for the construction of (described facilities):

See attached.

STATE OF MISSOURI

DEPARTMENT OF NATURAL RESOURCES

MISSOURI CLEAN WATER COMMISSION

CONSTRUCTION PERMIT

The Missouri Department of Natural Resources hereby issues a permit to:

City of Braymer
Braymer Wastewater Treatment Facility
108 East 2nd Street
Braymer, MO 64624

Permit Conditions:	
See attached.	
- ·	be in accordance with the provisions of the Missouri Clean Water Law, Chapter 644, RSMo., and mit may be revoked by the Department of Natural Resources.
As the department does not examine structural nelude approval of these features.	features of design or the efficiency of mechanical equipment, the issuance of this permit does not
	t the work covered by this permit during construction. Issuance of a permit to operate by the stantially adhering to the approved plans and specifications.
This permit applies only to the construction of	water pollution control components; it does not apply to other environmentally regulated areas.
August 26, 2025 Effective Date	
August 25, 2027	Kalle Shel
Expiration Date	Heather S. Peters, Director, Water Protection Program

CONSTRUCTION PERMIT

Permit No. CP0002545

I. CONSTRUCTION DESCRIPTION

The proposed upgrades include Triplepoint NitrOx® (MMBR) system, sludge removal from the lagoons, new lagoon outfall piping, new yard piping, new outfall piping through a magnetic flow meter vault, and ultraviolet (UV) disinfection system.

This project will also include general site work appropriate to the scope and purpose of the project, removal and disposal of debris, and all other appurtenant work to make a complete and usable wastewater treatment plant.

II. COST ANALYSIS FOR COMPLIANCE

Pursuant to Section 644.145, RSMo., when issuing permits under this chapter that incorporate a new requirement for discharges from publicly owned combined or separate sanitary or storm sewer systems or publicly owned treatment works, or when enforcing provisions of this chapter or the Federal Water Pollution Control Act, 33 U.S.C. 1251 et seq., pertaining to any portion of a publicly owned combined or separate sanitary or storm sewer system or publicly owned treatment works, the Department of Natural Resources shall make a "finding of affordability" on the costs to be incurred and the impact of any rate changes on ratepayers upon which to base such permits and decisions, to the extent allowable under this chapter and the Federal Water Pollution Control Act. This process is completed through a cost analysis for compliance. Permits that do not include new requirements may be deemed affordable.

The department is not required to determine cost analysis for compliance because the permit contains no new conditions or requirements that convey a new cost to the facility.

III. CONSTRUCTION PERMIT CONDITIONS

The permittee is authorized to construct subject to the following conditions:

- 1. This construction permit does not authorize discharge.
- 2. All construction shall be in accordance with the plans and specifications submitted by Bartlett & West on July 16, 2025, signed and sealed by Matthew Vander Tuig, P.E., Jennifer Mcvey, P.E., Micheal Neufeld, P.E., and Chad Yost, P.E., and approved by the department on August 26, 2025.
 - Specifications, signed and sealed on May 27, 2025, May 28, 2025, May 29, 2025, and June 3, 2025.
 - Plans, signed and sealed on May 27, 2025, May 28, 2025, May 29, 2025, and June 2, 2025.

