCE	
	D. NATURAL HERITAGE REVIEW	5
7.	RECEIVING WATER MONITORING REQUIREMENTS	5
<u>7.</u> <u>8.</u>	DERIVATION AND DISCUSSION OF PARAMETERS AND LIMITS	6
9.	GENERAL ASSUMPTIONS OF THE WATER QUALITY AND ANTIDEGRADATIO	N
REV	<u>IEW</u>	8
10.	ANTIDEGRADATION REVIEW PRELIMINARY DETERMINATION	
11.	Appendix A: Map of Discharge Location	9
12.	Appendix B: Antidegradation Review Summary Attachments Error! Bookmark n	
defin		

PURPOSE OF ANTIDEGRADATION REVIEW REPORT

The Rosebud South Lagoon WWTF is a three-cell lagoon with a design flow capacity of 38,000 gallons/day (gpd). The current facility cannot treat to the required effluent limits of its NPDES permit, which go into effect October 1, 2023. The City of Rosebud is proposing to increase the design flow to 50,700 to accommodate anticipated growth, add Triplepoint Nitrox for nitrification, and replace the chlorine tablet feeder with UV for disinfection.

Kyle J. Landwehr, of Bartlett & West, Inc., prepared the application. Matthew J. Vandertuig, P.E. of Bartlett & West, Inc., signed and sealed the Waste Water System Improvements Antidegradation Report for the City of Rosebud, dated February 2022.

The applicant elected to determine that all pollutants of concern (POC) are non-degrading in the receiving stream using current permit limits for 5-day Biological Oxygen Demand (BOD₅) and Total Suspended Solids (TSS). Because the applicant does not have a current ammonia limit, non-degrading was determined using Water Quality Based Effluent Limit formula (see Derivation of Limits). This analysis was conducted to fulfill the requirements of the AIP. Information that was provided by the applicant in the submitted report and summary forms in Appendix B was used to develop this review document.

FACILITY INFORMATION

Facility Name:	Rosebud South Lagoon WWTF
Address:	end of South Park Street, Rosebud, MO 63091
Permit #:	MO-0091375
County:	Gasconade
Facility Type:	POTW
Owner:	City of Rosebud
Continuing Authority:	City of Rosebud
UTM Coordinates (outfall):	X = 639146; $Y = 4249122$
Legal Description:	Section 18, T42N, R04W
Ecological Drainage Unit:	Ozark / Meramec

FACILITY HISTORY

The Rosebud South Lagoon WWTF's operating permit was renewed in May 2020 with a final effluent limit date of October 1, 2023. The facility determined the current three-lagoon system could not meet the new ammonia limits nor accommodate anticipated growth. It is meeting its current limits and is not under enforcement.

FACILITY PERFORMANCE HISTORY:

A review of the past 5 years of Discharge Monitoring Report data shows infrequent exceedances for BOD₅, TSS, Chlorine, and *Escherichia coli*.

RECEIVING WATERBODY INFORMATION

OUTFALL(S) TABLE:

OUTFALL	DESIGN FLOW (CFS)	TREATMENT LEVEL	Effluent type
#001	0.0507	Equivalent to Secondary	Domestic

RECEIVING STREAM(S) TABLE:

ECELY IN CONTRACTOR OF THE EEC							
WATER-BODY NAME	CLASS	WBID	Designated Uses*	12-Digit HUC	DISTANCE TO CLASSIFIED SEGMENT (MI)		
Tributary to Soap Creek	NA	NA	General Criteria	07140103-0303	0.0		
Soap Creek	С	3359	AQL-WWH, HHP, IRR, LWW, SCR, WBC-B	07140103-0303	0.42		

^{*} Protection of Warm Water Aquatic Life (AQL), Cold Water Fishery (CDF), Cool Water Fishery (CLF), Whole Body Contact Recreation – Category A (WBC-A), Whole Body Contact Recreation – Category B (WBC-B), Secondary Contact Recreation (SCR), Human Health Protection (HHP), Irrigation (IRR), Livestock & Wildlife Watering (LWW), Drinking Water Supply (DWS), Industrial (IND), Groundwater (GRW).

RECEIVING STREAM(S) LOW-FLOW VALUES:

RECEIVING STREAM	Low-Flow Values (CFS)					
RECEIVING STREAM	1Q10	7Q10	30Q10			
Tributary to Soap Creek	0.0	0.0	0.0			

Receiving Water Body Segment Outfall #1:					
Upper end segment* UTM coordinates: $X = 639146$; $Y = 4249122$ outfall					
Lower end segment* UTM coordinates:	X = 638679 ; Y = 4248764	downstream confluence (unnamed creek, not Soap Creek)			

^{*}Segment is the portion of the stream where discharge occurs. Segment is used to track changes in assimilative capacity and is bound at a minimum by existing sources and confluences with other significant water bodies.

A Geohydrologic Evaluation was not submitted with the request. Soap Creek is gaining for discharge purposes.

EXISTING WATER QUALITY

Existing permit limits were exceeded three times for BOD₅ in the past five years.

MIXING CONSIDERATIONS

MIXING CONSIDERATIONS

Mixing Zone: Not Allowed [10 CSR 20-7.031(5)(A)4.B.(I)(a)].

Zone of Initial Dilution: Not Allowed [10 CSR 20-7.031(5)(A)4.B.(I)(b)].

PERMIT LIMITS AND MONITORING INFORMATION

Proposed Monitoring Parameters and Effluent Limits

PARAMETER	Unit	Basis for Limits	Daily Maximum	Weekly Average	Monthly Average	Previous Permit Limit	Sampling Frequency	Reporting Frequency	Sample Type ****
Flow	MGD		*		*				

BOD ₅	mg/L	NDEL		45	30	60	1/Q	1/Q	grab
TSS	mg/L	NDEL		45	30	110			
Ammonia as N (Jan 1 – Mar 31) (Apr 1 – Jun 30) (Jul 1 – Sep 30) (Oct 1 – Dec 31)	mg/L		9.0 9.0 9.0 9.0		2.3 1.4 1.1 2.1				

^{* -} Monitoring requirement only

Basis for Limitations Codes:

MDEL – Minimally Degrading Effluent Limit
NDEL – Non-Degrading Effluent Limit

TBEL – Technology-Based Effluent Limit WQBEL – Water Quality-Based Effluent Limit

PEL – Preferred Effluent Limit

RECEIVING WATER MONITORING REQUIREMENTS

No receiving water monitoring requirements recommended at this time.

ANTIDEGRADATION REVIEW INFORMATION

In accordance with Missouri's Water Quality Standard [10 CSR 20-7.031(3)] and federal antidegradation policy at Title 40 Code of Federal Regulation (CFR) Section 131.12 (a), the department developed a statewide antidegradation policy and corresponding procedures to implement the policy. A proposed discharge to a water body will be required to undergo a level of Antidegradation Review, which documents that the use of a water body's available assimilative capacity is justified. Effective August 30, 2008, and revised July 13, 2016, a facility is required to use Missouri's AIP for new and expanded wastewater discharges.

The AIP specifies that if the proposed activity results in significant degradation then a demonstration of necessity (i.e., alternatives analysis) and a determination of social and economic importance are required.

The following is a review of the Waste Water System Improvements Antidegradation Report for the City of Rosebud, dated February 2022.

A. TIER DETERMINATION

Waterbodies are assigned Tier 1, 2, or 3 protection levels.

Tier 1 protection is applied to a waterbody on a pollutant by pollutant basis for pollutants may cause or contribute to the impairment of a beneficial use or violation of Water Quality Criteria (WQC); and prohibit further degradation of Existing Water Quality (EWQ) where additional pollutants of concern (POCs) would result in the water being included on the 303(d) List.

Tier 2 level protection is assigned to the waterbody on a pollutant by pollutant basis that prohibits the degradation of water quality of a surface water unless a review of reasonable alternatives and social and economic considerations justifies the degradation in accordance with the methods presented in the AIP.

Tier 3 protection prohibits any degradation of water quality of Outstanding National Resource Waters and Outstanding State Resource Waters as identified in Tables D and E of the Water Quality Standards (WQS). Temporary degradation of water receiving Tier 3 protection may be allowed by the department on a case-by-case basis as explained in Section VI of the AIP.

Below is a list of POCs reasonably expected and identified by the permittee in their application to be in the discharge. Pollutants of concern are defined as those pollutants "proposed for discharge that affect beneficial use(s) in waters of the state." They include pollutants that "create conditions unfavorable to beneficial uses in the water body receiving the discharge or proposed to receive the discharge" (AIP, Page 6).

^{** - #/100}mL; the Monthly Average for *E. coli* is a geometric mean.

^{*** -} Parameter not previously established in previous state operating permit.

All pollutants are assumed to be Tier 2 non-degrading, meaning the waste load will remain the same despite the increased flow. The other pollutant limits, e. coli and oil & grease, will not change. Chlorine will no longer be a pollutant because the tablet chlorinator is being replaced by UV disinfection.

Pollutants of Concern and Tier Determination

Pollutants of Concern	Tier	Degradation	Comment
Biological Oxygen Demand (BOD ₅)/DO	2*	Non-degrading	
Total Suspended Solids (TSS)	2*	Non-degrading	
Ammonia as N	2*	Non-degrading	

^{*} Tier assumed.

B. NECESSITY OF DEGRADATION

The AIP specifies that if the proposed activity does result in significant degradation then a demonstration of necessity (i.e., alternatives analysis) and a determination of social and economic importance are required. Part of that analysis as shown below is the evaluation of non-degrading alternatives, such as regionalization or no discharge systems.

The applicant has the option of assuming discharge will be significant and proceeding directly to the alternatives analysis, thereby avoiding the determination of the assimilative capacity of the receiving water. The applicant has elected this option.

Regionalization

The Rosebud South Lagoon is the regional treatment facility.

No Discharge Evaluation

The facility is expanding its capacity, so any change to a no-discharge option would be prohibitively more expensive.

Alternatives to No discharge

The application did not include an alternatives analysis. Because the facility already has working lagoons for treatment, any other treatment technology, such as oxidation ditch or MBR, would be cost prohibitive. The applicant is upgrading the lagoons with a proven lagoon ammonia treatment technology, Nitrox MBBR, for ammonia removal.

C. SOCIAL AND ECONOMIC IMPORTANCE

The affected community consists of the residents of Rosebud, MO (population 390 in the 2020 census) and it's immediate surroundings. Proper and cost-effective operation of the facility serves the environmental and economic interests of both the State of Missouri and the local communities.

D. NATURAL HERITAGE REVIEW

A Missouri Department of Conservation Natural Heritage Review was obtained by the applicant. Two species of bats, Indiana and Northern Long-Eared, may be present in the project area. The following recommendations were made for construction activities:

- Manage construction to minimize sedimentation and run-off to nearby streams.
- At stream and drainage crossings, avoid erosion, silt introduction, petroleum or chemical pollution, and disruption or realignment of stream banks and beds.
- If any trees need to be removed for the project, contact the U.S. Fish and Wildlife Service for coordination under the Endangered Species Act.

RECEIVING WATER MONITORING REQUIREMENTS

No receiving water monitoring requirements recommended at this time.

DERIVATION AND DISCUSSION OF PARAMETERS AND LIMITS

Wasteload allocations and limits were calculated using the following method:

A. Water quality-based – Using water quality criteria or water quality model results and the dilution equation below:

 $C = \frac{(C_s \times Q_s) + (C_e \times Q_e)}{(Q_e + Q_s)}$ (EPA/505/2-90-001, Section 4.5.5)

Where C = downstream concentration

 C_s = upstream concentration

 $Q_s = upstream flow$

 C_e = effluent concentration

 $Q_e = effluent flow$

Chronic wasteload allocations were determined using applicable chronic water quality criteria (CCC: criteria continuous concentration) and stream volume of flow at the edge of the mixing zone (MZ). Acute wasteload allocations were determined using applicable water quality criteria (CMC: criteria maximum concentration) and stream volume of flow at the edge of the zone of initial dilution (ZID).

Water quality-based maximum daily and average monthly effluent limitations were calculated using methods and procedures outlined in USEPA's "Technical Support Document For Water Quality-based Toxics Control" (EPA/505/2-90-001).

Outfall #001 - Main Facility Outfall

- Flow. Though not limited itself, the volume of effluent discharged from each outfall is needed to assure compliance with permitted effluent limitations [40 CFR Part 122.44(i)(1)(ii)]. If the permittee is unable to obtain effluent flow, then it is the responsibility of the permittee to inform the department, which may require the submittal of an operating permit modification. Influent monitoring has been and will be required for this facility in its Missouri State Operating Permit.
- <u>Biochemical Oxygen Demand (BOD₅).</u> Effluent limits of 30 mg/L average monthly and 45 mg/L average daily maximum were established as a result of a mass loading maintenance or reduction demonstration by the applicant. At the existing design flow 38,000 gpd the mass loading to the waterbody is 14.3 lbs/day while the proposed loading was calculated to be 12.7 lbs/day at the proposed effluent concentration and increased design flow. These limits are at least as stringent as the minimum effluent regulations established in 10 CSR 20-7.015(8).
- Total Suspended Solids (TSS). Effluent limits of 30 mg/L average monthly and 45 mg/L average daily maximum were established as a result of a mass loading maintenance or reduction demonstration by the applicant. At the existing design flow 38,000 gpd the mass loading to the waterbody is 22.2 lbs/day while the proposed loading was calculated to be 12.7 lbs/day at the proposed effluent concentration and increased design flow. These limits are at least as stringent as the minimum effluent regulations established in 10 CSR 20-7.015(8).
- <u>Total Ammonia Nitrogen.</u> The applicant's current permit does not have ammonia limits. Therefore, to calculate non-degrading limits, "existing" ammonia loading was calculated as if the facility had WQBEL for ammonia. These calculations are presented below. New non-degrading limits are calculated in the table following the WQBEL calculations.

Early Life Stages Present Total Ammonia Nitrogen criteria apply [10 CSR 20-7.031(5)(B)7.C. & Table B3]. Background total ammonia nitrogen = 0.01 mg/L

Quarter	Temp (°C)*	pH (SU)*	Total Ammonia Nitrogen CCC (mg/L)	Total Ammonia Nitrogen CMC (mg/L)
1 st	11.0	7.8	3.1	12.1
2 nd	21.2	7.8	2.0	12.1
$3^{\rm rd}$	26.0	7.8	1.5	12.1
4 th	15.5	7.8	2.9	12.1

^{*} Ecoregion Data (Ozark Highlands)

1st Quarter

Chronic WLA: Ce = ((0.038 + 0.0)3.1 - (0.0 * 0.01)) / 0.038 = 3.1 mg/LAcute WLA: Ce = ((0.038 + 0.0)12.1 - (0.0 * 0.01)) / 0.038 = 12.1 mg/L

AML = 3.1 mg/L MDL = 12.1 mg/L

2nd Quarter

Chronic WLA: Ce = ((0.038 + 0.0)2.0 - (0.0 * 0.01)) / 0.038 = 2.0 mg/LAcute WLA: Ce = ((0.038 + 0.0)12.1 - (0.0 * 0.01)) / 0.038 = 12.1 mg/L

AML = 2.0 mg/L MDL = 12.1 mg/L

3rd Quarter

Chronic WLA: Ce = ((0.038 + 0.0)1.5 - (0.0 * 0.01))/(0.038 = 1.5 mg/L)

Acute WLA: Ce = ((0.038 + 0.0)12.1 - (0.0 * 0.01))/0.038 = 12.1 mg/L

AML = 1.5 mg/LMDL = 12.1 mg/L

4th Quarter

Chronic WLA: Ce = ((0.038 + 0.0)2.9 - (0.0 * 0.01))/0.038 = 2.9 mg/L

Acute WLA: Ce = ((0.038 + 0.0)12.1 - (0.0 * 0.01)) / 0.038 = 12.1 mg/L

AML = 2.9 mg/L MDL = 12.1 mg/L

Net Change in Loadings Based upon Current and Proposed Permit Limits.

POLLUTANTS OF CONCERN	CURRENT WEEKLY AVERAGE OR MAXIMUM DAILY LIMIT (MG/L)	PROPOSED MAXIMUM DAILY LIMIT (MG/L)	CURRENT LOADING (LBS/DAY)	PROPOSED LOADING (LBS/DAY)	NET CHANGE (LBS/DAY)
BOD ₅	60 (AWL)	45 (AWL)	19.0	18.6	- 0.4
TSS	110 (AWL)	45 (AWL)	34.9	19.0	- 15.9
Ammonia as N					
(Jan 1 – Mar 31)	12.1*/**	9.0	3.83	3.81	- 0.02
(Apr 1 – Jun 30)	12.1*/**	9.0	3.83	3.81	- 0.02
(Jul 1 – Sep 30)	12.1*/**	9.0	3.83	3.81	- 0.02
(Oct 1 – Dec 31)	12.1*/**	9.0	3.83	3.81	- 0.02

	CURRENT MONTHLY AVERAGE LIMIT (MG/L)	PROPOSED MONTHLY AVERAGE LIMIT (MG/L)	CURRENT LOADING (LBS/DAY)	PROPOSED LOADING (LBS/DAY)	NET CHANGE (LBS/DAY)
(Jan 1 – Mar 31)	3.1*/**	2.3	0.98	0.97	- 0.01
(Apr 1 – Jun 30)	2.0*/**	1.4	0.63	0.59	- 0.04
(Jul 1 – Sep 30)	1.5*/**	1.1	0.48	0.47	- 0.01
(Oct 1 – Dec 31)	2.9*/**	2.1	0.92	0.89	- 0.03

^{*}WQBEL=water quality based effluent limit. **See Derivation and Discussion of Limits, Section 10. AWL = average weekly limit.

GENERAL ASSUMPTIONS OF THE WATER QUALITY AND ANTIDEGRADATION REVIEW

- A. A Water Quality and Antidegradation Review (WQAR) assumes that [10 CSR 20-6.010(3) Continuing Authorities and 10 CSR 20-6.010(4) (D), consideration for no discharge] has been or will be addressed in a Missouri State Operating Permit or Construction Permit Application.
- B. A WQAR does not indicate approval or disapproval of alternative analysis as per [10 CSR 20-7.015(4) Losing Streams], and/or any section of the effluent regulations.
- C. Changes to Federal and State Regulations (FSR) made after the drafting of this WQAR may alter Water Quality Based Effluent Limits (WQBEL).
- D. Effluent limitations derived from FSR may be WQBEL or Effluent Limit Guidelines (ELG).
- E. WQBEL supersede ELG only when they are more stringent. Mass limits derived from technology based limits are still appropriate.
- F. A WQAR does not allow discharges to waters of the State, and shall not be construed as a National Pollution Discharge Elimination System (NPDES) or Missouri State Operating Permit to discharge or a permit to construct, modify, or upgrade.
- G. Limitations and other requirements in a WQAR may change as Water Quality Standards (WQS), Methodology, and Implementation procedures change.
- H. Nothing in this WQAR removes any obligations to comply with county or other local ordinances or restrictions.
- I. The operating permit may contain additional requirements to evaluate the effectiveness of the technology once the facility is in operation. This Antidegradation Review is based on the information provided by the facility and is not a comprehensive review of the proposed treatment technology. If the review engineer determines the proposed technology will not consistently meet proposed effluent limits, the permittee will be required to revise their Antidegradation Report.

ANTIDEGRADATION REVIEW PRELIMINARY DETERMINATION


The proposed facility upgrades are needed to reduce ammonia concentrations and account for future increases in usage. Because this project is an upgrade of an existing facility, alternatives analysis was not done. The combination of adding a Nitrox system for nitrification and UV disinfection should allow the facility to meet its permit limits, including a new limit for ammonia, for the foreseeable future.

Per the requirements of the AIP, the effluent limits in this review were developed to be protective of beneficial uses and to attain the highest statutory and regulatory requirements. The department has determined that the submitted review is sufficient and meets the requirements of the AIP. No further analysis is needed for this discharge.

Reviewer: Bern Johnson Date: April 2022

Unit Chief: John Rustige, P.E.

Appendix A: Map of Discharge Location

()	≋
7	

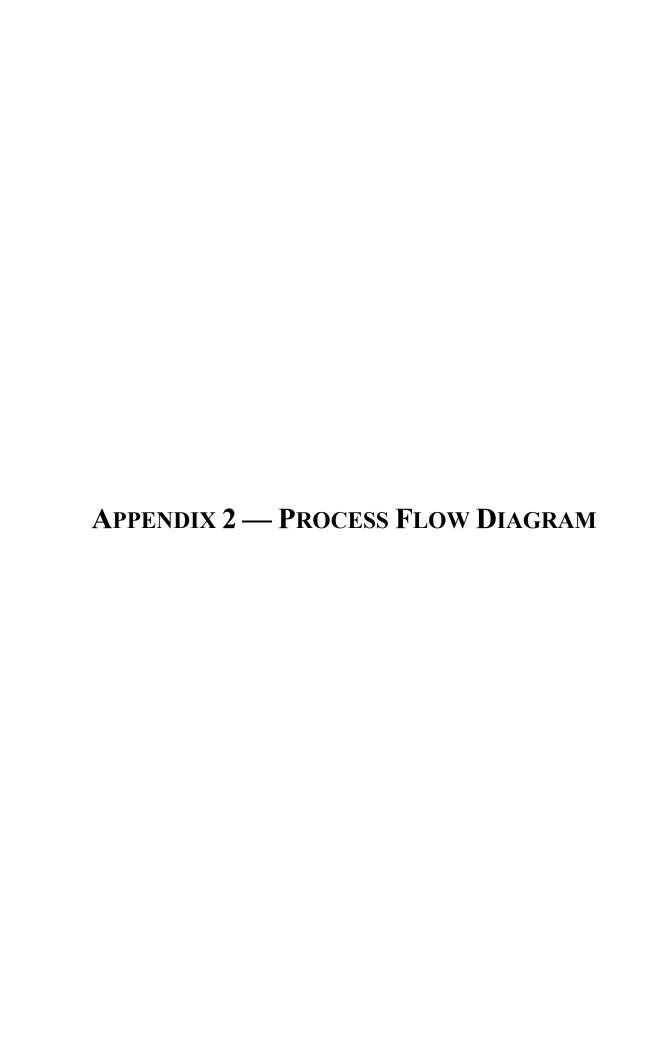
MISSOURI DEPARTMENT OF NATURAL RESOURCES WATER PROTECTION PROGRAM, WATER POLLUTION CONTROL BRANCH ANTIDEGRADATION REVIEW SUMMARY / REQUEST

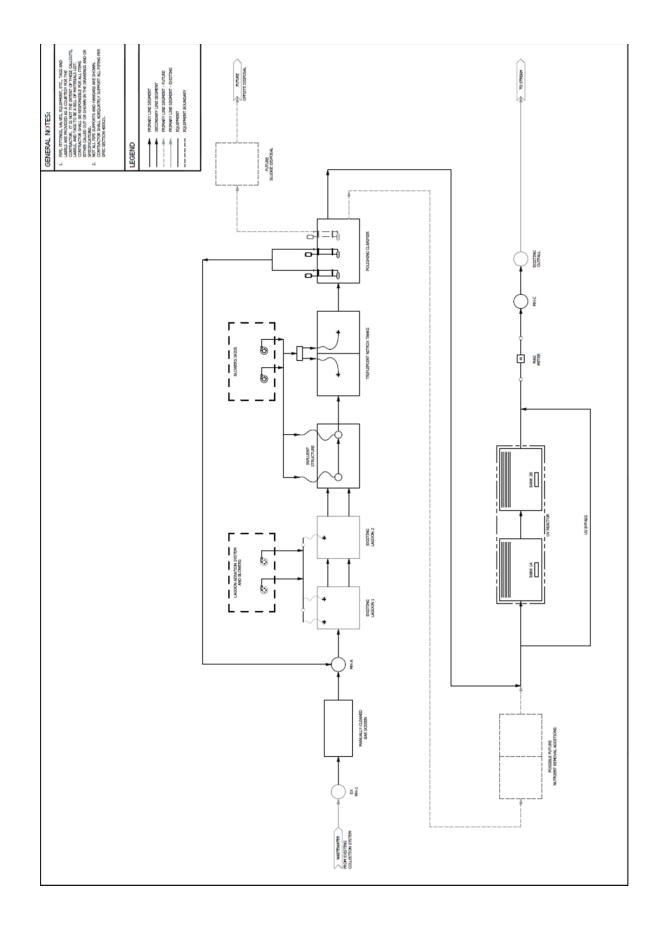
FOR DEPARTMENT USE ONLY					
CHECK NO.					

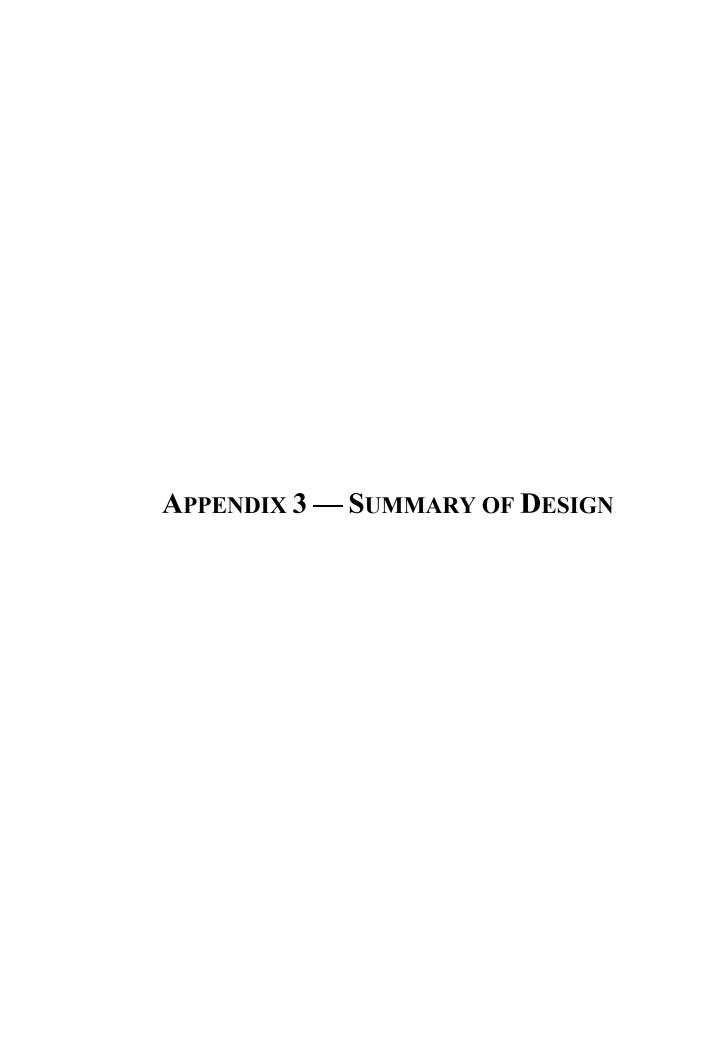
		Ι,	AT E RECEIV		
1. FACILITY					
NAME			COUNTY	- 4-	
Rosebud South Lagoon Wastewater Treatment Facility ADDRESS (PHYSICAL)	Law		Gascon		
South Terminus of South Park Street	Rosebud		MO	63091	
MO-0091375	PROPOSED DESIGN FLOW 50,700 GPD	8IC / NA 4952	NCS CODE		
2. OWNER					
NAME					
City of Rosebud, Missouri					
ADDRESS 307 Cedar Street	Rosebud		MO	63091	
EMAIL ADDRESS cityofrosebud@gmail.com			573-505	E NUMBER WITH AREA CODE -1818	
3. CONTINUING AUTHORITY The regulatory requirement reg	parding continuing authority is found in	10 CSR	20-6.0100	2).	
NAME	SECRETARY OF STATE CHARTER NUMBER				
City of Rosebud, Missouri	N/A				
ADDRESS 307 Cedar Street	Rosebud		MO	ZIP CODE 63091	
EMAIL ADDRESS cityofrosebud@gmail.com	•		TELEPHONE NUMBER WITH AREA CODE 573-505-1818		
4. CONSULTANT			•		
PREPARER NAME	COMPANY NAME				
Kyle J. Landwehr	Bartlett & West, Inc.				
ADDRESS 1719 Southridge Drive, Suite 100	стү Jefferson City		MO	ZIP CODE 65109	
EMAIL ADDRESS kyle.landwehr@bartwest.com			TELEPHONE NUMBER WITH AREA CODE 573-659-6727		
5. RECEIVING WATER BODY SEGMENT #1			•		
NAME Tributary to Soap Creek					
5.1 Upper end of segment – Location of discharge	OR Lat 38°22'46.42"N	Long	91°24'24	. 77"W	
UTM: X=, Y=	ON Lat OF EL TOTAL	, Long	0.2.2.		
UTM: X=, Y=	OR Lat 38°22'34.26"N	Long	91°24'43	3.48"W	
Per the Missouri Antidegradation Implementation Procedure (AIP), the defir existing sources and confluences with other significant water bodies."	nition of a segment, "a segment is a section of	of water ti	hat is bound,	at a minimum, by significant	
6. WATER BODY SEGMENT #2 (IF APPLICABLE, Use a	nother form if a third segment is	s neede	ed)		
NAME					
6.1 Upper end of segment – End of Segment #1					
UTM: X=, Y=	OR Lat	, Long			
6.2 Lower end of segment –					
UTM: X=, Y=	OR Lat	, Long			
7. DECHLORINATION					
If chlorination and dechlorination is the existing or propose to or less than the Water Quality Standards for Total Resid ☐ Yes ☑ No – What is the proposed method of	lual Chlorine stated in Table A1 of	10 CSF			
Based on the disinfection treatment system being designer Total Residual Chlorine is assumed and the facility will be	required to meet the water quality I				

limits for Total Residual Chlorine are much less than the method detection limit of 0.13 mg/L.

MO 780-2025 (03-19)

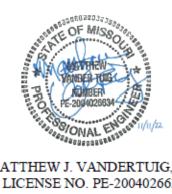

Page 1


8. SUMMARIZE THE FEASIBILITY OF CONSTRUCTING A NO-DISCHARGE TREATMENT WASTEWATER FACILITY								
According to the Antidegradation Implementation Procedure Sections I.B. and II.B.1., the feasibility of no-discharge alternatives								
must be considered. No-discharge alternatives may include connection to a regional treatment facility, surface land application, subsurface land application, and recycle or reuse.								
Multiple no-discharge alternatives were evalua		Citv's Mar	ch 2021 Wastewater System	Improvements Fac	cility Plan. In			
summary, all no-discharge alternatives were not reasonably feasible from a capital cost perspective. See facility plan for full analysis.								
A ADDITIONAL DECUMENTS								
9. ADDITIONAL REQUIREMENTS Complete and submit the following with thi	e euhmitt	al:						
Copy of the Geohydrologic Evaluation -			ough the Missouri Geologica	I Survey website				
☐ Copy of the descriptions Described Description ☐ Copy of the Missouri Natural Heritage fi		•	-	•				
✓ Attach your Antidegradation Review Re					mmarv.			
☐ If applicable, submit a copy of any Exist	•		-		-			
source(s) of the data, and location of da								
submit a copy of the Quality Assurance For more detailed information, see the I								
,			ador implementation i roccu	idic (Air), occuoir i	1.0.1.			
10. PATH / TIER REVIEW ATTACHMENTS E								
Path A: Tier 2 – Non-Degradation Mass Bal	ance		Yes □ No					
Path B: Tier 2 - Minimal Degradation		=	Yes □No					
Path C: Tier 2 – Significant Degradation Path D: Tier 1 – Preliminary Review Reques			Yes □No Yes □No					
Path E: Temporary Degradation	SL.		Yes □No					
11. APPLICANT PROPOSED ANTIDEGRAD								
Preliminary effluent limits for the proposed pro		tration*	Path / Tier Review	I	Daily Maximum			
Applicable			Attachment Used	Average	Limit or Average			
Pollutants of Concern	mg/L	µg/L	for POC Evaluation	Monthly Limit	Weekly Limit			
BOD ₅	X		Tier 2: Non-Degrading	30	44			
TSS	X		Tier 2: Non-Degrading	30	45			
Ammonia (Summer)	X		Tier 2: Non-Degrading	1.1	9.0			
Ammonia (Winter)	X		Tier 2: Non-Degrading	2.1	9.0			
Total Phosphorus	X		N/A					
* Place an X in appropriate box for th	e concenti	ration units	s for each Pollutant of Conce	em.	l			


MO 780-2025 (03-19) Page :

12. PROPOSED PROJECT SUMMARY	
See anti-degradation report and facility plan report. Applicants choosing to use a new wastewater technology that are considered an "unproven technology" in Missi	ouri must comply with the
requirements set forth in the New Technology Definitions and Requirements fact sheet.	oun must comply with the
13. CONTINUING AUTHORITY WAIVER (For New Discharges)	
In accordance with 10 CSR 20-6.010(2)(C), applicants proposing use of a lower preference continu level authority is available, must submit a waiver from the existing higher authority one or other doc review, provided it does not conflict with any area-wide management plan approved under section 2 Act or by the Missouri Clean Water Commission. Is the waiver necessary? Yes No If yes, provide a copy.	umentation for the department's
14. APPLICATION FEE	
☐CHECK NUMBER 200307	69
15. SIGNATURE	
I am authorized and hereby certify that I am familiar with the information contained in this document knowledge and belief such information is true, complete and accurate.	t and to the best of my
SIGNATURE Ryle J. Landwich	02/11/2022
PRINT NAME	TITLE
Kyle J. Landwehr	Lead Project Engineer
PLEASE IDENTIFY YOUR STATUS FOR THIS PROJECT: ☐OWNER ☐CONTINUING AUT	HORITY CONSULTANT

MO 780-2025 (03-19) Page 3


WASTEWATER SYSTEM IMPROVEMENTS SUMMARY OF DESIGN

FOR

CITY OF ROSEBUD, MISSOURI

BARTLETT & WEST PROJECT NO. 20358.005 DNR PROJECT NO. EPG-214-20

DATE PREPARED: NOVEMBER 2022

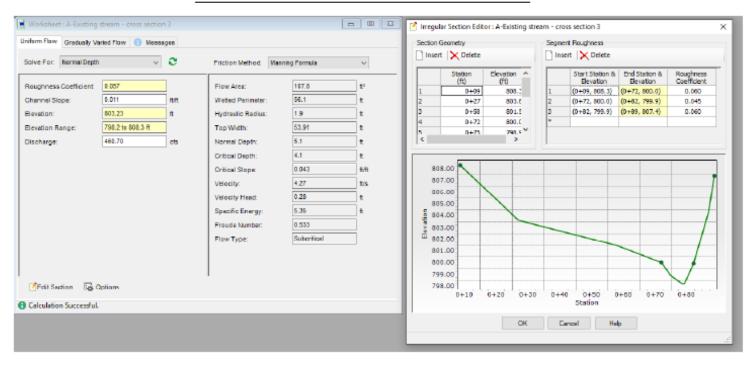
MATTHEW J. VANDERTUIG, P.E. LICENSE NO. PE-2004026634

BARTLETT & WEST, INC.

MISSOURI CERTIFICATE OF AUTHORITY NO. 000167 601 MONROE STREET, SUITE 201 JEFFERSON CITY, MO 65101 573-634-3181

ALL RIGHTS RESERVED. All Bartlett & West, Inc. plans, specifications and drawings are protected under copyright law, and no part may be copied, reproduced, displayed publicly, used to create derivatives, distributed, stored in a retrieval system or transmitted in any form by any means without prior written permission of Bartiett & West, Inc.

Runoff Calculations to Ditch South of Lagoons


Peak Runoff Calculations

Drainage Area = runoff to pond MODOT District = S		Time of Concentration (Checks:	
Drainage Area (ac) = 228.39	Kirpich Time of Concentration (min) = 17.70	TR-55 Shallow Core. I	Now (unpawed):	23.56
Drainage Length (ft) = 4,000 Change in Elev. (ft) = 123 Soil Type = D Composite Runoff Coefficient (C) = 0.31	Drainage Slope (fb/ft) = 0.031	TR-55 Shallow Con	c. Flow (perved):	18.70
Composite Resident Constitution (C) = 0.51		Graph Data:		
MODOT District Rainfall Intensity (infur)	Peak Flow (cfs)	yr:	d	fa:
$i_{2p} = 3.40$	$Q_{2\mu} = 237.2$		2	237.2
$i_{Ser} = 4.11$	Q _{5ee} = 286.6		5	286.6
$i_{10p} = 4.67$	Q _{10e} = 326.0		10	326.0
$i_{23p} = 5.49$	$Q_{23pp} = 383.1$		25	383.1
$i_{\text{Mpr}} = 6.10$	$Q_{\text{top}} = 425.3$		50	425.3
i _{100pr} = 6.61	$Q_{100pe} = 460.7$		100	480.7

1

BENTLEY FLOW MASTER CALCULATIONS FOR NORMAL DEPTH OF 100 YR STORM EVENT AT WWTF OUTFALL

BANK STABILIZATION APPLIED SHEAR STRESS CALCULATIONS

Location: Lagoon cell 1 south berm slope bank stabilization

Applied Shear Stress (mean boundary shear stress applied to the wetted perimeter):

 $\tau_o = \gamma RS_o$

where,

= mean boundary shear stress, N/m2 (lb/ft2) τ_o γ = unit weight of water, 9810 N/m³ (62.4 lb/ft³) R = hydraulic radius, m (ft)

S_o = average bottom slope (equal to energy slope for uniform flow), m/m (ft/ft)

 γ (lb/ft³): 62.4

Hydraulic Radius for Trapezodial Weir:

input:

Bottom Width (ft): 9 Left Side Slope (X:1): 1 2 Right Side Slope (X:1):

Depth (ft): 2.58 (based on trapezodial channel with n for rip rap)

output:

A (ft²⁾: 33.20 P (ft): 18.42

R (ft): 1.80 S₀ (ft/ft): 0.01

τ₀ (lb/ft²): 1.12

SF: 1.5

Permissible shear stress for channel lining:

 $\tau_{\rm p}$ (lb/ft²): 1.69

Applied Shear Stress (maximum shear stress on channel bottom):

 $\tau_d = \gamma dS_o$

where,

= shear stress in channel at maximum depth, N/m2 (lb/ft2)

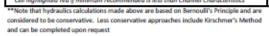
= maximum depth of flow in the channel for the design discharge, m (ft) d

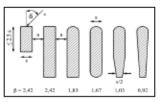
d (ft): (based on trapezodial channel with n for rip rap) 2.58

So (ft/ft): 0.01

 τ_d (lb/ft²): 1.61

> SF: 1.49


Permissible shear stress for channel lining:


τ_p (lb/ft²): 2.40 suggests d50 of 0.5 ft at FS of 1.49

MoDOT Type 2 rock ditch liner meets the requirement

BAR SCREEN CALCULATIONS

Flow Conditions									
Peak Hour Flow Per Screen	0.340	MGD							
Channel Characteristics									
Width 2 ft									
Depth	4.61	ft							
Downstream Water Level	0.1	ft							
Bar Rack Chara	cteristics								
Screen Frame Type	Insert Ty	pe Frame							
Desired Bar Spacing	1 1/2	inch							
(1/4, 3/8, 1/2, 3/4, 1, 2, & 3" Options)									
Resulting Bar Size (leading edge)	0.3750	inch							
Resulting Free Space Between Bars	0.93	ft							
Resulting Effective Channel Width	1.17	ft							
Clean Screen Condition Evaluat	ion (Bernoulli's F	(quation)							
Clean Screen Condition		blinded							
Downstream Channel Velocity		ft/sec							
Velocity Through Bars		ft/sec							
WEF MOP No. 8 suggests 2 to 4 ft/s at clean scr		rysec							
Headloss	0.55	ft							
Upstream Water Level	0.65								
Upstream Channel Velocity		ft/sec							
Channel Freeboard	3.96	-4							
Min. Recommended Channel Depth	2.15								
Cell highlighted red if minimum recommended i									
Blinded Condition Evaluation	(Bernoulli's Equ	iation)							
Alternative 1: Blinded Percent	25%	blinded							
Headloss	1.10	ft							
Upstream Water Level	1.20	ft							
Channel Freeboard	3.41	ft							
Min. Recommended Channel Depth	2.70	ft							
Cell highlighted red if minimum recommended i	s less than Channel C	haracterístics							
Alternative 2: Blinded Percent	50%	blinded							
Headloss	2.67								
Upstream Water Level	2.77	ft							
Channel Freeboard	1.84								
Min. Recommended Channel Depth	4.27								
Cell highlighted red if minimum recommended is	s less than Channel C	haracteristics							

Kirschmer'	s Constants
Screen Angle	45
Bar Shape Factor	2.42
Kirschmer's	Comparison
2.63	ft/sec
3.98	ft/sec
0.09	**
0.19	
1.42	ft/sec
4.42	ft
1.69	ft
Blinded Conditi	ons (Kirschmer)
25%	blinded
0.12	
0.22	ft
4.39	ft
1.72	ft
500/	hP-d-d
	blinded
0.21	
0.31	
4.30	
1.81	ft

Kirschmer's hydraulic calculations provide more realistic results of what should be expected for bar screen hydraulics, however, there is little conservativism in this approach.