- 3. Regulation 10 CSR 20-4.040(18)(B)1 requires that projects be publicly advertised, allowing sufficient time for bids to be prepared and submitted. Projects should be advertised at least 30 days prior to bid opening.
- 4. The department must be contacted in writing prior to making any changes to the approved plans and specifications that would directly or indirectly have an impact on the capacity, flow, system layout, or reliability of the proposed wastewater treatment facilities or any design parameter that is addressed by 10 CSR 20-8, in accordance with 10 CSR 20-8.110(11).
- 5. As per 10 CSR 20-4.040, all changes in contract price or time within the approved scope of work must be by change order in accordance with Section 19 of this rule.
- 6. State and federal law does not permit bypassing of raw wastewater; therefore, steps must be taken to ensure that raw wastewater does not discharge during construction. If a sanitary sewer overflow or bypass occurs, report the appropriate information to the department's electronic Sanitary Sewer Overflow/Bypass Reporting system at https://dnr.mo.gov/mogem/ or Northeast Regional Office per 10 CSR 20-7.015(9)(G).
- 7. In addition to the requirements for a construction permit, 10 CSR 20-6.200 requires land disturbance activities of 1 acre or more to obtain a Missouri State Operating Permit to discharge stormwater. The permit requires best management practices sufficient to control runoff and sedimentation to protect waters of the state. Land disturbance permits will only be obtained by means of the department's ePermitting system available online at https://dnr.mo.gov/data-e-services/missouri-gateway-environmental-management-mogem. See <a href="https://dnr.mo.gov/data-e-services/water/electronic-permitting-epermitting-permitting-epermitting-permitting-eperm
- 9. All construction must adhere to applicable 10 CSR 20-8 (Chapter 8) requirements.
- 10. Upon completion of construction:
 - A. The City of Braymer will become the continuing authority for operation and maintenance of these facilities;

- B. Submit an electronic copy of the as-builts if the project was not constructed in accordance with previously submitted plans and specifications; and
- C. Submit the enclosed form Statement of Work Completed to the department in accordance with 10 CSR 20-6.010(5)(N) and request the operating permit modification be issued.

IV. REVIEW SUMMARY

1. CONSTRUCTION PURPOSE

The project includes modifications to the existing wastewater treatment system to better meet effluent limitations. The new NitrOx[®] system will allow for ammonia reduction while the UV disinfection system will help meet $E.\ coli$ limits consistantly. Sludge removal will allow for better treatment and help meet new 5-day biochemical oxygen demand (BOD₅) and total suspended solids (TSS) limits as well as percent removal.

2. FACILITY DESCRIPTION

The exisiting facility has a three-cell lagoon, chlorination/dechlorination system, and sludge is retained in the cells. Additions to the wastewater treatment process include Triplepoint NitrOx[®] system, UV disinfection system, piping, and the removal of the chlorination/dechlorination system. Sludge will likely be removed from the lagoons. The upgrades will help meet $E.\ coli$, ammonia, BOD₅, and TSS limits as well as percent removal.

The Braymer Wastewater Treatment Facility (WWTF) project is located at 13510 Southeast Hwy N, Braymer, Missouri, in Caldwell County. The facility has a design average flow of 145,000 gallons per day (gpd) and serves a population equivalent of approximately 1450. The city has approximately 343 residential connections, 12 commercial connections, and no industrial connections. The collection system has approximately 8.43 miles of sewer mains.

3. COMPLIANCE PARAMETERS

The limits following the completion of construction will be applicable to the facility:

Parameter	Units	Daily Maximum	Monthly average limit
Biochemical Oxygen Demand ₅	mg/L	45	30
Total Suspended Solids	mg/L	45	30
BOD ₅ Percent Removal	%	-	85
TSS Percent Removal	%	-	85

4. REVIEW OF MAJOR TREATMENT DESIGN CRITERIA

Existing Components:

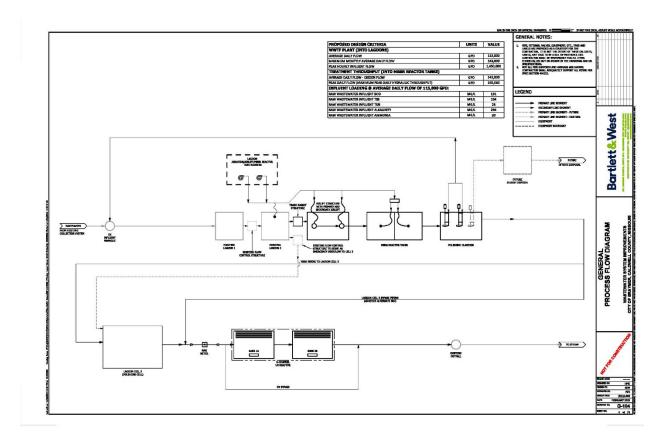
- Lagoon Cell Nos. 1, 2, and 3 are non-aerated.
 - o Cell No. 1 has a wastewater volume of 14,200,000 gallons and 5.7 feet (ft) side water depth.