INFLUENT GRAVITY PIPE CAPACITY CALCULATIONS

Manning's Equation (for circular pipes, full pipe assumption)

Input

output:

Storm Drain Length (ft): 230.40

A (ft²⁾: 0.35 P (ft): 2.09 R (ft): 0.166666667

n: 0.01 Q (ft³/s): 0.93 or 418.23 gal/min

V (ft/s): 2.67 time in pipe (min): 1.44

Partially Full Table:

depth (in)	y/D	V/V _{full}	Q/Q _{MI}	V (ft/s)	Q(ft ^a /s)	Q (gal/min)	Q (GPD)
0.00	0.00	0.0020	0.0000	0.01	0.00	0.00	0
80.0	0.01	0.0401	0.0000	0.11	0.00	0.02	23
0.16	0.02	0.0761	0.0001	0.20	0.00	0.03	46
0.24	0.03	0.1103	0.0001	0.29	0.00	0.05	70
0.32	0.04	0.1426	0.0002	0.38	0.00	0.06	93
0.40	0.05	0.1733	0.0002	0.46	0.00	0.08	116
0.48	0.06	0.2023	0.0002	0.54	0.00	0.10	139
0.56	0.07	0.2297	0.0003	0.61	0.00	0.11	162
0.64	0.08	0.2558	0.0021	0.68	0.00	0.89	1,283
0.72	0.09	0.2805	0.0044	0.75	0.00	1.86	2,677
0.80	0.10	0.3039	0.0072	0.81	0.01	3.01	4,337
0.88	0.11	0.3261	0.0104	0.87	0.01	4.34	6,253
0.96	0.12	0.3472	0.0140	0.93	0.01	5.85	8,418
1.04	0.13	0.3672	0.0180	0.98	0.02	7.52	10,825
1.12	0.14	0.3863	0.0224	1.03	0.02	9.35	13,468
1.20	0.15	0.4045	0.0271	1.08	0.03	11.35	16,340
1.28	0.16	0.4218	0.0323	1.13	0.03	13.50	19,435
1.36	0.17	0.4383	0.0378	1.17	0.04	15.80	22,750
1.44	0.18	0.4541	0.0436	1.21	0.04	18.25	26,277
1.52	0.19	0.4692	0.0498	1.25	0.05	20.84	30,014
1.60	0.20	0.4837	0.0564	1.29	0.05	23.58	33,956
1.68	0.21	0.4976	0.0633	1.33	0.06	26.46	38,099
1.76	0.22	0.5110	0.0705	1.36	0.07	29.47	42,441
1.84	0.23	0.5238	0.0780	1.40	0.07	32.62	46,977
1.92	0.24	0.5363	0.0859	1.43	80.0	35.91	51,705
2.00	0.25	0.5483	0.0940	1.46	0.09	39.32	56,622
2.08	0.26	0.5600	0.1025	1.50	0.10	42.87	61,727
2.16	0.27	0.5714	0.1113	1.53	0.10	46.54	67,016
2.24	0.28	0.5824	0.1204	1.55	0.11	50.34	72,488
2.32	0.29	0.5932	0.1297	1.58	0.12	54.26	78,141
2.40	0.30	0.6038	0.1394	1.61	0.13	58.31	83,973
2.48	0.31	0.6141	0.1494	1.64	0.14	62.49	89,983
2.56	0.32	0.6243	0.1597	1.67	0.15	66.78	96,169
2.64	0.33	0.6343	0.1702	1.69	0.16	71.20	102,529
2.72	0.34	0.6441	0.1811	1.72	0.17	75.74	109,063
2.80	0.35	0.6538	0.1922	1.75	0.18	80.39	115,768
2.88	0.36	0.6635	0.2036	1.77	0.19	85.17	122,644
2.96	0.37	0.6730	0.2153	1.80	0.20	90.06	129,688
3.04	0.38	0.6824	0.2273	1.82	0.21	95.07	136,900
3.12	0.39	0.6918	0.2396	1.85	0.22	100.19	144,278
3.20	0.40	0.7011	0.2521	1.87	0.23	105.43	151,819
3.28	0.41	0.7104	0.2649	1.90	0.25	110.78	159,523
3.36	0.42	0.7196	0.2779	1.92	0.26	116.24	167,387

INFLUENT GRAVITY PIPE CAPACITY CALCULATIONS

3.44	0.43	0.7288	0.2913	1.95	0.27	121.81	175,409
3.52	0.44	0.7379	0.3048	1.97	0.28	127.49	183,588
3.60	0.45	0.7471	0.3187	1.99	0.30	133.28	191,919
3.68	0.46	0.7561	0.3328	2.02	0.31	139.17	200,401
3.76	0.47	0.7652	0.3471	2.04	0.32	145.16	209,030
3.84	0.48	0.7743	0.3617	2.07	0.34	151.25	217,803
3.92	0.49	0.7833	0.3765	2.09	0.35	157.44	226,717
4.00	0.50	0.7923	0.3915	2.12	0.36	163.73	235,767
4.08	0.51	0.8012	0.4067	2.14	0.38	170.10	244,949
4.16	0.52	0.8101	0.4222	2.16	0.39	176.57	254,259
4.24	0.53	0.8190	0.4378	2.19	0.41	183.12	263,691
4.32	0.54	0.8278	0.4537	2.21	0.42	189.75	273,240
4.40	0.55	0.8365	0.4697	2.23	0.44	196.46	282,900
4.48	0.56	0.8452	0.4860	2.26	0.45	203.24	292,664
4.56	0.57	0.8538	0.5023	2.28	0.47	210.09	302,525
4.64	0.58	0.8623	0.5188	2.30	0.48	217.00	312,476
4.72	0.59	0.8707	0.5355	2.32	0.50	223.96	322,509
4.80	0.60	0.8790	0.5523	2.35	0.51	230.98	332,615
4.88	0.61	0.8872	0.5692	2.37	0.53	238.05	342,786
4.96	0.62	0.8953	0.5862	2.39	0.55	245.15	353,011
5.04	0.63	0.9032	0.6032	2.41	0.56	252.28	363,280
5.12	0.64	0.9110	0.6203	2.43	0.58	259.43	373,581
5.20	0.65	0.9186	0.6375	2.45	0.59	266.60	383,904
5.28	0.66	0.9261	0.6546	2.47	0.61	273.77	394,236
5.36	0.67	0.9333	0.6718	2.49	0.63	280.95	404,563
5.44	0.68	0.9404	0.6889	2.51	0.64	288.10	414,871
5.52	0.69	0.9472	0.7059	2.53	0.66	295.24	425,147
5.60	0.70	0.9538	0.7229	2.55	0.67	302.34	435,373
5.68	0.71	0.9602	0.7398	2.56	0.69	309.40	445,535
5.76	0.72	0.9663	0.7565	2.58	0.70	316.40	455,615
5.84	0.73	0.9722	0.7731	2.60	0.72	323.33	465,595
5.92	0.74	0.9778	0.7895	2.61	0.74	330.18	475,455
6.00	0.75	0.9831	0.8056	2.62	0.75	336.93	485,177
6.08	0.76	0.9881	0.8215	2.64	0.77	343.57	494,739
6.16	0.77	0.9928	0.8371	2.65	0.78	350.08	504,120
6.24	0.78	0.9972	0.8523	2.66	0.79	356.46	513,297
6.32	0.79	1.0013	0.8672	2.67	0.81	362.67	522,246
6.40	0.80	1.0050	0.8816	2.68	0.82	368.71	530,943
6.48	0.81	1.0083	0.8956	2.69	0.83	374.56	539,361
6.56	0.82	1.0114	0.9091	2.70	0.85	380.19	547,475
6.64	0.83	1.0140	0.9220	2.71	0.86	385.59	555,255
6.72	0.84	1.0163	0.9343	2.71	0.87	390.75	562,673
6.80	0.85	1.0182	0.9460	2.72	0.88	395.62	569,699
6.88	0.86		0.9569	2.72	0.89	400.21	576,301
6.96	0.87	1.0209	0.9671	2.73	0.90	404.48	582,447
7.04	0.88	1.0217	0.9765	2.73	0.91	408.40 411.97	588,103 593,234
7.12	0.89	1.0221			0.92		
7.20 7.28	0.90	1.0221	0.9926	2.73	0.93	415.14	597,803
7.28	0.91	1.0217	1.0047	2.73	0.93	417.90 420.21	601,773 605,106
7.44	0.92	1.0209	1.0092	2.72	0.94	422.06	607,761
7.52	0.93	1.0198	1.0092	2.72	0.94	423.40	609,696
7.60	0.95	1.0163	1.0124		0.95	424.21	610,869
7.68	0.96	1.0163	1.0143	2.71	0.95	424.21	611,234
7.76	0.96	1.0140	1.0149	2.70	0.95	424.47	610,748
7.84	0.98	1.0084	1.0118	2.69	0.94	423.17	609,362
7.92	0.98	1.0051	1.0079	2.68	0.94	421.55	607,027
8.00	1.00	1.0015	1.0079	2.67	0.93	419.23	603,694
0.00	2.00	210023	2.0027	2.07	0.33	780160	000,004

Bartlett & West

Project No. 20358.005 Project: Roachad Wastewater System Improvements Subject: Lugoon Storage and Flow Control Structures Location: Roachad, MO

Cell 1 Discharge Calculations

Orifice calcs:

 $Q_s = C_s A_s \sqrt{2g(H - E_s)}$

Equations Used:

 Q_s = orifice outflow C_s = orifice discharge coefficient g = acceleration due to gravity 32.2 ft/s² A_s = net opening area = $xd^2/4$ N = water Elevation

62:

C_e= 0.62

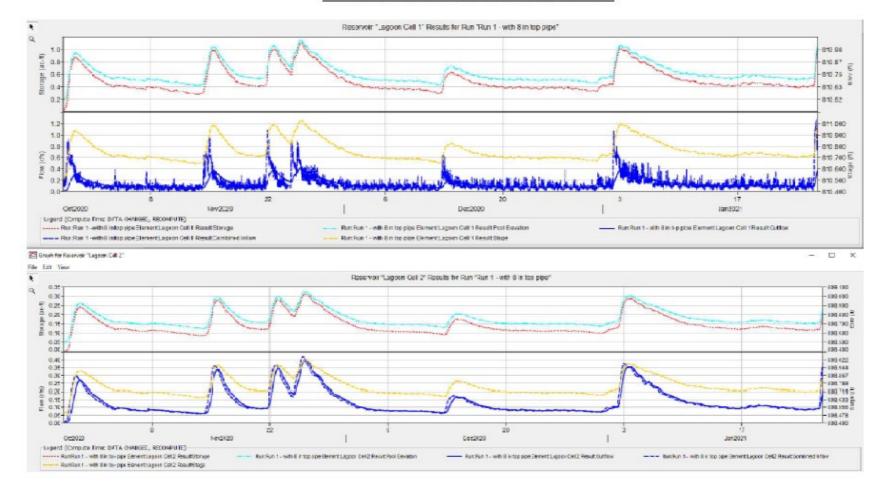
			_			-	_						
FLo	orifice =	809.53	n	810.5 ft									
Number of o	rifices =	0		1									
Diameter of C			in .	6 in									
Distribution of C	Attion -	9		0 8			-						
Water												Total	Total
		-				-			-				
Elevation	14	Q	Q	н	Q	Q		14	Q	Q		Q	Q
(ff)	CEO.	(cfx)	(gpd)	(ff)	(cfx)	(gpd)		(20)	(cfs)	(gpd)		(cfit)	(gpd)
807.50	-2.25	0.00	0	-3.25	0.00	0	T	807.50	0.00	0	1	0.00	0
							ı						
807.60	-2.18	0.00	0	-3.15	0.00	0	Ī	807.60	0.00	0		0.00	0
807.70	-2.08	0.00		-3.05	0.00	0	t	807.70	0.00	0	1	0.00	0
507.50	-1.95	0.00	0	-2.95	0.00	0	ł	807.80	0.00	0		0.00	0
							I I				1		
807.90	-1.55	0.00	0	-2.85	0.00	0	Ī	807.90	0.00	0		0.00	0
505.00	-1.78	0.00	0	-2.75	0.00	0	t	505.00	0.00	0	1	0.00	0
	$\overline{}$		_			_	↓ .			_	4		_
505.30	-1.68	0.00	0	-2.65	0.00	0	I	808.10	0.00	0	1	0.00	0
505.20	-1.58	0.00	0	-2.55	0.00	0	T	808.20	0.00	0		0.00	0
505.30	-1.45	0.00	0	-2.45	0.00	0	t	505.30	0.00	0	1	0.00	0
	_					_	ı						-
505.40	-1.38	0.00	0	-2.35	0.00	0	ı	505.40	0.00	0		0.00	0
505.50	-1.25	0.00	0	-2.25	0.00	0	t	808.50	0.00	0	1	0.00	0
	_					_	ł				1		_
505.60	-1.18	0.00	0	-2.15	0.00	0	ı	808.60	0.00	0	1	0.00	0
505.70	-1.05	0.00	0	-2.05	0.00	0	I	808.70	0.00	0	1	0.00	0
505.50	-0.95	0.00	0	-1.95	0.00	0	t	505.50	0.00	0	1	0.00	0
							+				4		_
505.90	-0.55	0.00	0	-1.85	0.00	0	I	808.90	0.00	0	1	0.00	0
509.00	-0.75	0.00	0	-1.75	0.00	0	T	809.00	0.00	0	1	0.00	0
509.10	-0.65	0.00	0	-1.65	0.00	0	t		0.00	0	1	0.00	0
						_	ı	809.10					
809.20	-0.58	0.00	0	-1.55	0.00	0	Ī	809.20	0.00	0		0.00	0
509.30	-0.45	0.00	0	-1.45	0.00	0	t	809.30	0.00	0	1	0.00	0
							ļ.				4		_
509.40	-0.35	0.00	0	-1.35	0.00	0	I	809.40	0.00	0	1	0.00	0
509.50	-0.25	0.00		-1.25	0.00	0	T	809.50	0.00	0		0.00	0
809.60	-0.15	0.00	0		0.00		t	109.60	0.00	0	1	0.00	0
				-1.15		0	Į.						
809.70	-0.05	0.00	0	-1.05	0.00	0	ı	809.70	0.00	0		0.00	0
509.50	0.02	0.00	0	-0.95	0.00	0	t	809.80	0.00	0	1	0.00	0
	_					_	ŧ						_
509:90	0.12	0.00	0	-0.85	0.00	0	ı	809.90	0.00	0		0.00	0
\$10.00	0.22	0.00	0	-0.75	0.00	0	Ī	\$10.00	0.00	0		0.00	0
810.10	0.32	0.00	0	-0.65	0.00	0	t	810.10	0.00	0	ı	0.00	0
						_	∔				4	-	_
\$10.20	0.42	0.00	0	-0.55	0.00	0	I	810.20	0.00	0		0.00	0
\$10.30	0.52	0.00	0	-0.45	0.00	0	T	\$10.30	0.00	0		0.00	0
810.40	0.62	0.00	_	-0.35	0.00	_	t	810.40	0.00		1	0.00	0
			0			0	ı			0			
\$10.50	0.72	0.00	0	-0.25	0.00	0	ı	810.50	0.00	0		0.00	0
\$10.60	0.82	0.00	0	-0.15	0.07	47,059	t	\$10.60	0.00	0	1	0.07	47,659
							ł						
810.70	0.92	0.00		-0.05	0.15	24,118	I I	810.70	0.00	0	1	0.15	24,118
\$10.50	1.02	0.00	0	0.05	0.22	141,177	T	\$10.50	0.00	0		0.22	141,177
\$10.85	_	0.00			0.31	199,655	t	$\overline{}$	0.00		1		199,655
	1.07		0	0.30			+	810.85		0	1	0.31	
\$10.90	1.12	0.00		0.15	0.38	244,526	L	810.90	0.00	0	1	0.38	244,526
811.00	1.22	0.00	0	0.25	0.49	315,682	Ī	811.00	0.00	0	1	0.49	315,682
811.10		0.00	0	0.35	0.58	373,520	t	811.10	0.00	0	1	0.58	373,520
	1.32						Į.				4		
811.20	1.42	0.00	0	0.45	0.66	423,532	I	811.20	0.00	0	1	0.66	423,532
811.30	1.52	0.00	0	0.55	0.72	468,232	Ī	811.30	0.00	0	1	0.72	468,232
							t				1		
811.35	1.57	0.00		0.60	0.76	489,052	I	811.35	0.00	0	1	0.76	489,052
511.40	1.62	0.00	0	0.65	0.79	509,022	T	811.40	0.00	0	1	0.79	509,022
811.50	1.72	0.00	0	0.73	0.85	546,777	t	811.50	0.00	0	1	0.85	546,777
							ī				1		
\$11.60	1.82	0.00	0	0.85	0.90	582,089	I	811.60	0.00	0	1	0.90	582,089
\$11.70	1.92	0.00	0	0.95	0.95	615,378	t	811.70	0.00	0	1	0.95	615,378
							+				4		
\$11.50	2.02	0.00		1.05	1.00	646,956	I	811.50	0.00	0	1	1.00	646,956
\$11.90	2.12	0.00	0	1.15	1.05	677,063	T	\$11.90	0.00	0	1	1.05	677,063
	$\overline{}$					_	t			_	1		
\$12.00	2.22	0.00	0	1.25	1.09	705,886	ī	812.00	0.00	0	1	1.09	705,886
812.10	2.32	0.00	0	1.35	1.14	733,579	I	812.10	0.00	0	1	1.14	733,579
812.20	2.42	0.00	0	1.45	1.18	760,263	Ť	812.20	0.00	0	1	1.18	760,263
							ŧ				1		
812.30	2.52	0.00		1.55	1.22	786,042	L	812.30	0.00	0	1	1.22	786,042
\$12.40	2.62	0.00	0	1.65	1.25	\$11,002	Ī	812.40	0.00	0	1	1.25	811,002
812.50	2.72	0.00	0	1.75	1.29	\$35,216	t	812.50	0.00	0	1		835,216
							L				1		
District print	Indicates.	cells colouls	sted by lines	r interpolation for	flower least	than J/7 flu	V our than	certificat coal	culturion is	based on a	SHE OWN	erold of t	Old CHISCOL

#3:

Project No. 20358.005 Project: Rosebud Wastewater System Improvements Subject: Lagoon Storage and Flow Control Structures Location: Rosebud, MO

Cell 2 Discharge Calculations

Orifice calcs:


 $Q_s = C_s A_s \sqrt{2g(H - E_s)}$

 Q_s = orifice outflow C_s = orifice discharge coefficient g = acceleration due to gravity 32.2 ft/s² A_s = net opening area = $\pi d^2/4$ H = water Elevation