- o Cell No. 2 has a wastewater volume of 8,800,000 gallons and 7.2 ft side water depth.
- Cell No. 3 has a wastewater volume of 2,500,000 gallons and 7.3 ft side water depth.

New Components:

- Lagoon aerator unit and blowers one aeration unit will be added near the middle of Lagoon Cell No. 2. The aerator will supply 50 pounds per day of oxygen. Blowers shall be designed to supply a standard air flow of 37.71 standard cubic feet per minute (scfm) per blower. The discharge pressure shall be 5.64 pounds per square gauge (psig) and the minimum horsepower (HP) will be 3.0 HP for each blower. There shall be a minimum of two blower units, one for duty and one standby/backup.
- Airlift Airflow for the primary airlift will be 8.14 cubic feet per minute (cfm) and the secondary airlift will provide 10.70 cfm. The air lift will push recycled flow from Cell 2 to the NitrOx unit and be accompanied with a 24-inch HDPE pipe.
- Triplepoint Water Technologies, LLC, NitrOx® The lagoon-treated effluent will be pumped to the NitrOx® system. The NitrOx® system is capable of treating a design average flow of 115,000 gpd. The system is composed of two tanks with each approximately 16 ft x 8 ft with a sidewater depth of 14 ft. Total volume of the two tanks is 26,808 gallons. The average flow hydraulic retention time is 4.4 hours and the peak flow hydraulic retention time is 0.8 hours. A floating insulating cover shall be installed in each tank. An immersion tank heater will be installed to maintain a minimum wastewater temperature of 5°C. Each tank shall be filled with high surface area media. Aeration by means of tri-lobe or bi-lobe positive displacement blowers each capable of supplying a total of 126 scfm with 10 HP motors. The effluent from the NitrOx basins will flow to the clarifier for polishing prior to disinfection and discharge.
- Polishing Clarifier There will be one polishing clarifier following the NitrOx® treatment. The basin will be 12 ft by 12 ft with approximaterly 17 ft of sidewater depth. The surface overflow rate at the average daily flow of 145,000 gpd equals 1,200 gpd per square foot.
- Ultraviolet Disinfection Disinfection is the process of removal, deactivation, or killing of pathogenic microorganisms. A two bank UV disinfection system with 8 low pressure mercury slimline lamps in each lamp module shall be provided and capable of treating a peak flow of 290,000 gpd while delivering a minimum UV intensity of 30.0 mJ/cm2 with an expected ultraviolet transmissivity of 50% minimum.
- Flowmeters Installation of an electro-magnetic partial flow measurement device will aid in wastewater service. An electromagnetic flow meter shall measure the flow from Lagoon Cell No. 3 and Lagoon Cell No. 3 bypass to the UV disinfection system.

5. **OPERATING PERMIT**


Operating permit MO-0028061 will require a modification to reflect the construction activities. The modified Braymer WWTF, MO-0028061, was successfully public noticed from June 27, 2025, to July 28, 2025 with no comments received. Submit the Statement of Work Completed to the department in accordance with 10 CSR 20-6.010(5)(N) and request the operating permit modification be issued.

Angie Garcia, E.I. Financial Assistance Center angie.garcia@dnr.mo.gov

APPENDICES

- 1. Process Flow Diagram
- 2. Summary of Design

APPENDIX 1 – PROCESS FLOW DIAGRAM

APPENDIX 2 – SUMMARY OF DESIGN

WASTEWATER SYSTEM IMPROVEMENTS

SUMMARY OF DESIGN

FOR

CITY OF BRAYMER, MISSOURI

MATTHEW J. VANDERTUIG – PROFESSIONAL ENGINEER LICENSE NO. PE-2004026634

BARTLETT & WEST, INC.

MISSOURI CERTIFICATE OF AUTHORITY NO. 000167-ENGINEERING 601 MONROE STREET, SUITE 201 JEFFERSON CITY, MO 65101 573-634-3181

PROJECT NO. 20114.003

ALL RIGHTS RESERVED. All Bartlett & West, Inc. plans, specifications and drawings are protected under copyright law, and no part may be copied, reproduced, displayed publicly, used to create derivatives, distributed, stored in a retrieval system or transmitted in any form by any means without prior written permission of Bartlett & West, Inc.

TREATMENT DESIGN PARAMETERS:

DESIGN PLANT INFLUENT WASTEWATER		
Plant Flow		
Average Daily Flow - Design Flow	115,000	gpd
Maximum Monthly Average Daily Flow (BASIS FOR TREATMENT CALCS)	145,000	gpd
Peak Hourly Influent Flow	1,450,000	gpd
Treatment Throughput Flow Average Daily Flow - Design Flow	115,000	gpd
Peak Daily Flow (maximum peak daily hydraulic throughput)	162,000	gpd
Influent Loading @Average Daily Flow (115,000 gpd)	102,000	gpu
BOD	131	mg/L
	125.6	lbs/day
TSS	154	mg/L
	147.7	lbs/day
NH3-N	15	mg/L
	14.4	lbs/day
TKN	25	mg/L
	24.0	lbs/day
Total P	3	mg/L
	2.9	lbs/day
Oil & Grease	15	mg/L
A Hollinity	14.4	lbs/day
Alkalinity	294	mg/L
	282.0	lbs/day
EXISTING LAGOONS		
Cell 1		
Lagoon Bottom Elevation	731.0	ft
Lagoon Bottom Surface Area	309,604	ft2
	7.1	acres
Lagoon Max Elevation (assuming 2-ft freeboard)	736.7	ft
Lagoon Max Level Surface Area (assuming 2-ft freeboard)	359,605	ft2
	8.3	acres
Max Depth	5.7	ft
Cell 2		
Lagoon Bottom Elevation	728.0	ft
Lagoon Bottom Surface Area	148,185	ft2
	3.4	acres
Lagoon Max Elevation (assuming 2-ft freeboard)	735.2	ft ft2
Lagoon Max Level Surface Area (assuming 2-ft freeboard)	182,464	
May Darah	4.2	acres
Max Depth Cell 3	7.2	ft
Lagoon Bottom Elevation	727.5	ft
Lagoon Bottom Surface Area	38,175	ft2
Language Parama Carlada Parama	0.9	acres
Lagoon Max Elevation (assuming 2-ft freeboard)	734.8	ft
Lagoon Max Level Surface Area (assuming 2-ft freeboard)	56,630	ft2
	1.3	acres
Max Depth	7.3	ft
PERMITTED PLANT EFFLUENT LIMITS		
Permitted Average Daily Flow	145,000	gpd
BOD Monthly Average	30	mg/L
BOD Weekly Average	45	mg/L
TSS Monthly Average	30	mg/L
TSS Weekly Average	45	mg/L
NH3-N Maximum Daily Limit (January) NH3-N Monthly Average Limit (January)	12.1 3.1	mg/L
NH3-N Monthly Average Limit (January) NH3-N Maximum Daily Limit (February)	10.1	mg/L mg/L
NH3-N Monthly Average Limit (February)	2.7	mg/L
NH3-N Maximum Daily Limit (March)	10.1	mg/L
NH3-N Monthly Average Limit (March)	2.7	mg/L
NH3-N Maximum Daily Limit (April)	10.1	mg/L
NH3-N Monthly Average Limit (April)	2.3	mg/L
NH3-N Maximum Daily Limit (May)	12.1	mg/L
NH3-N Monthly Average Limit (May)	1.9	mg/L
NH3-N Maximum Daily Limit (June)	12.1	mg/L
NH3-N Monthly Average Limit (June)	1.5	mg/L
NH3-N Maximum Daily Limit (July)	10.1	mg/L