C_e= 0.62

		V1:		12:		#3:							
FL o	orifice =	806.50	ft	808.5 ft		808.85 £	A .						
Number of o		0		1		1							
Diameter of C	Orifice =	8	in	4 in		8 i	п						
Water												Total	Total
Elevation	H	Q	Q	н	Q	Q		н	Q	Q		Q	Q
(8)	(8)	(cfs)	(gpd)	(ff)	(cfit)	(gpd)		(ff)	(cfii)	(gpd)		(cfs)	(gpd)
805.50	-1.33	0.00	0	-3.17	0.00	0		-3.68	0.00	0	1 1	0.00	0
805.60	-1.23	0.00	0	-3.07	0.00	0		-3.58	0.00	0	1 1	0.00	0
805.70	-1.13	0.00	0	-2.97	0.00	0		-3.48	0.00	0	1 1	0.00	0
805.80	-1.03	0.00	0	-2.87	0.00	0		-3.38	0.00	0	1 1	0.00	0
805.90 806.00	-0.93 -0.83	0.00	0	-2.77 -2.67	0.00	0		-3.28 -3.18	0.00	0	1 1	0.00	0
806.10	-0.73	0.00	0	-2.57	0.00	0		-3.08	0.00	0	1 1	0.00	0
806.20	-0.63	0.00	ő	-2.47	0.00	ő		-2.98	0.00	ő	1 1	0.00	0
806.30	-0.53	0.00	0	-2.37	0.00	0		-2.88	0.00	0	1 1	0.00	0
806.40	-0.43	0.00	0	-2.27	0.00	0		-2.78	0.00	0	1 1	0.00	0
806.50	-0.33	0.00	0	-2.17	0.00	0		-2.68	0.00	0	1 1	0.00	0
806.60	-0.23	0.00	0	-2.07	0.00	0		-2.58	0.00	0	1 1	0.00	0
806.70	-0.13	0.00	0	-1.97	0.00	0		-2.48	0.00	0	1 1	0.00	0
806.80	-0.03	0.00	0	-1.87 -1.77	0.00	0		-2.38 -2.28	0.00	0	1 1	0.00	0
806.90 807.00	0.07	0.00	0	-1.67	0.00	0		-2.18	0.00	0	1 1	0.00	0
807.10	0.17	0.00	0	-1.57	0.00	0		-2.08	0.00	0	1 1	0.00	0
807.20	0.37	0.00	0	-1.47	0.00	0		-1.98	0.00	0	1 1	0.00	0
807.30	0.47	0.00	0	-1.37	0.00	0		-1.88	0.00	0	1 1	0.00	0
807.40	0.57	0.00	0	-1.27	0.00	0		-1.78	0.00	0	1 1	0.00	0
807.50	0.67	0.00	0	-1.17	0.00	0		-1.68	0.00	0	1 1	0.00	0
807.60	0.77	0.00	0	-1.07	0.00	0		-1.58	0.00	0	1 1	0.00	0
807.70	0.87	0.00	0	-0.97	0.00	0		-1.48	0.00	0	1 1	0.00	0
807.80	0.97	0.00	0	-0.87	0.00	0		-1.38	0.00	0	1 1	0.00	0
807.90	1.07	0.00	0	-0.77	0.00	0		-1.28	0.00	0	1 1	0.00	0
808.00	1.17	0.00	0	-0.67	0.00	0		-1.18	0.00	0	1 1	0.00	0
808.10 808.20	1.27	0.00	0	-0.57 -0.47	0.00	0		-1.08 -0.98	0.00	0	1 1	0.00	0
808.30	1.47	0.00	0	-0.47	0.00	0		-0.88	0.00	0	1 1	0.00	0
808.40	1.57	0.00	0	-0.27	0.00	0		-0.78	0.00	0	1 1	0.00	0
808.50	1.67	0.00	0	-0.17	0.00	ő		-0.68	0.00	0	1 1	0.00	0
808.60	1.77	0.00	0	-0.07	0.04	25,355		-0.58	0.00	0	1 1	0.04	25,333
808.70	1.87	0.00	0	0.03	80.0	50,457		-0.48	0.00	0	1 1	0.08	50,457
808.80	1.97	0.00	0	0.13	0.16	102,078		-0.38	0.00	0	1 1	0.16	102,078
808.85	2.02	0.00	0	0.18	0.19	120,148		-0.33	0.00	0	1 1	0.19	120,148
808.90	2.07	0.00	0	0.24	0.21	136,414		-0.28	0.03	21,943	1 1	0.25	158,357
809.00 809.05	2.17	0.00	0	0.34	0.25	162,735		-0.18 -0.14	0.10	63,344	1 1	0.35	226,079
809.10	2.21	0.00	0	0.38	0.27	172,598 184,718		-0.14	0.12	80,732 103,503	1 1	8.45	253,330 288,221
809.20	2.37	0.00	0	0.53	0.29	204,926		0.02	0.22	144,904	1 1	0.54	349,830
809.30	2.47	0.00	0	0.63	0.35	223,313		0.12	0.59	383,381	1 1	0.94	606,694
809.35	2.52	0.00	0	0.68	0.36	231,960		0.17	0.71	458,228	1 1	1.07	690,188
809.40	2.57	0.00	0	0.73	0.37	240,297		0.22	0.81	522,460	1 1	1.18	762,757
809.50	2.67	0.00	0	0.83	0.40	256,157		0.32	0.98	631,624	1 1	1.37	887,781
809.60	2.77	0.00	0	0.93	0.42	271,091		0.42	1.12	724,522	(I	1.54	995,614
809.70	2.87	0.00	0	1.03	0.44	285,245		0.52	1.25	806,794		1.69	******
809.80	2.97	0.00	0	1.13	0.46	298,728		0.62	1.36	881,419		1.83	*******
809.90	3.07	0.00	0	1.23	0.48	311,629		0.72	1.47	950,202		1.95	******
810.00 810.10	3.17	0.00	0	1.33 1.43	0.50	324,016 335,947		0.82	1.57	*******		2.07	*******
810.10	3.27	0.00	0	1.53	0.54	347,469		1.02	1.75	*******		2.18	******
810.20	3.47	0.00	0	1.53	0.55	358,620		1.12	1.84	********		2.39	ARTECA
810.40	3.57	0.00	0	1.73	0.57	369,435		1.22	1.92	*******		2.49	******
810.50	3.67	0.00	0	1.83	0.59	379,943		1.32	1.99	*******		2.58	*******
italized printi	indicates o	cells calcula	ted by linea	r interpolation for	flows less	than 1/2 full	ar the	orifice cal	culation 0	based on a	he cent	rold of t	he orifice

HEC-HMS STORAGE-DISCHARGE GRAPH RESULTS FROM FLOW MONITORING DATA OF FACILITY PLAN REPORT

Rosebud MO WWTF HYDRAULIC CALCULATIONS FOR AVERAGE DAILY FLOW

WWTF outfall through mag meter, UV, future tanks, clarifier, Triplepoint, and Airlift 50,700 (ADF) DESCRIPTION:

50,700 35.21 0.05

FLOW (GPD): FLOW (GPM): FLOW (MGD):

		FLOW	C	PIPE	NOM. DIA	OUT. DIA	ID	VELOCITY	LENGTH	PIPE	K	FIT. LOSS	CUM. LOSS	HGL	
ELEMENT	MATERIAL	(GPM)	FACTOR	CLASS	(IN)	(IN)	(IN)	(FPS)	(FT)	LOSS	FACTOR	(FT)	(FT)	(FT)	COMMENTS
															Tailwater based on 100 year flood elevation - see
															"W:\Proj\20000\20358\20358.005\Documents\DesignCalcs\Hydraulic Calcs\Runoff to
															South Ditchlopen channel 100 year depth calcs.fm8" and "A-Existing Stream - cross section 3" since we're planning on remove the weir plate in existing effluent
Upstream from effluent weir through	UV through Tripler	oint and Airl	ift Structur	res to Cell 2										803.2300	channel
SWING CHECK VALVE	DIP	35.21	120	CL 50	14.0	15.300	14.640	0.07			2.20	0.0002	0.0002	803.2302	(survey shows 15" steel, used 14" DI for calcs)
EXIT LOSS	DIP	35.21	120	CL 50	14.0	15.300	14.640	0.07			1.00	0.0001	0.0002	803.2302	(survey shows 15" steel, used 14" DI for calcs)
PIPE	DIP	35.21	120	CL 50	14.0	15.300	14.640	0.07	3.90	0.0000			0.0002	803.2302	(survey shows 15" steel, used 14" DI for calcs)
															proposed 15" ASTM D3034 (used 14 PVC for headloss calcs here) (still need to
PIPE	PVC_AWWA	35.21	140	C900 (DR 25)	14.0	15.300	15.300	0.06	19.60	0.0000			0.0003	803.2303	confirm downstream "steel" pipe dimension for proper pipe selection here) proposed 15" ASTM D3034 (used 14 PVC for headloss calcs here) (still need to
SHARP-EDGE ENTRANCE	PVC_AWWA	35.21	140	C900 (DR 25)	14.0	15.300	15.300	0.06			0.50	0.0000	0.0003	803.2303	confirm downstream "steel" pipe dimension for proper pipe selection here)
EXITLOSS	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	6.0	6.630	6.110	0.39			1.00	0.0023	0.0026		effluent manhole dowstream of mag meter
PIPE	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	6.0	6.630	6.110	0.39	2.80	0.0003			0.0029	803.2329	_
45° BEND	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	6.0	6.630	6.110	0.39			0.15	0.0003	0.0033		bend down to lower depth at mag meter
PIPE	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	6.0	6.630	6.110	0.39	4.70	0.0006			0.0039	803.2339	
45° BEND REDUCER	PVC_ASTM PVC_ASTM	35.21 35.21	140 140	SDR 26 (160 PSI) SDR 26 (160 PSI)	6.0 4.0	6.630 4.500	6.110 4.160	0.39			0.15	0.0003	0.0042	803.2342 803.2363	bend DS of mag meter back to horizontal concentric reducer immediately DS of mag meter
PIPE	PVC_ASTM PVC_ASTM	35.21	140	SDR 26 (160 PSI)	4.0	4.500	4.160	0.83	8.10	0.0064	0.20	0.0021	0.0063	803.2427	straight line run downstream of mag meter. HGL at mag meter
PIPE	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	4.0	4.500	4.160	0.83	9.60	0.0076			0.0203	803.2503	straight line run upstream of mag meter
REDUCER	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	4.0	4.500	4.160	0.83			0.20	0.0021	0.0149	803.2449	concentric reducer immediately US of mag meter
45° BEND	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	6.0	6.630	6.110	0.39			0.15	0.0003	0.0152	803.2452	horizontal bend
PIPE	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	6.0	6.630	6.110	0.39	3.80	0.0005			0.0157	803.2457	
TEE - LINE FLOW	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	6.0	6.630	6.110	0.39		0.0007	0.30	0.0007	0.0164	803.2464	tee downstream of UV
PIPE 90° BEND	PVC_ASTM PVC_ASTM	35.21 35.21	140 140	SDR 26 (160 PSI) SDR 26 (160 PSI)	6.0	6.630 6.630	6.110	0.39	4.80	0.0006	0.30	0.0007	0.0170	803.2470 803.2477	matical 00 declared decreases of UV
PIPE	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	6.0	6.630	6.110	0.39	6.50	0.0008	0.30	0.0007	0.0177	803.2485	vertical 90 deg bend downstream of UV vertical pipe up through UV slab. HGL in vertical pipe below UV
REDUCER	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	6.0	6.630	6.110	0.39	00	0.0000	0.20	0.0005	0.0189	803.2489	reducer loss of reducing 90 deg bend
90° BEND	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.23			0.30	0.0002	0.0192	803.2492	bend loss of reducing 90 deg bend
															horizontal pipe to UV (HGL is in vertical pipe through slab and then follows
PIPE	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.23	2.10	0.0001			0.0192	803.2492	horizontal pipe assume 1/4 full
												0.000		808.7700	UV weir elevation
PIPE	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.23	1.30	0.0000		0.2742	0.2742	809.0442 809.0442	headlosses per Trojan. HGL at upstream end of UV pipe upstream of UV
GATEVALVE	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.23	1.50	0.0000	0.30	0.0002	0.2744	809.0444	pape apstream of OV
90° BEND	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.23			0.30	0.0002	0.2747	809.0447	90 deg vertical bend
PIPE	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.23	6.30	0.0002			0.2749	809.0449	vertical pipe through UV slab
90° BEND	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.23			0.30	0.0002	0.2751	809.0451	90 deg vertical bend
PIPE	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.23	4.20	0.0001			0.2753	809.0453	
TEE - LINE FLOW	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.23			0.30	0.0002	0.2755	809.0455	
PIPE	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.23	36.70	0.0012			0.2767	809.0467	
PROJECTING ENTRANCE	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	8.0 8.0	8.630	7.970	0.23			0.80	0.0006	0.2774	809.0474 809.0682	
RUBBER FLAPPER CHECK: V < 6 FPS	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.23			2.00	0.0208	0.2982		assumed headlosses for media retention sieve per Triplepoint for worst case flow HGL at future tank. Assumed 8" duckbill flapper check
PIPE	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.23	19.90	0.0007	2.00	0.4000	0.3488	809.1188	assumed pipe length between future tanks
PROJECTING ENTRANCE	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.23			0.80	0.0006	0.3495	809.1195	
					8.0							0.0208	0.3703	809.1403	assumed headlosses for media retention sieve per Triplepoint for worst case flow
RUBBER FLAPPER CHECK: V < 6 FPS	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.23			2.00	0.0500	0.4203	809.1903	HGL at future tank. Assumed 8" duckbill flapper check
PIPE	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.23	41.60	0.0014	0.20	0.0000	0.4217	809.1917	assumed pipe length between future tank and clarifier
90° BEND PIPE	PVC_ASTM PVC_ASTM	35.21 35.21	140 140	SDR 26 (160 PSI) SDR 26 (160 PSI)	8.0 8.0	8.630 8.630	7.970 7.970	0.23		0.0000	0.30	0.0002	0.4219	809.1919 809.1919	90 deg vertical bend HGL in pipe below clarifier weir trough
PROJECTING ENTRANCE	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.23		0.0000	0.80		0.4219	810.2100	HGL in clarifer weir trough update accordingly
110,0001110 01111011100	***************************************			001110 (100 100)		0.000	1010	0.20			0.00			810.7300	Weir elevation in Clarifier is 810.70. See Weir calcs for HGL
EXIT LOSS	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.23			1.00	0.0008	0.0008	810.7308	
PIPE	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.23	1.50	0.0001			0.0008	810.7308	pipe between clarifier and Nitrox #2
PROJECTING ENTRANCE	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.23			0.80	0.0006	0.0015	810.7315	
RUBBER FLAPPER CHECK: V < 6 FPS	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.23			2.00	0.0208	0.0223	810.7523 810.8023	media retention seive HGL at Nitrox Tank #2, 8" flapper.
PIPE	PVC_ASTM PVC_ASTM	35.21	140	SDR 26 (160 PSI) SDR 26 (160 PSI)	8.0	8.630	7.970	0.23	1.70	0.0001	2.00	0.0500	0.0723	810.8023	pipe between Nitrox #2 and Nitrox #1
PROJECTING ENTRANCE	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.23	1.70	0.0001	0.80	0.0006	0.0730	810.8030	halo account of the same same as
,												0.0208	0.0938	810.8238	media retention seive
RUBBER FLAPPER CHECK: V < 6 FPS	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.23			2.00	0.0500	0.1438		HGL at Nitrox Tank #1. 8" flapper.
PIPE	PVC_ASTM	35.21	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.23	2.30	0.0001			0.1439	810.8739	pipe between Nitrox #1 and airlift
90° BEND PIPE	PVC_ASTM PVC_ASTM	35.21 35.21	140 140	SDR 26 (160 PSI) SDR 26 (160 PSI)	8.0 8.0	8.630 8.630	7.970 7.970	0.23	3.30	0.0001	0.30	0.0002	0.1441	810.8741 810.8742	90 deg vertical bend vertical pipe inside airlift. HGL below 811.62 by 0.75'
	FTC_ASIM	33.41	140	SER 20 (100 PSI)	0.0	0.030	7370	0.23	3.30	0.0001	l		0.1442	010.074Z	The same shall be seen at the of the

Rosebud MO WWTF HYDRAULIC CALCULATIONS FOR peak daily flow

DESCRIPTION: FLOW (GPD): FLOW (GPM): WWTF outfall through mag meter, UV, future tanks, clarifier, Triplepoint, and Airlift 158,500 (peak daily flow to Triplepoint) 110.07