TREATMENT DESIGN PARAMETERS:

NH3-N Monthly Average Limit (July)	1.1	mg/l
NH3-N Maximum Daily Limit (August)	12.1	mg/l
NH3-N Monthly Average Limit (August)	1.3	mg/l
NH3-N Maximum Daily Limit (September)	12.1	mg/l
NH3-N Monthly Average Limit (September)	1.7	mg/l
NH3-N Maximum Daily Limit (October)	12.1	mg/l
NH3-N Monthly Average Limit (October)	2.6	mg/l
NH3-N Maximum Daily Limit (November)	12.1	mg/l
NH3-N Monthly Average Limit (November)	3.1	mg/l
NH3-N Maximum Daily Limit (December)	10.1	mg/l
NH3-N Monthly Average Limit (December)	2.7	mg/l
E-Coli Weekly Average (#/100 ml)	1030	#
E-Coli Monthly Average (#/100 ml)	206	#
Oil & Grease Daily Maximum	15	mg/l
Oil & Grease Monthly Average	10	mg/l
pH (min)	6.5	SU
pH (max)	9	SU

Ares Aeration® & NitrOx® Basis of Design

Date: 08-01-2024

Project Name: Braymer, MO **Project Number:** 6430

The Aeration Process

Biological Oxygen (BOD) Calculations

Removal of BOD (and CBOD) takes place naturally in an aerated lagoon. The Characteristic Equation for treatment efficiency of 5-Day Biological Oxygen Demand is given in Equations 1 through 3, at the bottom of this report. These calculations are used to size the lagoons. They are independent of the aeration calculations and assume that sufficient dissolved oxygen levels are maintained in the water. The equation is dependent on time and temperature. For lagoons operated in series, the equation is applied separately to each cell and the results are combined.

Aeration Requirement Calculations

Aeration calculations are more complicated than biological calculations as they depend on several factors. These include:

- ❖ Site conditions, such as treatment depth, elevation, and temperature.
- Design parameters, such as minimum dissolved oxygen (DO) level and oxygen supply rate.
- ❖Actual Oxygen Requirement (AOR), which is based on the nutrient loading rates (these can include BOD/CBOD and TKN/NH₃-N and are based on the product of nutrient concentrations and the wastewater flowrate).
- Type of aerator.
- Oxygen transfer efficiency (OTE) of the aerator, which should be measured by an independent lab.
- Field condition adjustments (see Equation 2, below).
- ❖Mixing requirements, such as complete or partial mix. The former is generally only required for activated sludge basins (ASB) or other high strength processes with short detention times.

Aerated Lagoons-Long Treatment Times

Aerated lagoons are typified by their comparatively large size and long treatment times (usually greater than 10 days). Influent concentrations are low to moderate (usually less than 300 mg/L of BOD). The bulk of the treatment takes place aerobically with additional anaerobic respiration taking place on the lagoon floor. Aerated lagoons do not generally have a mixed liquor suspended solids (MLSS) or return activated sludge (RAS) component. Partial mixing is required to prevent stratification and eliminate dead zones; however, complete mix is not necessary.

Aerated lagoons are typically designed to operate at a minimum DO level of 2 mg/L. Oxygen is usually supplied at a rate of 1.5 times the BOD demand. If nitrification/denitrification takes place, the oxygen supply rate is designed for 4.6 times the nitrogenous oxygen demand (NBOD).