FLOW (MGD): 0.16

		FLOW	C	PIPE	NOM. DIA	OUT. DIA	ID	VELOCITY	LENGTH	PIPE	K.	FIT. LOSS	CUM. LOSS	HGL	
ELEMENT	MATERIAL	(GPM)	FACTOR	CLASS	(IN)	(IN)	(IN)	(FPS)	(FT)	LOSS	FACTOR	(FT)	(FT)	(FT)	COMMENTS
															Tailwater based on 100 year flood elevation - see
															"W:\Proj\20000\20358\20358.005\Documents\DesignCalcs\Hydraulic Calcs\Runoff to
															South Ditch\open channel 100 year depth calcs.fm8" and "A-Existing Stream - cross
															section 3" since we're planning on remove the weir plate in existing effluent
Upstream from effluent weir through														803.2300	channel
SWING CHECK VALVE	DIP	110.07	120	CL50	14.0	15.300	14.640	0.21			2.20	0.0015	0.0015	803.2315	(survey shows 15" steel, used 14" DI for calcs)
EXITLOSS	DIP	110.07	120	CL 50	14.0	15.300	14.640	0.21			1.00	0.0007	0.0022	803.2322	(survey shows 15" steel, used 14" DI for calcs)
PIPE	DIP	110.07	120	CL 50	14.0	15.300	14.640	0.21	3.90	0.0001			0.0023	803.2323	(survey shows 15" steel, used 14" DI for calcs) proposed 15" ASTM D3034 (used 14 PVC for headloss calcs here) (still need to
PIPE	PVC_AWWA	110.07	140	C900 (DR 25)	14.0	15.300	15,300	0.19	19.60	0.0002			0.0025	803.2325	proposed 15" ASIM D3034 (used 14 PVC for neadloss calcs here) (still need to confirm downstream "steel" pipe dimension for proper pipe selection here)
	Tre_Anna	110.00	140	C300 (DAL23)	14.0	13.360	13.300	0.15	17.00	0.0002			0.0023	000.2023	proposed 15" ASTM D3034 (used 14 PVC for headloss calcs here) (still need to
SHARP-EDGE ENTRANCE	PVC_AWWA	110.07	140	C900 (DR 25)	14.0	15.300	15.300	0.19			0.50	0.0003	0.0028	803.2328	confirm downstream "steel" pipe dimension for proper pipe selection here)
EXIT LOSS	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	6.0	6.630	6.110	1.20			1.00	0.0225	0.0253	803,2553	effluent manhole dowstream of mag meter
PIPE	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	6.0	6.630	6.110	1.20	2.80	0.0028			0.0281	803.2581	
45° BEND	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	6.0	6.630	6.110	1.20			0.15	0.0034	0.0315	803.2615	bend down to lower depth at mag meter
PIPE	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	6.0	6.630	6.110	1.20	4.70	0.0047			0.0362	803.2662	
45° BEND	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	6.0	6.630	6.110	1.20			0.15	0.0034	0.0396	803.2696	bend DS of mag meter back to horizontal
REDUCER	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	4.0	4.500	4.160	2.60			0.20	0.0210	0.0605	803.2905	concentric reducer immediately DS of mag meter
PIPE	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	4.0	4.500	4.160	2.60	8.10	0.0527			0.1132	803.3432	straight line run downstream of mag meter. HGL at mag meter
PIPE	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	4.0	4.500	4.160	2.60	9.60	0.0624			0.1757	803.4057	straight line run upstream of mag meter
REDUCER	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	4.0	4.500	4.160	2.60			0.20	0.0210	0.1342	803.3642	concentric reducer immediately US of mag meter
45° BEND	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	6.0	6.630	6.110	1.20	2.00	0.0000	0.15	0.0034	0.1376	803.3676	horizontal bend
PIPE TEE - LINE FLOW	PVC_ASTM PVC_ASTM	110.07	140 140	SDR 26 (160 PSI) SDR 26 (160 PSI)	6.0	6.630	6.110 6.110	1.20 1.20	3.80	0.0038	0.30	0.0068	0.1414 0.1481	803.3714 803.3781	tee downstream of UV
PIPE	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	6.0	6.630	6.110	1.20	4.80	0.0048	0.30	0.0068	0.1530	803.3830	tee downstream of UV
90° BEND	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	6.0	6.630	6.110	1.20	4.50	0.0040	0.30	0.0068	0.1597	803.3897	vertical 90 deg bend downstream of UV
PIPE	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	6.0	6.630	6.110	1.20	6.50	0.0065	0.50	0.0000	0.1662	803.3962	vertical pipe up through UV slab. HGL in vertical pipe below UV
REDUCER	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	6.0	6.630	6.110	1.20			0.20	0.0045	0.1707	803.4007	reducer loss of reducing 90 deg bend
90° BEND	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.71			0.30	0.0023	0.1731	803.4031	bend loss of reducing 90 deg bend
															horizontal pipe to UV (HGI is in vertical pipe through slab and then follows
PIPE	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.71	2.10	0.0006			0.1736	803.4036	horizontal pipe assume 1/3 full
														808.7700	UV weir elevation
												0.3083	0.3083	809.0783	headlosses per Trojan. HGL at upstream end of UV
PIPE	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.71	1.30	0.0004			0.3087	809.0787	pipe upstream of UV
GATEVALVE	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.71			0.30	0.0023	0.3110	809.0810	00.1
90° BEND PIPE	PVC_ASTM PVC_ASTM	110.07 110.07	140 140	SDR 26 (160 PSI) SDR 26 (160 PSI)	8.0 8.0	8.630 8.630	7.970 7.970	0.71	6.30	0.0017	0.30	0.0023	0.3134	809.0834 809.0851	90 deg vertical bend
									6.30	0.0017					vertical pipe through UV slab
90° BEND	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.71			0.30	0.0023	0.3174	809.0874	90 deg vertical bend
PIPE	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.71	4.20	0.0012			0.3186	809.0886	
TEE - LINE FLOW	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.71			0.30	0.0023	0.3209	809.0909	
PIPE PROJECTING ENTRANCE	PVC_ASTM	110.07 110.07	140 140	SDR 26 (160 PSI) SDR 26 (160 PSI)	8.0 8.0	8.630 8.630	7.970 7.970	0.71	36.70	0.0101	0.80	0.0000	0.3310	809.1010 809.1072	
PROJECTING ENTRANCE	PVC_ASTM	110.00	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.71			0.80	0.0062	0.35/2	809.1072	assumed headlosses for media retention sieve per Triplepoint for worst case flow
RUBBER FLAPPER CHECK: V < 6 FPS	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.71			2.00	0.1450	0.5030	809.2730	HGL at future tank. Assumed 8" duckbill flapper check
PIPE	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.71	19.90	0.0055	2.00	0.1450	0.5085	809.2785	assumed pipe length between future tanks
PROJECTING ENTRANCE	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.71			0.80	0.0062	0.5147	809.2847	The second secon
					8.0							0.0208	0.5355	809.3055	assumed headlosses for media retention sieve per Triplepoint for worst case flow
RUBBER FLAPPER CHECK: V < 6 FPS	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.71			2.00	0.1450	0.6805	809.4505	HGL at future tank. Assumed 8" duckbill flapper check
PIPE	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.71	41.60	0.0114			0.6920	809.4620	assumed pipe length between future tank and clarifier
90° BEND	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.71			0.30	0.0023	0.6943	809.4643	90 deg vertical bend
PIPE	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.71		0.0000			0.6943	809.4643	HGL in pipe below clarifier weir trough
PROJECTING ENTRANCE	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.71			0.80			810.2200	HGL in clarifer weir trough. update accordingly
														810.7400	Weir elevation in Clarifier is 810.70. See Weir calcs for HGL
EXITLOSS	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.71		0.0004	1.00	0.0078	0.0078	810.7478	1
PIPE PROJECTING ENTRANCE	PVC_ASTM PVC_ASTM	110.07 110.07	140 140	SDR 26 (160 PSI) SDR 26 (160 PSI)	8.0 8.0	8.630 8.630	7.970 7.970	0.71	1.50	0.0004	0.80	0.0062	0.0082	810.7482 810.7544	pipe between clarifier and Nitrox #2
I POSICIENO ENTROPICE	PTC_ASIM	110.00	140	3DK 20 (100 PSI)	6.0	0.030	7.370	0.71			0.80	0.0208	0.0144	810.7544	media retention seive
RUBBER FLAPPER CHECK: V < 6 FPS	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.71			2.00	0.1450	0.1802	810.7752	HGL at Nitrox Tank #2, 8" flapper.
PIPE	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	8.0	8,630	7.970	0.71	1.70	0.0005	2.00	0.1400	0.1802	810.9202	pipe between Nitrox #2 and Nitrox #1
PROJECTING ENTRANCE	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.71	1.50		0.80	0.0062	0.1869	810.9269	Part of the Control o
				3001 20 (100 100)							5.00	0.0208	0.2077	810.9477	media retention seive
1	PVC_ASTM	110.07	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.71			2.00	0.1450	0.3527	811.0927	HGL at Nitrox Tank #1. 8" flapper.
RUBBER FLAPPER CHECK: V < 6 FPS															
RUBBER FLAPPER CHECK: V < 6 FPS PIPE		110.07	140	SDR 26 (160 PSI)	8.0	8.630	7.970	0.71	2.30	0.0006	l		0.3533	811.0933	pipe between Nitrox #1 and airlift
	PVC_ASTM PVC_ASTM	110.07 110.07	140 140	SDR 26 (160 PSI) SDR 26 (160 PSI)	8.0 8.0	8.630 8.630	7.970 7.970	0.71 0.71	2.30	0.0006	0.30	0.0023	0.3533 0.3557	811.0933 811.0957	pipe between Nitrox #1 and airlift 90 deg vertical bend vertical pipe inside airlift. HGL below 811.62 by 0.52

Rosebud MO WWTF

HYDRAULIC CALCULATIONS FOR peak hourly flow

WWTF outfall through mag meter, UV, future tanks, clarifier, Triplepoint, and Airlift 271,434 (peak outflow from cell 2 per HEC-HMS) 188.50 0.27

DESCRIPTION: FLOW (GPD): FLOW (GPM): FLOW (MGD):

ELEMENT	MATERIAL	FLOW (GPM)	FACTOR	PIPE	NOM. DIA	OUT. DIA	ID (IN)	(FPS)	LENGTH (FT)	PIPE LOSS	K FACTOR	FIT. LOSS	(FT)	HGL (FT)	COMMENTS
		(GPM)	PACTOR	CLASS	(IIV)	(IIV)	(IN)	(113)	0-1)	1055	PACIOR	(11)	(11)	(F1)	
		ı	1												
															Tailwater based on 100 year flood elevation - see
															"W:\Proj\20000\20358\20358.005\Documents\DesignCalcs\Hydraulic Calcs\Runoff to
															South Ditch\open channel 100 year depth calcs.fm8" and "A-Existing Stream - cross section 3" since we're planning on remove the weir plate in existing effluent
	TTT (1			to Call a											
Upstream from effluent weir through			ift Structur											803.2300	channel
SWING CHECK VALVE	DIP	188.50	120	CL 50	14.0	15.300	14.640	0.36			2.20	0.0044	0.0044	803.2344	(survey shows 15" steel, used 14" DI for calcs)
EXIT LOSS	DIP	188.50	120	CL 50	14.0	15.300	14.640	0.36			1.00	0.0020	0.0064	803.2364	(survey shows 15" steel, used 14" DI for calcs)
PIPE	DIP	188.50	120	CL 50	14.0	15.300	14.640	0.36	3.90	0.0002			0.0066	803.2366	(survey shows 15" steel, used 14" DI for calcs)
PIPE	PVC_AWWA	188.50	140	C900 (DR 25)	14.0	15.300	15.300	0.33	19.60	0.0006	l		0.0072	803.2372	proposed 15" ASTM D3034 (used 14 PVC for headloss calcs here) (still need to confirm downstream "steel" pipe dimension for proper pipe selection here)
PIPE	PVC_AWWA	188.50	140	C900 (DR 25)	14.0	15.500	15.300	0.33	19.80	0.0006			0.0072	803.2372	proposed 15" ASTM D3034 (used 14 PVC for headloss calcs here) (still need to
SHARP-EDGE ENTRANCE	PVC_AWWA	188.50	140	C900 (DR 25)	14.0	15.300	15.300	0.33			0.50	0.0008	0.0081	803.2381	confirm downstream "steel" pipe dimension for proper pipe selection here)
EXIT LOSS	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.06			1.00	0.0661	0.0741	803.3041	effluent manhole dowstream of mag meter
PIPE	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.06	2.80	0.0076	1.00	0.0001	0.0817	803.3117	endent mannon downteam of mag meter
45° BEND	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.06	2.00	0.000	0.15	0.0099	0.0916	803.3216	bend down to lower depth at mag meter
PIPE	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.06	4.70	0.0127	0.10	0.000	0.1044	803.3344	and a series as part at any metal
45° BEND	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.06			0.15	0.0099	0.1143	803.3443	bend DS of mag meter back to horizontal
REDUCER	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	4.0	4,500	4.160	4.45			0.20	0.0615	0.1758	803.4058	concentric reducer immediately DS of mag meter
PIPE	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	4.0	4.500	4.160	4.45	8.10	0.1425			0.3183	803,5483	straight line run downstream of mag meter. HGL at mag meter
PIPE	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	4.0	4.500	4.160	4.45	9.60	0.1689	l		0.4873	803.7173	straight line run upstream of mag meter
REDUCER	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	4.0	4.500	4.160	4.45			0.20	0.0615	0.3798	803.6098	concentric reducer immediately US of mag meter
45° BEND	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.06			0.15	0.0099	0.3897	803.6197	horizontal bend
PIPE	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.06	3.80	0.0103	l		0.4000	803.6300	'
TEE - LINE FLOW	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.06			0.30	0.0198	0.4199	803.6499	tee downstream of UV
PIPE	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.06	4.80	0.0130			0.4329	803.6629	
90° BEND	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.06			0.30	0.0198	0.4527	803.6827	vertical 90 deg bend downstream of UV
PIPE	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.06	6.50	0.0176	l		0.4703	803,7003	vertical pipe up through UV slab. HGL in vertical pipe below UV
REDUCER	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.06			0.20	0.0132	0.4835	803.7135	reducer loss of reducing 90 deg bend
90° BEND	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.21			0.30	0.0068	0.4904	803.7204	bend loss of reducing 90 deg bend
		100.50	140			0.000	T 0 T 0			0.0014			0.4010		horizontal pipe to UV (HGL is in vertical pipe through slab and then follows
PIPE	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.21	2.10	0.0016			0.4919	803.7219	horizontal pipe assume 1/2 full
														808.7700	UV weir elevation
PATRIC .	THE ACTIVE	100.50	140	CONTRACTOR DED		0.000	7.070		1.00	0.0010		0.3508	0.3508	809.1208	headlosses per Trojan. HGL at upstream end of UV
PIPE GATE VALVE	PVC_ASTM PVC_ASTM	188.50 188.50	140 140	SDR 26 (160 PSI) SDR 26 (160 PSI)	8.0 8.0	8.630 8.630	7.970 7.970	1.21	1.30	0.0010	0.30	0.0068	0.3518	809.1218 809.1286	pipe upstream of UV
90° BEND	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.21			0.30	0.0068	0.3655	809.1355	90 deg vertical bend
PIPE	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.21	6.30	0.0047	0.30	0.0000	0.3702	809.1402	vertical pipe through UV slab
90° BEND PIPE	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	8.0	8.630	7.970 7.970	1.21			0.30	0.0068	0.3770	809.1470	90 deg vertical bend
	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.21	4.20	0.0031	0.00	0.0000	0.3802	809.1502	
TEE - LINE FLOW PIPE	PVC_ASTM PVC_ASTM	188.50 188.50	140 140	SDR 26 (160 PSI) SDR 26 (160 PSI)	8.0 8.0	8.630 8.630	7.970	1.21 1.21	36.70	0.0273	0.30	0.0068	0.3870	809.1570 809.1843	
PROJECTING ENTRANCE	PVC_ASTM PVC_ASTM	188.50	140	SDR 26 (160 PSI) SDR 26 (160 PSI)	8.0	8.630	7.970	1.21	36.70	0.02/3	0.80	0.0183	0.4326	809.2026	
PROJECTING ENTRANCE	PVC_ASIM	188.50	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.21			0.80	0.0183	0.4526	809.2224	accurated has discover for modic extention since nor Triplemoint for expert one flow
RUBBER FLAPPER CHECK: V < 6 FPS	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.21			2.00	0.2470	0.7004	809.4704	assumed headlosses for media retention sieve per Triplepoint for worst case flow HGL at future tank. Assumed 8" duckbill flapper check
PIPE	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.21	19.90	0.0148	2.00	0.2470	0.7152	809.4852	assumed pipe length between future tanks
PROJECTING ENTRANCE	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.21	15.50	0.0140	0.80	0.0183	0.7334	809.5034	assaired pipe reight between talute taluts
I ROJECTINO ENTROPICE	TTC_MSTM	100.50	140	35K 20 (100 13k)	8.0	0.000	7.370	1-21			0.00	0.0208	0.7542	809.5242	assumed headlosses for media retention sieve per Triplepoint for worst case flow
RUBBER FLAPPER CHECK: V < 6 FPS	PVC_ASTM	188.50	140	SDR 26 (160 PSD)	8.0	8.630	7.970	1.21			2.00	0.2470	1.0012	809.7712	HGL at future tank. Assumed 8" duckbill flapper check
PIPE	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.21	41.60	0.0310			1.0322	809.8022	assumed pipe length between future tank and clarifier
90° BEND	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.21			0.30	0.0068	1.0390	809.8090	90 deg vertical bend
PIPE	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.21		0.0000			1.0390	809.8090	HGL in pipe below clarifier weir trough
PROJECTING ENTRANCE	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.21			0.80			810.2600	HGL in clarifer weir trough, update accordingly
														810.7500	Weir elevation in Clarifier is 810.70. See Weir calcs for HGL
EXIT LOSS	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.21			1.00	0.0228	0.0228	810.7728	
PIPE	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.21	1.50	0.0011			0.0239	810.7739	pipe between clarifier and Nitrox #2
PROJECTING ENTRANCE	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.21			0.80	0.0183	0.0422	810.7922	
											l	0.0208	0.0630	810.8130	media retention seive
RUBBER FLAPPER CHECK: V < 6 FPS	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.21			2.00	0.2470	0.3100	811.0600	HGL at Nitrox Tank #2. 8" flapper.
PIPE	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.21	1.70	0.0013			0.3113	811.0613	pipe between Nitrox #2 and Nitrox #1
PROJECTING ENTRANCE	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.21			0.80	0.0183	0.3295	811.0795	
		l			l					1	l	0.0208	0.3503	811.1003	media retention seive
RUBBER FLAPPER CHECK: V < 6 FPS	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.21			2.00	0.2470	0.5973	811.3473	HGL at Nitrox Tank #1. 8" flapper.
PIPE	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.21	2.30	0.0017			0.5990	811.3490	pipe between Nitrox #1 and airlift
90° BEND	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.21			0.30	0.0068	0.6059	811.3559	90 deg vertical bend
PIPE	PVC_ASTM	188.50	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.21	3.30	0.0025	I	I	0.6083	811.3583	vertical pipe inside airlift. HGL below 811.62 by 0.26'

Rosebud MO WWTF

HYDRAULIC CALCULATIONS FOR peak hourly flow assumed by Triplepoint

DESCRIPTION: FLOW (GPD): FLOW (GPM): WWTF outfall through mag meter, UV, future tanks, clarifier, Triplepoint, and Airlift 285,188 (peak hourly flow assumed by Triplepoint) 198.05

FLOW (MGD): 0.29

		FLOW	C	PIPE	NOM. DIA	OUT. DIA	ID	VELOCITY	LENGTH	PIPE	K	FIT. LOSS	CUM. LOSS	HGL	
ELEMENT	MATERIAL	(GPM)	FACTOR	CLASS	(IN)	(IN)	(IN)	(FPS)	(FT)	LOSS	FACTOR	(FT)	(FT)	(FT)	COMMENTS
		CONTRACTOR CONTRACTOR	10000000000	COLUMN DELTA PART	CONTRACTORS.	CONTRACTORISM	CA2 4 C SS.	CONTRACTORING	CONTRACTORS.	COLUMN TO SERVE	CONTRACTORS.	CONTRACTORS.	CONTRACTORS.	CONTRACTOR OF	
															Tailwater based on 100 year flood elevation - see
															"W:\Proj\20000\20358\20358.005\Documents\DesignCalcs\Hydraulic Calcs\Runoff to
															South Ditch\open channel 100 year depth calcs.fm8" and "A-Existing Stream - cross
															section 3" since we're planning on remove the weir plate in existing effluent
Upstream from effluent weir through	UV through Triplep	oint and Airl	lift Structu	res to Cell 2										803.2300	channel
SWING CHECK VALVE	DIP	198.05	120	CL 50	14.0	15.300	14.640	0.38			2.20	0.0049	0.0049	803.2349	(survey shows 15" steel, used 14" DI for calcs)
EXIT LOSS	DIP	198.05	120	CL 50	14.0	15.300	14.640	0.38			1.00	0.0022	0.0071	803.2371	(survey shows 15" steel, used 14" DI for calcs)
PIPE	DIP	198.05	120	CL 50	14.0	15.300	14.640	0.38	3.90	0.0002			0.0073	803.2373	(survey shows 15" steel, used 14" DI for calcs)
															proposed 15" ASTM D3034 (used 14 PVC for headloss calcs here) (still need to
PIPE	PVC_AWWA	198.05	140	C900 (DR 25)	14.0	15.300	15.300	0.35	19.60	0.0007			0.0080	803.2380	confirm downstream "steel" pipe dimension for proper pipe selection here)
SHARP-EDGE ENTRANCE	THOSE ADMINES	198.05	140	C900 (DR 25)	140	15,300	15.000	0.35			0.50	0.0009	0.0089	002 2200	proposed 15" ASTM D3034 (used 14 PVC for headloss calcs here) (still need to
EXIT LOSS	PVC_AWWA PVC_ASTM	198.05	140	SDR 26 (160 PSI)	14.0 6.0	6.630	15.300 6.110	2.17			1.00	0.0729	0.0089	803.2389 803.3118	confirm downstream "steel" pipe dimension for proper pipe selection here) effluent manhole dowstream of mag meter
PIPE	PVC_ASTM PVC_ASTM	198.05	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.17	2.80	0.0083	1.00	0.0729	0.0918	803.3201	erriuent mannoie dowstream or mag meter
45° BEND	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.17	2.00	0.0003	0.15	0.0109	0.1011	803.3311	bend down to lower depth at mag meter
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.17	4.70	0.0140	0.13	0.0107	0.1151	803.3451	Detail down to some depart at mag meter
45° BEND	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.17	4.10	0.0140	0.15	0.0109	0.1260	803.3560	bend DS of mag meter back to horizontal
REDUCER	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	4.0	4.500	4.160	4.68			0.20	0.0679	0.1939	803.4239	concentric reducer immediately DS of mag meter
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	4.0	4.500	4.160	4.68	8.10	0.1562			0.3501	803.5801	straight line run downstream of mag meter. HGL at mag meter
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	4.0	4.500	4.160	4.68	9.60	0.1851			0.5352	803.7652	straight line run upstream of mag meter
REDUCER	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	4.0	4.500	4.160	4.68			0.20	0.0679	0.4180	803.6480	concentric reducer immediately US of mag meter
45° BEND	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.17			0.15	0.0109	0.4289	803.6589	horizontal bend
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.17	3.80	0.0113			0.4402	803.6702	
TEE - LINE FLOW	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.17			0.30	0.0219	0.4621	803.6921	tee downstream of UV
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.17	4.80	0.0143			0.4763	803.7063	
90° BEND	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.17			0.30	0.0219	0.4982	803.7282	vertical 90 deg bend downstream of UV
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.17	6.50	0.0193			0.5175	803.7475	vertical pipe up through UV slab. HGL in vertical pipe below UV
REDUCER	PVC_ASTM	198.05	140 140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.17			0.20	0.0146	0.5321	803.7621	reducer loss of reducing 90 deg bend
90° BEND	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27			0.30	0.0076	0.5397	803.7697	bend loss of reducing 90 deg bend horizontal pipe to UV (HGL is in vertical pipe through slab and then follows
PIPE	PVC ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27	2.10	0.0017			0.5414	803,7714	horizontal pipe assume 1/2 full
	110001111	270100		001120 (101101)		0.000	1010			0.001.			0.0111	808,7700	UV weir elevation
												0.3508	0.3508	809,1208	headlosses per Trojan. HGL at upstream end of UV
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27	1.30	0.0011		0.000	0.3519	809.1219	pipe upstream of UV
GATE VALVE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27			0.30	0.0076	0.3595	809.1295	
90° BEND	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27			0.30	0.0076	0.3670	809.1370	90 deg vertical bend
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27	6.30	0.0051			0.3721	809.1421	vertical pipe through UV slab
90° BEND	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27			0.30	0.0076	0.3797	809.1497	90 deg vertical bend
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27	4.20	0.0034			0.3831	809.1531	
TEE - LINE FLOW	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27			0.30	0.0076	0.3907	809.1607	
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27	36.70	0.0299			0.4206	809.1906	
PROJECTING ENTRANCE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27			0.80	0.0202	0.4408	809.2108	
					8.0							0.0208	0.4616	809.2316	assumed headlosses for media retention sieve per Triplepoint for worst case flow
RUBBER FLAPPER CHECK: V < 6 FPS	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27			2.00	0.2600	0.7216	809.4916	HGL at future tank. Assumed 8" duckbill flapper check
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27	19.90	0.0162			0.7378	809.5078	assumed pipe length between future tanks
PROJECTING ENTRANCE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27			0.80	0.0202	0.7579	809.5279	
DUMBER EL ARRES CARRES A LA CERC		198.05	140	CONTRACTOR DESIGNATION	8.0	8.630	7.970				2.00	0.0208	0.7787	809.5487	assumed headlosses for media retention sieve per Triplepoint for worst case flow
RUBBER FLAPPER CHECK: V < 6 FPS PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI) SDR 26 (160 PSI)	8.0 8.0	8.630	7.970	1.27	41.00	0.0339	2.00	0.2800	1.0387	809.8087 809.8427	HGL at future tank. Assumed 8" duckbill flapper check
90° BEND	PVC_ASTM PVC_ASTM	198.05	140 140	SDR 26 (160 PSI) SDR 26 (160 PSI)	8.0	8.630	7.970	1.27 1.27	41.60	0.0339	0.30	0.0076	1.0802	809.8502	assumed pipe length between future tank and clarifier 90 deg vertical bend
PIPE	PVC_ASTM PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27		0.0000	0.50	0.0076	1.0802	809.8502	HGL in pipe below clarifier weir trough
PROJECTING ENTRANCE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27		0.0000	0.80		1.0002	810.2700	HGL in clarifer weir trough. update accordingly
i nojectivo erriboree	TTC_XXTM	1,000	140	SEAR 20 (100 1 SI)	0.0	0.000	7.570	1-27			0.00			810.7500	Weir elevation in Clarifier is 810.70. See Weir calcs for HGL
EXIT LOSS	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27			1.00	0.0252	0.0252	810.7752	
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27	1.50	0.0012			0.0264	810.7764	pipe between clarifier and Nitrox #2
PROJECTING ENTRANCE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27			0.80	0.0202	0.0466	810.7966	
												0.0208	0.0674	810.8174	media retention seive
RUBBER FLAPPER CHECK: V < 6 FPS	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27			2.00	0.2600	0.3274	811.0774	HGL at Nitrox Tank #2. 8" flapper.
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27	1.70	0.0014			0.3288	811.0788	pipe between Nitrox #2 and Nitrox #1
PROJECTING ENTRANCE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27			0.80	0.0202	0.3489	811.0989	
		l										0.0208	0.3697	811.1197	media retention seive
RUBBER FLAPPER CHECK: V < 6 FPS	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27			2.00	0.2600	0.6297	811.3797	HGL at Nitrox Tank #1. 8" flapper.
PIPE	PVC_ASTM	198.05 198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27	2.30	0.0019	0.00	0.0000	0.6316	811.3816	pipe between Nitrox #1 and airlift
90° BEND	PVC_ASTM PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630 8.630	7.970 7.970	1.27	3.30	0.0027	0.30	0.0076	0.6391	811.3891	90 deg vertical bend vertical pipe inside airlift. HGL below 811.62 by 0.23'
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27	3.30	0.002/			0.6418	811.3918	vertical pape inside almin. FIGE below 811.62 by 0.25

Rosebud MO WWTF

HYDRAULIC CALCULATIONS FOR peak hourly flow assumed by Triplepoint plus 1 X design Q RAS back through Airlift, TP Nitrox Tanks, and Clarifier (future condition)

DESCRIPTION: WWTF outfall through mag meter, UV, future tanks, clarifier, Triplepoint, and Airlift 285,188 (peak hourly flow assumed by Triplepoint)

285,188 198.05

FLOW (GPD): FLOW (GPM): FLOW (MGD): 0.29

ELEMENT	MATERIAL	(GPM)	C	PIPE	NOM. DIA	OUT. DIA	ID	VELOCITY	LENGTH	PIPE	K		CUM. LOSS	HGL	COMMENTS
		(GPM)	FACTOR	CLASS	(IN)	(IN)	(IN)	(FPS)	(FT)	LOSS	FACTOR	(FT)	(FT)	(FT)	
															Tailwater based on 100 year flood elevation - see
															"W:\Proj\20000\20358\20358.005\Documents\DesignCalcs\Hydraulic Calcs\Runoff to
															South Ditchlopen channel 100 year depth calcs.fm8" and "A-Existing Stream - cross
															section 3" since we're planning on remove the weir plate in existing effluent
Upstream from effluent weir through	UV through Triplep	oint and Airl	ift Structu	res to Cell 2										803,2300	channel
SWING CHECK VALVE	DIP	198.05	120	CL 50	14.0	15.300	14.640	0.38			2.20	0.0049	0.0049	803.2349	(survey shows 15" steel, used 14" DI for calcs)
EXIT LOSS	DIP	198.05	120	CL 50	14.0	15.300	14.640	0.38			1.00	0.0022	0.0071	803.2371	(survey shows 15" steel, used 14" Di for cales)
PIPE	DIP	198.05	120	CL 50	14.0	15.300	14.640	0.38	3.90	0.0002	1.50	0.0022	0.0073	803.2373	(survey shows 15" steel, used 14" DI for calcs)
rire	Dir	196.00	120	CESO	14.0	15.500	14.040	0.36	3.50	0.0002			0.0073	000.2073	proposed 15" ASTM D3034 (used 14 PVC for headloss calcs here) (still need to
PIPE	PVC_AWWA	198.05	140	C900 (DR 25)	14.0	15.300	15,300	0.35	19.60	0.0007			0.0080	803.2380	confirm downstream "steel" pipe dimension for proper pipe selection here)
	TTC_ATTIA	1,40,00	140	C300 (D4C23)	14.0	13.300	13.300	0.55	13.00	0.000			0.0000	000.2000	proposed 15" ASTM D3034 (used 14 PVC for headloss calcs here) (still need to
SHARP-EDGE ENTRANCE	PVC_AWWA	198.05	140	C900 (DR 25)	14.0	15.300	15,300	0.35			0.50	0.0009	0.0089	803.2389	confirm downstream "steel" pipe dimension for proper pipe selection here)
EXIT LOSS	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.17			1.00	0.0729	0.0818	803,3118	effluent manhole dowstream of mag meter
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.17	2.80	0.0083	1.50	0.0725	0.0901	803.3201	emorn mannor constrain of mag meet
45° BEND	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.17	2.00	0.0003	0.15	0.0109	0.1011	803.3311	bend down to lower depth at mag meter
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.17	4.70	0.0140	0.15	0.0109	0.1011	803.3451	bend down to lower depth at mag meter
45° BEND		198.05	140			6.630	6.110	2.17	4.70	0.0140	0.15	0.0109	0.1151	803.3560	hand 196 of an annual shadow had beef annual.
REDUCER	PVC_ASTM	198.05		SDR 26 (160 PSI)	6.0										bend DS of mag meter back to horizontal
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	4.0	4.500	4.160	4.68			0.20	0.0679	0.1939	803.4239	concentric reducer immediately DS of mag meter straight line run downstream of mag meter. HGL at mag meter
PIPE PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI) SDR 26 (160 PSI)	4.0	4.500	4.160 4.160	4.68	8.10 9.60	0.1562			0.3501	803.5801 803.7652	
PIPE. REDUCER	PVC_ASTM	198.05	140	SDR 26 (160 PSI) SDR 26 (160 PSI)	4.0 4.0	4.500	4.160	4.68	9.60	0.1851	0.20	0.0679	0.5352	803.7682	straight line run upstream of mag meter
45° BEND	PVC_ASTM	198.05				6.630	6.110								concentric reducer immediately US of mag meter horizontal bend
	PVC_ASTM		140	SDR 26 (160 PSI)	6.0			2.17			0.15	0.0109	0.4289	803.6589	horizontal bend
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.17	3.80	0.0113			0.4402	803.6702	
TEE - LINE FLOW	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.17			0.30	0.0219	0.4621	803.6921	tee downstream of UV
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.17	4.80	0.0143			0.4763	803.7063	
90° BEND	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.17			0.30	0.0219	0.4982	803.7282	vertical 90 deg bend downstream of UV
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.17	6.50	0.0193			0.5175	803.7475	vertical pipe up through UV slab. HGL in vertical pipe below UV
REDUCER	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	6.0	6.630	6.110	2.17			0.20	0.0146	0.5321	803.7621	reducer loss of reducing 90 deg bend
90° BEND	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27			0.30	0.0076	0.5397	803.7697	bend loss of reducing 90 deg bend
															horizontal pipe to UV (HGL is in vertical pipe through slab and then follows
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27	2.10	0.0017			0.5414	803.7714	horizontal pipe assume 1/2 full
														808.7700	UV weir elevation
												0.3508	0.3508	809.1208	headlosses per Trojan. HGL at upstream end of UV
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27	1.30	0.0011			0.3519	809.1219	pipe upstream of UV
GATE VALVE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27			0.30	0.0076	0.3595	809.1295	
90° BEND	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27			0.30	0.0076	0.3670	809.1370	90 deg vertical bend
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27	6.30	0.0051			0.3721	809.1421	vertical pipe through UV slab
90° BEND	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27			0.30	0.0076	0.3797	809.1497	90 deg vertical bend
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27	4.20	0.0034	-		0.3831	809.1531	The state of the s
TEE - LINE FLOW	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27			0.30	0.0076	0.3907	809.1607	
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27	36.70	0.0299	0.50	0.0070	0.4206	809.1906	
PROJECTING ENTRANCE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27	50.50	O.O.E.F.F	0.80	0.0202	0.4408	809.2108	
I MOJECTING ENTROPYCE	Tregerin	1,40,00	140	36M 20 (100 1 31)	8.0	0.000	7.570	1.27			0.50	0.0208	0.4616	809.2316	assumed headlosses for media retention sieve per Triplepoint for worst case flow
RUBBER FLAPPER CHECK: V < 6 FPS	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27			2.00	0.2600	0.7216	809.4916	HGL at future tank. Assumed 8" duckbill flapper check
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27	19.90	0.0162	2.00	0.2000	0.7216	809.5078	assumed pipe length between future tanks
PROJECTING ENTRANCE		198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27	19.50	0.0102	0.80	0.0202	0.7579	809.5279	assumed pipe arigin between midde names
PROJECTING ENTRANCE	PVC_ASTM	196.05	140	SDR 26 (100 PSI)	8.0	8.630	7.970	1.27			0.80	0.0202	0.7579	809.5487	assumed headlosses for media retention sieve per Triplepoint for worst case flow
RUBBER FLAPPER CHECK: V < 6 FPS	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27			2.00	0.2600	1.0387	809.8087	HGL at future tank. Assumed 8" duckbill flapper check
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27	41.60	0.0339	2.00	0.2000	1.0727	809.8427	assumed pipe length between future tank and clarifier
90° BEND	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27	41.60	0.0339	0.30	0.0076	1.0802	809.8502	90 deg vertical bend
PIPE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27		0.0000	0.30	0.0076	1.0802	809.8502	HGL in pipe below clarifier weir trough
PROJECTING ENTRANCE	PVC_ASTM PVC_ASTM	198.05	140	SDR 26 (160 PSI) SDR 26 (160 PSI)	8.0	8.630	7.970	1.27		0.0000	0.80		1.0802	810.2700	
PROJECTING ENTRANCE	PVC_ASTM	198.05	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.27			0.80			0.000.00	HGL in clarifer weir trough. update accordingly
														810.7500	Weir elevation in Clarifier is \$10.70. See Weir calcs for HGL
EXIT LOSS	PVC_ASTM	233.26	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.50			1.00	0.0349	0.0349	810.7849	
PIPE	PVC_ASTM	233.26	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.50	1.50	0.0017			0.0366	810.7866	pipe between clarifier and Nitrox #2
PROJECTING ENTRANCE	PVC_ASTM	233.26	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.50			0.80	0.0280	0.0646	810.8146	
		233.26										0.0208	0.0854	810.8354	media retention seive
RUBBER FLAPPER CHECK: V < 6 FPS	PVC_ASTM	233.26	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.50			2.00	0.3027	0.3881	811.1381	HGL at Nitrox Tank #2. 8" flapper.
PIPE	PVC_ASTM	233.26	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.50	1.70	0.0019			0.3899	811.1399	pipe between Nitrox #2 and Nitrox #1
PROJECTING ENTRANCE	PVC_ASTM	233.26	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.50			0.80	0.0280	0.4179	811.1679	
1		233.26			1			1				0.0208	0.4387	811.1887	media retention seive
RUBBER FLAPPER CHECK: V < 6 FPS	PVC_ASTM	233.26	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.50			2.00	0.3027	0.7414	811.4914	HGL at Nitrox Tank #1. 8" flapper.
PIPE	PVC_ASTM	233.26	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.50	2.30	0.0025			0.7439	811.4939	pipe between Nitrox #1 and airlift
90° BEND	PVC_ASTM	233.26	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.50			0.30	0.0105	0.7544	811.5044	90 deg vertical bend
PIPE	PVC_ASTM	233.26	140	SDR 26 (160 PSI)	8.0	8.630	7.970	1.50	3.30	0.0036	I	I	0.7581	811.5081	vertical pipe inside airlift. HGL below 811.62 by 0.11'

Rosebud Primary Air Lift Calculations (285,200 GPD)

Enter data in green cells only

285,200 gallon/day Pumping rate 4.03 Pipe diameter inch Input data 12.45 ft submergence 2.47 ft % submergence 83% cross-sectional area of pipe 0.088 ft2 Pipe volume 1.10 ft3 Pipe volume/cu.ft. 7.48 gallon VI (Flow rate) 198.06 GPM A (Pipe area) 0.088 ft2 L (Lift) 2.5 ft D (Pipe diameter) 4.026 inch Lf (density of fluid) 62.4 lb/ft3 Don't change anything S (submergence) 12.45 ft Lg (Gas density) 0.0765 lb/ft3 Value of Ordinate 89,704 8.97E+04 Value of Abscissa 100<Y<10,225 10.85 10,225<Y<73,637 10.13 73,637<Y<117,690 10.50 117,690<Y<123.645 1.98 123,645<Y<128,308 0.01 128,308<Y<99,018 14.81 10.50 Graph reading Answer

Calculations for an air lift assembly

Results from left				
gal/day	285,200			
gal/hr	11883.33			
gal/min	198.06			

Calculate needed gals/day					
4166.667	gal/hr				
100,000	gal/day				

	Calci	ulation of m	axımum air i	iπ pump ca	pacity	
total length	10.83	feet	330.0984	cm	feet of water	7.25
submergence	67	%	0.67		feet of rise	3.57
pipe diameter	4.03	inches	10.2362	cm		
water flow	472.148	liter/min	124.742	gal/min	179,627.85	gal/da
·						
optima	al air flow ra	ange for the	se paramete	ers	1	
8%	437.17	liter/min	15.43	cfm		
9%	433.16	liter/min	15.29	cfm		
pressure	3.14	PSI				

Vg (Gas flow)	12.05	ft3/min
Pressure	5.39	psi

Rosebud Secondary Air Lift Calculations (285,200 GPD)

Enter data in green cells only

Pumping rate 285,200 gallon/day Pipe diameter 4.03 inch Input data submergence 14.25 1.67 ft % submergence cross-sectional area of pipe 0.088 ft2 Pipe volume 1.26 ft3 Pipe volume/cu.ft. 7.48 gallon VI (Flow rate) 198.06 GPM 0.088 ft2 A (Pipe area) L (Lift) 1.7 ft D (Pipe diameter) 4.026 inch 62.4 lb/ft3 Lf (density of fluid) Don't change anything S (submergence) 14.25 ft Lg (Gas density) 0.0765 lb/ft3 Value of Ordinate 65,727 6.57E+04 Value of Abscissa 100<Y<10,225 7.75 10,225<Y<73,637 7.30 73,637<Y<117,690 7.23 117,690<Y<123.645 0.15 123,645<Y<128,308 0.00 128,308<Y<99,018 9.09 Graph reading 7.30

Calculations for an air lift assembly

Results from left				
gal/day	285,200			
gal/hr	11883.33			
gal/min	198.06			

Answer

Calculate needed gals/day						
4166.667	gal/hr					
100,000	gal/day					

	Calcu	ulation of ma	aximum air	lift pump ca	apacity	
total length	10.83	feet	330.0984	cm	feet of water	7.2561
submergence	67	%	0.67		feet of rise	3.5739
pipe diameter	4.03	inches	10.2362	cm		
water flow	472.148	liter/min	124.742	gal/min	179,627.85	gal/day
					_	
optima	al air flow ra	ange for the	se paramete	ers		
8%	437.17	liter/min	15.43	cfm		
9%	433.16	liter/min	15.29	cfm		
				•		
pressure	3.14	PSI				

/g (Gas flow)	6.89	ft3/min
Pressure	6.17	psi

Ares Aeration® & NitrOx® Basis of Design

Date: 07-20-22

Project Name: Rosebud, MO Project Number: 6245

The Aeration Process

Biological Oxygen (BOD) Calculations

Removal of BOD (and CBOD) takes place naturally in an aerated lagoon. The Characteristic Equation for treatment efficiency of 5-Day Biological Oxygen Demand is given in Equations 1 through 3, at the bottom of this report. These calculations are used to size the lagoons. They are independent of the aeration calculations and assume that sufficient dissolved oxygen levels are maintained in the water. The equation is dependent on time and temperature. For lagoons operated in series, the equation is applied separately to each cell and the results are combined.

Aeration Requirement Calculations

Aeration calculations are more complicated than biological calculations as they depend on several factors. These include:

- Site conditions, such as treatment depth, elevation, and temperature.
- Design parameters, such as minimum dissolved oxygen (DO) level and oxygen supply rate.
- Actual Oxygen Requirement (AOR), which is based on the nutrient loading rates (these can include BOD/CBOD and TKN/NH₃-N and are based on the product of nutrient concentrations and the wastewater flowrate).
- Type of aerator.
- Oxygen transfer efficiency (OTE) of the aerator, which should be measured by an independent lab
- Field condition adjustments (see Equation 2, below).
- Mixing requirements, such as complete or partial mix. The former is generally only required for activated sludge basins (ASB) or other high strength processes with short detention times.

Aerated Lagoons—Long Treatment Times

Aerated lagoons are typified by their comparatively large size and long treatment times (usually greater than 10 days). Influent concentrations are low to moderate (usually less than 300 mg/L of BOD). The bulk of the treatment takes place aerobically with additional anaerobic respiration taking place on the lagoon floor. Aerated lagoons do not generally have a mixed liquor suspended solids (MLSS) or return activated sludge (RAS) component. Partial mixing is required to prevent stratification and eliminate dead zones; however, complete mix is not necessary.

Aerated lagoons are typically designed to operate at a minimum DO level of 2 mg/L. Oxygen is usually supplied at a rate of 1.5 times the BOD demand. If nitrification/denitrification takes place, the oxygen supply rate is designed for 4.6 times the nitrogenous oxygen demand (NBOD).