Activated Sludge Basins (ASB)

Activated sludge basins (ASB) and other related wastewater tanks and lagoons are characterized by short treatment times (usually from 1 to 5 days), high wastewater strengths, and an active biomass that must be maintained in suspension to prevent rapid sludge accumulation. A high strength (greater than 2,000 mg/L) return activated sludge (RAS) component is usually fed back into the basin from a downstream clarifier. Biological nutrient removal is much faster in these basins.

ASBs are typically designed to operate at a minimum DO level of 1 to 2 mg/L. Oxygen is supplied at a rate of 1.0 to 1.5 times the BOD demand. If nitrification/denitrification takes place, the oxygen supply rate is designed for 4.0 to 4.6 times the nitrogenous oxygen demand (NBOD). An aeration system is based on both oxygenation requirements and complete mix requirements, whichever is greater.

TRIPLEPOINT ENVIRONMENTAL

Detailed Design Calculations: Aerated Lagoons

SUMM	UMMARY - General Design Parameters			
v4.4 B		Design Scenario Name		Max month
	1	Influent Flowrate	MGD	0.145
	2	Influent Concentration	mg/L	131.0
	3	Effluent Conc. (Summer)	mg/L	2.0
	4	Effluent Conc. (Winter)	mg/L	7.7
	5	Actual Oxygen Supplied	lb/day	50.0
	6	Air included for nitrification?		No
	7	Number of Aerators		1
	8	Estimated Tubing Length	ft	300
	9	Standard Airflow	SCFM	37.71
	10	Inlet Airflow	ICFM	44.00
	11	Design Pressure (w/cushion)	psig	5.64
	12	Projected Brake Hp	bhp	1.33
	13	Estimated Design Hp (in NitrOx-Combined Blower)	hp	3.0

```
FTE = \alpha (SOTE) \theta^{(T-20)} (\beta C^*_{\sim T} – DO) \div C^*_{\sim 20}
                                                       field transfer efficiency
Where,
                     contaminant factor (contaminants, depth, bubble size) (range: 0.40-0.70)
   α
                     TDS factor {total dissolved solids} (range: 0.90-1.00)
   β
                     temperature factor
   \theta = 1.024
   DO
                     target dissolved oxygen level (mg/L)
                     saturation oxygen concentration at site—adjusted for water depth
                     sat. oxygen concentration at STP conditions—adjusted for water depth
                     water temperature (Celsius)
 Airflow = AOR / (25.056 * FTE)
                                                        biological treatment efficiency
E = 2.3 * k * t / (1 + 2.3 * k * t)
 Where,
 k = varies
                     kinetic coefficient (related to temperature) (range: 0.06 to 0.12)
 t = time
                     treatment time in days
```