Activated Sludge Basins (ASB)

Activated sludge basins (ASB) and other related wastewater tanks and lagoons are characterized by short treatment times (usually from 1 to 5 days), high wastewater strengths, and an active biomass that must be maintained in suspension to prevent rapid sludge accumulation. A high strength (greater than 2,000 mg/L) return activated sludge (RAS) component is usually fed back into the basin from a downstream clarifier. Biological nutrient removal is much faster in these basins.

ASBs are typically designed to operate at a minimum DO level of 1 to 2 mg/L. Oxygen is supplied at a rate of 1.0 to 1.5 times the BOD demand. If nitrification/denitrification takes place, the oxygen supply rate is designed for 4.0 to 4.6 times the nitrogenous oxygen demand (NBOD). An aeration system is based on both oxygenation requirements and complete mix requirements, whichever is greater.

TRIPLEPOINT ENVIRONMENTAL

Detailed Design Calculations: Aerated Lagoons

v4.1	В	Design Scenario Name		ADW [*]
	1	Influent Flowrate	MGD	0.051
	2	Influent Concentration	mg/L	165.0
	3	Effluent Conc. (Summer)	mg/L	4.2
	4	Effluent Conc. (Winter)	mg/L	12.1
	5	Actual Oxygen Supplied	lb/day	105.6
	6	Air included for nitrification?		No
	7	Number of Aerators		12
	8	Estimated Tubing Length	ft	1700
	9	Standard Airflow	SCFM	171.85
	10	Inlet Airflow	ICFM	201.00
	11	Design Presure (w/cushion)	psig	3.01
	12	Projected Brake Hp	bhp	2.25
	13	Estimated Design Hp	hp	5.0

 FTE = α (SOTE) θ^(T-20) (β C*_{ωT} − DO) ÷ C*_{ω20} field transfer efficiency Where. α contaminant factor (contaminants, depth, bubble size) (range: 0.40-0.70)

β TDS factor {total dissolved solids} (range: 0.90-1.00)

 $\theta = 1.024$ temperature factor

DO target dissolved oxygen level (mg/L)

C*∞_T saturation oxygen concentration at site—adjusted for water depth C"...20 sat. oxygen concentration at STP conditions—adjusted for water depth

water temperature (Celsius)

Airflow = AOR / (25.056 * FTE)

 E = 2.3 * k * t / (1 + 2.3 * k * t) biological treatment efficiency

Where,

kinetic coefficient (related to temperature) (range: 0.06 to 0.12) k = varies

t = time treatment time in days

1 2	Number of Treatment Cells		
2	Number of freatment cens		3
	Flow Regime		Series
3	Site Elevation - HWL	ft	809
	•		·
4	Wastewater Flowrate	MGD	0.1
	11.00101101011110110	111.00	1.7
		1111 001	34.2
7		-	Partial Mix
8		days-1	0.28
	20		20
			0.122
			90.5%
			70
			165.0
			63
			7
			15.6
			82.8%
		1.4	58.0
			28.5
	•		43.9
			45.5
			19
			44
143	Assumed En. Noob Conc.	Ilig/L	44
21	Wastewater Flowrate	MGD	0.1
	111011111111111111111111111111111111111	111.00	0.5
			9.7
			Partial Mix
			0.28
			20
			0.122
	•	1.0	73.0%
			7
			15.6
			5
	-		2
			4.2
			0.5
			57.6%
			7.0
			12.1
			19
			43.9
			-
			19 44
	5	5 Treatment Volume 6 Treatment Time 7 Treatment Type 8 Std Reaction Rate, k20 9 Design Water Temp 10 Design Reaction Rate, k1 11 Biological Treatment Eff. 12 Influent BOD Loading 13 Influent BOD Loading 14 BOD Removed 15 Effluent BOD Loading 16 Effluent BOD Concentration 17 Design Water Temp 18 Biological Treatment Eff. 19 BOD Removed 20 Effluent BOD Concentration N1 Influent NBOD Loading N2 Influent NBOD Loading N2 Influent NBOD Loading N3 Assumed NBOD Removed N4 Effluent NBOD Loading* N5 Assumed Eff. NBOD Conc. 21 Wastewater Flowrate 22 Treatment Time 24 Treatment Time 24 Treatment Type 25 Std Reaction Rate, k20 26 Design Water Temp 27 Design Reaction Rate, k7 28 Biological Treatment Eff. 29 Influent BOD Loading 30 Influent BOD Loading 31 BOD Removed 32 Effluent BOD Loading 33 Effluent BOD Loading 34 Design Water Temp 35 Biological Treatment Eff. 36 BOD Removed 37 Effluent BOD Loading 38 Influent BOD Loading 39 Influent BOD Loading 30 Influent BOD Loading 31 Design Water Temp 35 Biological Treatment Eff. 36 BOD Removed 37 Effluent BOD Concentration 38 Design Water Temp 39 Biological Treatment Eff. 31 BOD Removed 32 Effluent BOD Concentration 33 Design Water Temp 35 Biological Treatment Eff. 36 BOD Removed 37 Effluent NBOD Loading 38 Effluent NBOD Loading 39 Influent NBOD Concentration 30 Influent NBOD Concentration 31 Reffluent NBOD Concentration 32 Design Water Temp 33 Biological Treatment Eff. 34 Design Water Temp 35 Biological Treatment Eff. 36 BOD Removed 37 Effluent NBOD Concentration 38 DEffluent NBOD Concentration 39 Influent NBOD Concentration 30 Influent NBOD Concentration	5 Treatment Time days 6 Treatment Time - 7 Treatment Type - 8 Std Reaction Rate, k₂₀ days¹¹ 9 Design Reaction Rate, k₂₀ days¹¹ 10 Design Reaction Rate, k₂₀ days¹¹ 11 Biological Treatment Eff. % 12 Influent BOD Loading lb/day 13 Influent BOD Concentration mg/L 14 BOD Removed lb/day 15 Effluent BOD Concentration mg/L 16 Effluent BOD Concentration mg/L 17 Design Water Temp °C 18 Biological Treatment Eff. % 19 BOD Removed lb/day 19 BOD Removed lb/day 10 Influent NBOD Loading lb/day 10 Influent NBOD Loading* lb/day 10 Massumed Eff. NBOD Conc. mg/L 21 Wastewater Flowrate MGD 22 Treatment Time

	Item	Description	Units	ADW
	1	Site Elevation	ft	809
	2	O ₂ Loading Factor (BOD ₅)	O2/BOD	1.5
	3	Alpha-value, α		0.60
	4	Beta-value, β		0.95
	5	Theta-value, θ		1.02
Cell 1				
	6	Lagoon Side Water Depth	ft	3.00
	7	Air Release Depth	ft	2.25
	8	AOR - Total	lb/day	95
	9	SOTE/ft	%/ft	2.67%
	10	SOTE	%	6.01%
	11	Design DO Concentration	mg/L	2.0
	12	FTE		2.43%
	13	Air requirement	scfm	156
	14	Airflow per aeration unit	scfm	15.6
	15	Aerator Type		750T
	16	Number of aeration units	units	10
	17	Water Pressure	psig	0.97
	18	Aerator Pressure Loss	psig	0.50
	19	Header/Feeder P Loss	psig	0.54
	20	Total Operating Pressure	psig	2.01
	21	Design Motor Pressure	psig	3.01
Cell 2				
	22	Lagoon Side Water Depth	ft	3.00
	23	Air Release Depth	ft	2.25
	24	AOR - Total	lb/day	10
	25	SOTE/ft	%/ft	2.92%
	26	SOTE	%	6.57%
	27	Design DO Concentration	mg/L	2.0
	28	FTE		2.66%
	29	Air requirement	scfm	16
	30	Airflow per aeration unit	scfm	7.8
	31	Aerator Type		750T
	32	Number of aeration units	units	2
	33	Water Pressure	psig	0.97
	34	Aerator Pressure Loss	psig	0.48
	35	Header/Feeder P Loss	psig	0.43
	36	Total Operating Pressure	psig	1.88
	37	Design Motor Pressure	psig	2.88

The NitrOx[®] Process

The patented NitrOx Process was developed based on the principle that nitrification will reliably occur when the proper conditions are created. For wastewater lagoon systems that receive primarily domestic waste, the critical conditions required for nitrification include:

- CBOD of 20–30 mg/L
- Dissolved Oxygen of 4.6 lb/O2 per pound of NH3-N (Metcalf & Eddy)
- Sufficient population of Nitrifying bacteria
- Given sufficient Nitrifying bacteria, a water temperature of 4–5° C

The NitrOx Process utilizes the existing lagoon infrastructure for 90% BOD removal, after which nitrifying bacteria begin to nitrify. The effluent from the lagoons then flows hydraulically or is pumped into a two-stage nitrification reactor. In colder climates where the winter water temperature drops below 4° C, a thermal regulation heat exchanger is added in order to increase the water temperature; typically, only a few degrees during the coldest months of the year. In the two NitrOx Reactor cells, there are millions of individual biofilm carriers that provide a habitat for nitrifying bacteria, ensuring that there are sufficient nitrifying bacteria even in the coldest water conditions. Each NitrOx Reactor cell has aeration to provide the necessary oxygen, as well as to create a complete mix environment to keep the biofilm carriers in constant motion. The two cells are covered with floating insulated covers to mitigate heat loss and the media is kept in the tanks with stainless steel sieves. Finally, the effluent from the second NitrOx Reactor is discharged into a final polishing/clarification lagoon prior to the ultimate discharge from the lagoon system.

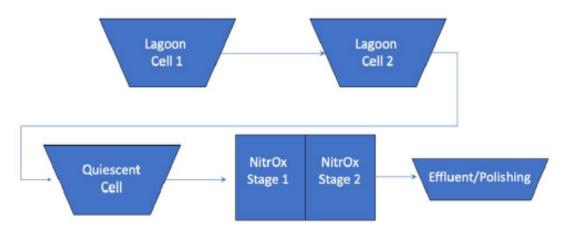


Figure 1: Typical flow process of the NitrOx Lagoon Ammonia Removal Process.

*Note that other configurations are possible.

TRIPLEPOINT ENVIRONMENTAL

Detailed Design Calculations: NitrOx

IMMA	RY - Design Input Values		
	Plant Influent Characteristics	Units	Values
1	Annual Average Daily Flow	gpd	50,700
2	Maximum Monthly Average Daily Flow	gpd	63,375
3	Peak Daily Flow	gpd	253,500
4	Peak Hourly Flow	gpd	507,000
5	Influent BOD	mg/L	165
6	Influent BOD	lbs/day	87.2
7	Influent TSS	mg/L	100
8	Influent TSS	lbs/day	52.9
9	Influent NH3-N	mg/L	16.0
10	Influent NH3-N	lbs/day	8.5
11	Influent TKN	mg/L	33.0
12	Influent TKN	lbs/day	17.4
13	Influent pH		7
14	Water Temperature	deg-C	12
	NitrOx Influent Characteristics	Units	Values
15	Annual Average Daily Flow	gpd	50,700
16	Maximum Monthly Average Daily Flow	gpd	63,375
17	Peak Daily Flow	gpd	158,438
18	Peak Hourly Flow	gpd	285,188
19	Influent BOD	mg/L	30
20	Influent TSS	mg/L	45
21	Influent NH3-N	mg/L	27.6
22	Influent TKN	mg/L	27.6
23	Design Influent TKN	mg/L	27.6
A4	Alkalinity Required as CaCO3 (Minumum)	mg/L	242
24	Influent pH		7
25	NitrOx Water Temperature	deg-C	5
има	RY - General Design Parameters		
	NitrOx Tank Sizing Summary	Units	Values
26	Number of Treatment Trains Proposed		1
27	Number of Tanks Per Train		2
28	Total Number of Tanks		2
29	Length of Each	ft	8.0
30	Width of Each	ft	8.0
31	Side Water Depth of Each	ft	15
32	Tank Height of Each	ft	18
33	Volume of Each	gallons	7,181
34	Volume Total	gallons	14,362
35	Hydraulic Retention Time at Max Month Flow	hours	5.4
36	Hydraulic Retention Time at Peak Hourly Flow	hours	1.2
40	Number of Ares Units per Tank		1
41	Total Number of Ares Units		2

	NitrOx Air Requirement (Per Treatment Train)	Stage 1	Stage 2	
42	AOR (lbs/day)	49	39	
43	Assumed Diffuser Subm. at AWL (ft.)	14.25	14.25	
44	Elevation (ft.)	809	809	
45	Alpha	0.60	0.60	
46	Beta	0.9	0.9	
47	Target DO Residual (MBBR Process) (mg/L)	5.0	6.0	
48	SOR (lbs/day)	193	193	
49	Target Diffuser Efficiency/ft. Submergence	2.0	2.0	
50	Airflow (scfm)	26	26	
	NitrOx Blower Requirement Summary	Units	Values	
51	No. of Blowers		2	
52	Airflow Requirement per Blower	scfm	76	
53	Airflow per 1,000 scfm	scfm/1,000 cf	28	
54	Water Pressure at Air Release Depth	psig	6.17	
55	Piping and Diffuser Losses	psig	0.50	
56	Cushion	psig	1.00	
57	Maximum Design Discharge Pressure	psig	7.67	
58	Assumed Overall Efficiency		0.62	
59	Approximate BHP Requirement/Blower	bhp	3.9	
60	Approximate BHP Requirement Total	bhp	3.9	
61	Estimated Nameplate HP / Blower	hp	5	
62	Blower Type		Tri-Lobe PD	
IMMAI	RY - Calculated Output Values			
	NitrOx Effluent Parameters	Units	Values	
63	Effluent SCBOD	mg/L	7.5	
64	Effluent SCBOD	lbs/day	4.0	
65	Effluent NH3-N in Winter (Monthly Average)	mg/L	2.1	
66	Effluent NH3-N in Winter (Monthly Average)	lbs/day	1.1	
67	Effluent NH3-N in Summer (Monthly Average)	mg/L	1.1	
68	Effluent NH3-N in Summer (Monthly Average)	lbs/day	0.6	

4. FTE = α (SOTE) $\theta^{(T-20)}$ (β C* $_{\omega T}$ – DO) \div C* $_{\omega 20}$ field transfer efficiency Where,

α contaminant factor (contaminants, depth, bubble size) (range: 0.40-0.70)

β TDS factor {total dissolved solids} (range: 0.90–1.00)

 θ = 1.024 temperature factor

DO target dissolved oxygen level (mg/L)

 $C^*_{\omega T}$ saturation oxygen concentration at site—adjusted for water depth $C^*_{\omega 20}$ sat. oxygen concentration at STP conditions—adjusted for water depth

T water temperature (Celsius)

Rosebud WWTF Clarifier Design Summary					
Design Parameter	Value	Reference	Clarifier 1 Actual		
Sidewater Depth (ft)	10	WWGSD 7.1.1	14.95		
Surface Overflow Rate (GPD/ft^2) -			422.5		
Design Flow	1,000	WWGSD 7.1.2	422.5		
Surface Overflow Rate (GPD/ft^2) -			2 900 00		
Peak Flow	3,000	WWGSD 7.1.2	2,800.00		
Solids Loading Rate (lb/day/ft^2) -			1.05		
Peak Flow with 1Q Return	35	WWGSD 7.1.2	1.05		
Weir Loading Rate (GPD/LF)	20,000	WWGSD 7.1.4	16,794		

Bartlett & West

Project No. 20358.005 Project: Rosebud Wastewater Subject: Weir Trough Design Location: Rosebud, MO

Weir Trough Orifice Discharge Calculations

Orifice calcs:

 $Q_s = C_s A_s \sqrt{2g(H - E_s)}$ Q_s = orifice outflow C_s = orifice discharge coefficient g = acceleration due to gravity 32.2 $2k^2$ A_s = net opening area = m51/4 H = water Elevation E_a = devation of orifice

Weir Saw Tooth Elevation: 810.7 peak flow plus 1Q: 335,900 dimension to bottom of trough (in): 6 FL orifice = 810.20 ft (assuming hole in bottom of weir trough)

Number of orifices = Diameter of Orifice =

C.- 0.62

Water Elevation (#3)

(4)	(10)	(man)	(Mbra)	(ma)
810.20	0.00	0.00	0	0.00
810.21	0.01	0.17	112,242	0.12
810.22	0.02	0.25	158,735	0.24
810.23	0.03	0.30	194,410	0.36
810.24	0.04	0.35	224,485	0.48
810.25	0.05	0.39	250,982	0.60
810.26	0.06	0.43	274,937	0.72
810.27	0.07	0.46	296,966	0.84
810.28	0.08	0.49	317,470	0.96
810.29	90.0	0.52	336,727	1.08
810.30	0.10	0.55	354,942	1.20
810.31	0.11	0.58	372,266	1.32
810.32	0.12	0.60	388,819	1.44
810.33	0.13	0.63	404,696	1.56
810.34	0.14	0.65	419,973	1.68
810.35	0.15	0.67	434,713	1.80
810.36	0.16	0.69	448,970	1.92
810.37	0.17	0.72	462,788	2.04
810.38	0.18	0.74	476,205	2.16
810.39	0.19	0.76	489,254	2.28
810.40	0.20	0.78	501,964	2.40
810.41	0.21	0.80	514,360	2.52
810.42	0.22	0.81	526,464	2.64
810.43	0.23	0.83	538,296	2.76
810.44	0.24	0.85	549,874	2.88
810.45	0.25	0.87	561,212	3.00
810.46	0.26	0.89	572,327	3.12
810.47	0.27	0.90	583,229	3.24
810.48	0.28	0.92	593,931	3.36
810.49	0.29	0.94	604,444	3.48
810.50	0.30	0.95	614,777	3.60
810.51	0.31	0.97	624,940	3.72

1.14 1.15 1.18

1.33

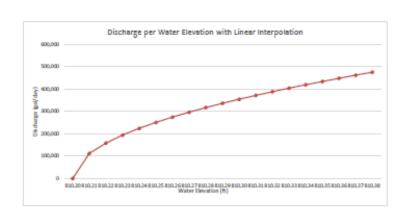
1.39

0.64

810.76

810.84

644,784


817,138 839,946

847,412

862,151 869,427

883,798 890,897 897,940

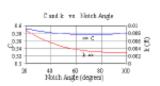
7.68

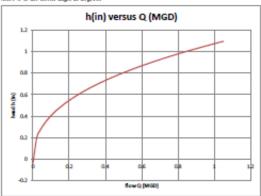
gpd for 6" so ponded to 810.32 in weir trough if 6" pipe is used (i.e. 8" is required)

Bartlett & West

Project No. 20158-005 Project: Rosebud Wantewater System Improvements Subject: Weir Trough Design Location: Rosebud, MO

Clarifier Weir using the Kindsvater-Shen equation


CLARIFIER WEIR:


Q vs h table:

0.020	14.00	0.0162	0.19	i
0.027	18.66	0.0185	0.22	[
0.034	23.33	0.0205	0.25	
0.040	27.99 32.66	0.0223	0.27	
0.054	37.32	0.0253	0.30	(design flow)
0.060	41.99	0.0267	0.32	(deagn sow)
0.067	46.65	0.0280	0.34	1
0.074	51.32	0.0292	0.35	ŀ
0.081	55.98	0.0303	0.36	t
0.087	60.65	0.0314	0.38	[
0.094	65.31	0.0324	0.39	
0.101	69.98	0.0334	0.40	ļ.
0.107	74.64	0.0344	0.41	
0.114	79.31 83.98	0.0353	0.42	
0.128	88.64	0.0370	0.44	
0.134	93.31	0.0378	0.45	1
0.141	97.97	0.0386	0.46	i
0.148	102.64	0.0394	0.47	[
0.155	107.30	0.0402	0.48	[
0.161	111.97	0.0409	0.49	ļ.
0.168	116.63	0.0416	0.50	ŀ
0.175 0.181	121.30 125.96	0.0423	0.51 0.52	
			_	
0.188	130.63	0.0437	0.52	l
0.195	135.29	0.0444	0.53	
0.202	139.96	0.0450	0.54	[
0.208	144.62	0.0456	0.55	[
0.215	149.29	0.0463	0.56	ļ.
0.222	153.95 158.62	0.0469	056	
0.235	163.28	0.0480	0.58	
0.242	167.95	0.0486	0.58	i e
0.249	172.62	0.0492	0.59	i
0.255	177.28	0.0498	0.60	i
0.262	181.95	0.0503	0.50	[
0.269	186.61	0.0508	0.61	[
0.275	191.28	0.0514	0.62	ļ.
0.282	195.94	0.0519	0.62	
0.209	200.01	0.0529	054	}
0.302	209.94	0.0534	0.64	ŀ
0.309	214.60	0.0539	0.65	t
0.316	219.27	0.0544	0.65	İ
0.322	223.93	0.0549	0.56	[
0.329	228.60	0.0554	0.56	
0.335	233.26	0.0559	0.67	(peak flow with
0.343	237.93 242.59	0.0563	0.50	ŀ
0.366	247.26	0.0572	0.59	ŀ
0.363	251.93	0.0577	0.59	t
0.369	256.59	0.0581	0.70	t
0.376	261.26	0.0586	0.70	1
0.383	265.92	0.0590	0.71	[
0.390	270.59	0.0595	0.71	Į.
0.398	275.25 279.92	0.0599	0.72	ļ.
0.403	279.92	0.0603	0.72	ŀ
0.417	289.25	0.0611	0.73	ł
0.423	293.91	0.0616	0.74	ŀ
0.430	298.58	0.0620	0.74	İ
0.437	303.24	0.0624	0.75	Ī

C = 0.607165052 - 0.000874466063 Ø + 6.10393334x10-6 Ø ^2 k (ft.) = 0.0144902648 - 0.00033955535 Ø + 3.29819003x10^-6 Ø ^2 - 1.06215442x10^-1 Ø ^2 where Ø is the notch angle in degrees

(peak flow with future condition 1Q return)

WEIR TROUGH DESIGN

Manning's Equation (for open channels)

Location: Circle Drive Upstream to ES-1

input:

Channel Length (ft): 5
Channel Slope (ft/ft): 0.0010
Bottom Width (ft): 1

Left Side Slope (X:1): vertical walls Right Side Slope (X:1): vertical walls

Depth (ft): 0.23 Ditch Conditions: Steel

output:

Storm Drain Length (ft): 5.00 A (ft 2): 0.23

P (ft): 1.46 R (ft): 0.157534247 n: 0.012

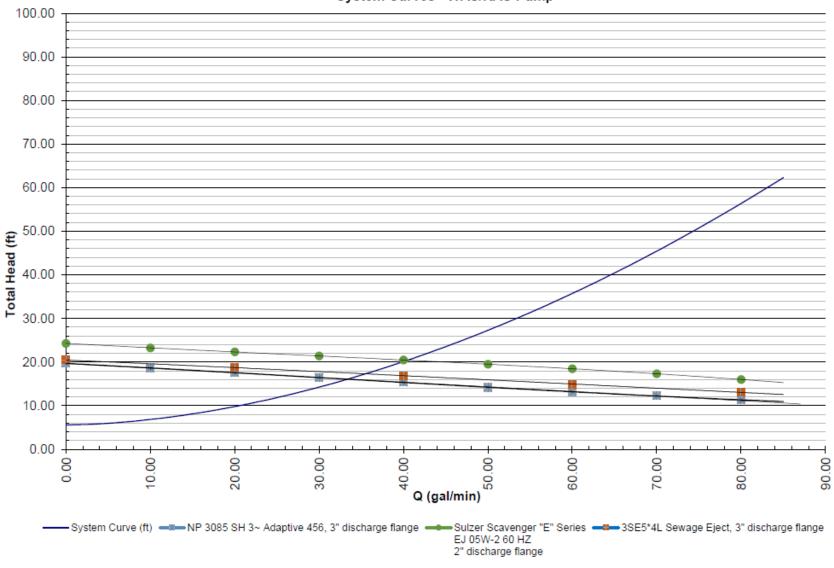
Q (ft³/s): 0.26 Q (gpm): 118.22 Q (GPD): 170,241 Depth (in): 2.76

V (ft/s): 1.15 time in ditch (min): 0.07 Smooth Earth Firm Gravel

Natural Channels, Good Condition

Rip Rap

Natural Channels With Stones and Weeds


Concrete

Very Poor Natural Channels

Steel

half of peak future flow condition (each half of 10' length of weir) is 335,900/2 = 167,950 GPD

System Curves - WAS/RAS Pump

PERFORMANCE GUARANTEE

Trojan Technologies certifies to Rosebud, MO that the TROJANUV3000PTP™ Disinfection Equipment supplied will disinfect to the limits of ≤ 200 Fecal Coliform/100mL based upon a 30 day Geometric Mean, provided the following criteria is upheld.

Peak Flow: 0.285 MGD

Suspended Solids: ≤ 30 mg/L Based on a 30 Day Average

UV Transmittance @ 253.7 nm: 60% Minimum

Trojan Lamp Hours: ≤ 12,000

This performance guarantee is also contingent upon proper care and maintenance of the unit, as detailed within the Operation and Maintenance Manual, and the use of Trojan approved parts. The performance guarantee is specific to the plant treatment process and water quality reviewed at the time of bid and conditioned on the absence of water and operating conditions which may adversely affect the equipment provided, including water conditions falling outside of the parameters listed above.

This performance guarantee is also contingent upon proper care and maintenance of the unit, as detailed within the Operation and Maintenance Manual, and the use of Trojan approved parts. The performance guarantee is specific to the plant treatment process and water quality reviewed at the time of bid.

TROJANUV

If it's not a Genuine Trojan part, it shouldn't be part of your Trojan system. Genuine Trojan replacement parts ensure performance, safety certifications, compliance and mainenance of your Trojan Lifetime Disinfection Guarantee. Covered by one or more of the following patents: www.trojantechnologies.com/patents GET GENUINE. For information on genuine parts and service, please visit www.trojanuv.com/getgenuine.

AP47940 CP0002570

MISSOURI DEPARTMENT OF NATURAL RESOURCES WATER PROTECTION PROGRAM

APPLICATION FOR CONSTRUCTION PERMIT – WASTEWATER TREATMENT FACILITY

FOR DEPARTMENT USE ONLY				
APP NO.	CP NO.			
FEE RECEIVED	CHECK NO.			
DATE RECEIVED	·			

ΔPP	I ICA	TION	OVE	RVIEV	N

The Application for Construction Permit – Wastewater Treatment Facility form has been developed in a modular format and consists

of Part A and B. All applicants must complete Part A. Part B should be completed wastewater or propose land application for wastewater treatment. Please read the a completing this form. Submittal of an incomplete application may result in the	accompanying instructions before			
PART A – BASIC INFORMATION				
1.0 APPLICATION INFORMATION (Note – If any of the questions in this section ar considered incomplete and returned.)	e answered NO, this application may be			
1.1 Is this a Federal/State funded project? $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Project #:			
1.2 Has the Missouri Department of Natural Resources approved the proposed projection YES Date of Approval: N/A	ect's antidegradation review?			
1.3 Has the department approved the proposed project's facility plan*? NO (If No, complete No. 1.4.)				
1.4 [Complete only if answered No on No. 1.3.] Is a copy of the facility plan* for was application?☐ YES ☐ NO ☐ Exempt because	tewater treatment facilities included with this			
1.5 Is a copy of the appropriate plans* and specifications* included with this applicat ☐ YES Denote which form is submitted: ☐ Hard copy ☐ Electronic copy (Section 2)				
1.6 Is a summary of design* included with this application? YES NO				
1.7 Has the appropriate operating permit application (A, B, or B2) been submitted to the department? YES Date of submittal: Enclosed is the appropriate operating permit application and fee submittal. Denote which form: N/A: However, In the event the department believes that my operating permit requires revision to permit limitation such as changing equivalent to secondary limits to secondary limits or adding total residual chlorine limits, please share a draft copy prior to public notice? NO				
1.8 Is the facility currently under enforcement with the department or the Environment	ntal Protection Agency?			
1.9 Is the appropriate fee or JetPay confirmation included with this application? See Section 7.0]YES □NO			
* Must be affixed with a Missouri registered professional engineer's seal, signature a	ınd date.			
2.0 PROJECT INFORMATION 2.1 NAME OF PROJECT	2.2 ESTIMATED PROJECT CONSTRUCTION COST			
2.1 NAME OF PROJECT	\$			
2.3 PROJECT DESCRIPTION				
2.4 SLUDGE HANDLING, USE AND DISPOSAL DESCRIPTION				
2.5 DESIGN INFORMATION				
A. Current population:; Design population:				
B. Actual Flow: gpd; Design Average Flow: gpd; Actual Peak Daily Flow: gpd; Design Maximum Daily Flow: gpd	d; Design Wet Weather Event:			
2.6 ADDITIONAL INFORMATION	v nlon			
A. Is a topographic map attached? YES NO See accepted facilit				
B. Is a process flow diagram attached? ☐ YES ☐ NO See attached plans.				

MO 780-2189 (02-19)

3.0 WASTEWATER TREATMENT FACILIT	Υ		21				
NAME Rosebud South Lagoon WWTF		TELEPHONE NUMBER WITH A 573-505-1818	REA CODE		e-mail address cityofrosebud@gmail.com		
ADDRESS (PHYSICAL)	CITY		STATE	ZIP CODE		COUNTY	
South Terminus of South Park Street	Rosebud		МО	63091	(Gasconade	
Wastewater Treatment Facility: Mo- 0091375 (Outfall 1 Of 1)							
3.1 Legal Description:14,14,14, Sec. 18 , T 42N , R 04W (Use additional pages if construction of more than one outfall is proposed.)							
3.2 UTM Coordinates Easting (X): 639146 Northing (Y): 4249123 For Universal Transverse Mercator (UTM), Zone 15 North referenced to North American Datum 1983 (NAD83)							
3.3 Name of receiving streams: Tributa	ry to Soap	Creek					
4.0 PROJECT OWNER							
NAME City of Rosebud, Missouri		TELEPHONE NUMBER WITH A 573-505-1818	REA CODE	E-MAIL ADD	RESS ebud@gma	iil.com	
ADDRESS	CITY		STATE	ZIP CODE			
307 Cedar St.	Rosebud		МО	63091			
5.0 CONTINUING AUTHORITY: A continui and/or ensuring compliance with the permit r	ng authorit	ty is a company, busined ts.	ss, entity or p	person(s) th	at will be o	perating the	facility
NAME City of Rosebud, Missouri	•	TELEPHONE NUMBER WITH A 573-505-1818	REA CODE	E-MAIL ADD	RESS ebud@gma	ail.com	
ADDRESS	CITY		STATE	ZIP CODE			
307 Cedar St.	Rosebud		МО	63091			
5.1 A letter from the continuing authority, if o	lifferent tha	an the owner, is include	d with this ap	oplication.	YES	□ NO №	N/A
5.2 COMPLETE THE FOLLOWING IF THE CONTINUING AUTHOR. Is a copy of the certificate of convenience				YES	□ NO		
5,3 COMPLETE THE FOLLOWING IF THE CONTINUING AUTHO							
A. Is a copy of the as-filed restrictions and c	ovenants i	ncluded with this applica	ation?				
B. Is a copy of the as-filed warranty deed, qu	uitclaim de	ed or other legal instrum	nent which tr	ransfers owr	nership of t	he land for th	ne
wastewater treatment facility to the assoc C. Is a copy of the as-filed legal instrument (typically th	ne plat) that provides the	association		easements	for all sewer	s
included with this application? YES D. Is a copy of the Missouri Secretary of Sta	☐ NO						□NO
	ite a Horipi	- Comportation continuation					_
6.0 ENGINEER ENGINEER NAME / COMPANY NAME		TELEPHONE NUMBER WITH A	REA CODE	E-MAIL ADD	RESS	W. Edillo	
Kyle J. Landwehr		(573) 659-6727		kyle.land	wehr@bart	west.com	
ADDRESS	CITY	ļķ.	STATE	ZIP CODE			
601 Monroe St., Ste. 201	Jeffersor	City	МО	65101			
7.0 APPLICATION FEE			7.77				
CHECK NUMBER		JETPAY CONFIRMATION NUM					
8.0 PROJECT OWNER: I certify under pen	alty of law	that this document and	all attachme	nts were pr	epared und	ler my direct	ion or
supervision in accordance with a system des	igned to a	ssure that qualified pers	onnel prope	rly gather a	nd evaluate	the informa	tion
submitted. Based on my inquiry of the person	n or persoi	ns who manage the syst	tem, or those	e persons a	rectly respond	onsible for	am
gathering the information, the information sui aware that there are significant penalties for	omitted is,	to the best of my knowl	euge and be	sibility of fin	o and impri	sonment for	an
knowing violations.	submitting	taise information, includ	ang the pos	Sibility of life	e and impli	SOUTH TOTAL	
PROJECT OWNER SIGNATURE							
Man A X							
PRINTED NAME				DATE	10 05	_	
Shannon Grus		TELEPHONE NUMBER WITH A	REA CODE	E-MAIL ADD	29 · 25		
TITLE OR CORPORATE POSITION Mayor		573-505-1818	REAGODE	1.777	.grus@gma	ail.com	
		MENT OF NATURAL R	ESOURCES	3			
WATER PI P.O. BOX		ON PROGRAM					
		MO 65102-0176					
		END OF PART A.					
REFER TO THE APPLICATION O	VERVIEW	TO DETERMINE WHE	THER PART	T B NEEDS	TO BE CO	MPLETE.	

MO 780-2189 (02-19)

PART B – LAND APPLICATION ONLY (Submit only if the proposed construction project includes land application of wastewater.)
8.0 FACILITY INFORMATION
8.1 Type of wastewater to be irrigated: Domestic State/National Park Seasonal business Municipal Municipal with a pretreatment program or significant industrial users Other (explain)
8.2 Months when the business or enterprise will operate or generate wastewater: 12 months per year Part of the year (list months):
8.3 This system is designed for: No-discharge. Partial irrigation when feasible and discharge rest of time. Irrigation during recreational season, April – October, and discharge during November – March. Other (explain)
9.0 STORAGE BASINS
9.1 Number of storage basins: (Use additional pages if greater than three basins.)
9.2 Type of basins: Steel Concrete Fiberglass Earthen Earthen with membrane liner
9.3 Storage basin dimensions at inside top of berm (feet). Report freeboard as feet from top of berm to emergency spillway or overflow pipe. Basin #1: Length Width Depth Freeboard Depth Safety % Slope
Basin #2: Length Width Depth Freeboard Depth Safety % Slope Basin #3: Length Width Depth Freeboard Depth Safety % Slope
9.4 Storage Basin operating levels (report as feet below emergency overflow level). Basin #1: Maximum operating water levelft Minimum operating water levelft Basin #2: Maximum operating water levelft Minimum operating water levelft Basin #3: Maximum operating water levelft Minimum operating water levelft
9.5 Design depth of sludge in storage basins. Basin #1: ft Basin #2: ft Basin #3: ft
9.6 Existing sludge depth, if the basins are currently in operation. Basin #1: ft Basin #2: ft Basin #3: ft
9.7 Total design sludge storage: dry tons and cubic feet
10.0 LAND APPLICATION SYSTEM
10.1 Number of irrigation sites Total Acres Maximum % field slopes Location: ¼, ¼, % sec T R County Acres Location: ¼, ¼, ½, Sec T R County Acres (Use additional pages if greater than three irrigation sites.)
10.2 Type of vegetation: ☐ Grass hay ☐ Pasture ☐ Timber ☐ Row crops ☐ Other (describe)
10.3 Wastewater flow (dry weather) gallons per day: Average annual Seasonal Off-season
10.4 Land application rate (design flow including 1-in-10 year storm water flows): Design: inches/year inches/hour inches/day inches/week Actual: inches/year inches/hour inches/day inches/week
10.5 Total irrigation per year (gallons): Design: gal Actual: gal
10.6 Actual months used for irrigation (check all that apply): ☐ Jan ☐ Feb ☐ Mar ☐ Apr ☐ May ☐ Jun ☐ Jul ☐ Aug ☐ Sep ☐ Oct ☐ Nov ☐ Dec
10.7 Land application rate is based on: ☐ Hydraulic Loading ☐ Other (describe) ☐ Nutrient Management Plan (N&P) If N&P is selected, is the plan included? ☐ YES ☐ NO

Schulte, Cari

Bax, Stacia From:

Sent: Friday, August 1, 2025 10:34 AM

Schulte, Cari To:

Rosenberg, Heather; Garcia, Angie; Bretzke, Ginny Cc:

Subject: RE: C295083-01 Rosebud Construction Permit - Fee Waiver Form

Hi All,

I approve of the fee waiver. While it is not our responsibility or even obligation to remind folks when their permits are about to expire, I believe in this case we should grant this waiver due to this project being so close to completion. As always in our desire for providing the best customer service, if/when we were to remind folks of deadlines like this it provides a positive experience that is appreciated, it is still the responsibility of the continuing authority (i.e., city) to meet their obligations and follow regulations.

Cari, this should be ready for you. If you need anything else, please let us know.

Thanks, Stacia 573-526-0147 (Office) stacia.bax@dnr.mo.gov

From: Garcia, Angie < Angie. Garcia@dnr.mo.gov>

Sent: Wednesday, July 30, 2025 4:52 PM

To: Bretzke, Ginny <Ginny.Bretzke@dnr.mo.gov>; Bax, Stacia <stacia.bax@dnr.mo.gov>

Cc: Rosenberg, Heather < Heather. Rosenberg@dnr.mo.gov>

Subject: RE: C295083-01 Rosebud Construction Permit - Fee Waiver Form

Hello,

I spoke with Cari. She can assign a CP number before the fee is paid or waived. She has it on her to- do list 😊

Thanks,

Angie Garcia, E.I. (she/her) **Environmental Engineer Associate** Financial Assistance Center (573) 751-1299

From: Bretzke, Ginny <Ginny.Bretzke@dnr.mo.gov>

Sent: Wednesday, July 30, 2025 4:45 PM To: Bax, Stacia <stacia.bax@dnr.mo.gov>

Cc: Garcia, Angie < Angie. Garcia@dnr.mo.gov >; Rosenberg, Heather < Heather.Rosenberg@dnr.mo.gov >

Subject: FW: C295083-01 Rosebud Construction Permit - Fee Waiver Form

Stacia.

For the Rosebud construction permit, links to the fee waiver form and the justification information from the engineer are listed in Angie's email below. In addition, the new construction permit application (for re-issuing the same permit) is here:

\\n-nr64f.state.mo.us\nwpsc\wpcp\permits_SLRO\Gasconade\MO0091375 - Rosebud South Lagoon\Construction Permits\CPXXXXXXX - SRF 2025\cpXXXXXXX-mo0091375-c295083-01-rosebud-wwtf-20250729-cp-application-gasconade-cw.pdf

There is a place on the form for the Section Chief to approve the fee waiver.

I am assuming that Cari cannot get a CP number assigned until after the fee waiver is approved.

Angie can help answer any questions.

Thanks,

Ginny Bretzke, P.E.

Clean Water Engineering Unit Chief Financial Assistance Center (573) 751-1302 ginny.bretzke@dnr.mo.gov

From: Garcia, Angie < Angie. Garcia@dnr.mo.gov >

Sent: Wednesday, July 30, 2025 8:28 AM

To: Bretzke, Ginny <Ginny.Bretzke@dnr.mo.gov>

Cc: Rosenberg, Heather < Heather.Rosenberg@dnr.mo.gov >

Subject: C295083-01 Rosebud Construction Permit - Fee Waiver Form

Hi Ginny,

Please see below the Fee Waiver Form for Rosebud. I based the required comment on the justification provided by the consultant. Feel free to make revisions as needed.

Fee Waiver Form: T:\ SLRO\Gasconade\MO0091375 - Rosebud South Lagoon\Construction Permits\CPXXXXXXX - SRF 2025\cpXXXXXXX-mo0091375-c295083-01-rosebud-wwtf-2025XXXX-fee-waiver-form-gasconade-cw.docx

Let me know if you have any questions.

Thanks,

Angie Garcia, E.I. (she/her) Environmental Engineer Associate Financial Assistance Center (573) 751-1299