SUMMA	RY - Biological Treatment Calculations		
ltem	Description	Units	Max month
	Number of Treatment Cells		3
	2 Flow Regime		Series
	Site Elevation - HWL	ft	774
Cell 1			
	Wastewater Flowrate	MGD	0.1
	Treatment Volume	M-Gal	14.2
	5 Treatment Time	days	97.9
	7 Treatment Type	-	Facultative
	Std Reaction Rate, k ₂₀	days ⁻¹	0.06
	Design Water Temp	°C	20
	.0 Design Reaction Rate, k _T	days ⁻¹	0.026
ש	 Biological Treatment Eff. Influent BOD Loading 	% lb (do.)	85.5%
	.2 Influent BOD Loading .3 Influent BOD Concentration	lb/day	158
		mg/L	131.0
	4 BOD Removed	lb/day	135
	.5 Effluent BOD Loading .6 Effluent BOD Concentration	lb/day	23 19.1
	.7 Design Water Temp	mg/L °C	0.5
	8 Biological Treatment Eff.	%	74.7%
=	9 BOD Removed	Ib/day	118.1
	0 Effluent BOD Concentration	mg/L	33.2
	Influent NBOD Loading	lb/day	30.2
	Influent NBOD Conc.	mg/L	25.0
	Assumed NBOD Removed	lb/day	25.0
	4 Effluent NBOD Loading*	lb/day	30
	IS Assumed Eff. NBOD Conc.	mg/L	25
ell 2	Assumed En. NBOD Conc.	mg/ L	23
-	1 Wastewater Flowrate	MGD	0.1
	2 Treatment Volume	M-Gal	8.8
_	3 Treatment Time	days	61.0
	4 Treatment Type	-	Facultative
_	5 Std Reaction Rate, k ₂₀	days ⁻¹	0.06
_	26 Design Water Temp	°C	20
	·		
	Design Reaction Rate, k _T	days ⁻¹	0.026
<u>u</u> 2	Biological Treatment Eff.	%	78.5%
_	9 Influent BOD Loading	lb/day	23
5	Influent BOD Concentration	mg/L	19.1
	BOD Removed	lb/day	18
	2 Effluent BOD Loading	lb/day	
_	Effluent BOD Concentration	mg/L	4.1
	4 Design Water Temp	°C	0.5
	Biological Treatment Eff.	%	64.7%
	BOD Removed	lb/day	26.0
_	Effluent BOD Concentration	mg/L	11.7
	Influent NBOD Loading	lb/day	30
	Influent NBOD Conc.	mg/L	25.0
	Assumed NBOD Removed	lb/day	-
	9 Effluent NBOD Loading*	lb/day	30
N	10 Assumed Eff. NBOD Conc.	mg/L	25

Cell 3	3			
	38	Wastewater Flowrate	MGD	0.1
	39	Treatment Volume	M-Gal	2.5
	40	Treatment Time	days	17.5
	41	Treatment Type	-	Facultative
	42	Std Reaction Rate, k ₂₀	days ⁻¹	0.06
	43	Design Water Temp	°C	20
	44	Design Reaction Rate, k _T	days ⁻¹	0.026
_	45	Biological Treatment Eff.	%	51.3%
Summer	46	Influent BOD Loading	lb/day	4.9
Ē	47	Influent BOD Concentration	mg/L	4.1
S	48	BOD Removed	lb/day	3
	49	Effluent BOD Loading	lb/day	2.41
	50	Effluent BOD Concentration	mg/L	2.0
	51	Design Water Temp	°C	0.5
Winter	52	Biological Treatment Eff.	%	34.6%
Ν	53	BOD Removed	lb/day	4.9
	54	Effluent BOD Concentration	mg/L	7.7
	N11	Influent NBOD Loading	lb/day	30
	N12	Influent NBOD Conc.	mg/L	25.0
	N13	Assumed NBOD Removed	lb/day	-
	N14	Effluent NBOD Loading*	lb/day	30
	N15	Assumed Eff. NBOD Conc.	mg/L	25
SUN	<i>MARY</i>	- Aeration Calculations		
Item		Description	Units	Max month
	1	Site Elevation	ft	774
-		and the second s		
	2	O ₂ Loading Factor (BOD ₅)	O2/BOD	1.5
	2	O ₂ Loading Factor (BOD ₅) Alpha-value, α	O2/BOD	1.5 0.60

SUMMARY	- Aeration	Calculations
---------	------------	---------------------

Item	Description	Units	Max month
1	Site Elevation	ft	774
2	O ₂ Loading Factor (BOD ₅)	O2/BOD	1.5
3	Alpha-value, α		0.60
4	Beta-value, β		0.95
5	Theta-value, θ		1.02
Cell 2			
22	Lagoon Side Water Depth	ft	7.20
23	Air Release Depth	ft	6.45
24	AOR - Total	lb/day	50
25	SOTE/ft	%/ft	2.11%
26	SOTE SOTE	%	13.62%
27	Design DO Concentration	mg/L	2.0
28	FTE		5.29%
29	Air requirement	scfm	38
30	Airflow per aeration unit	scfm	37.7
31	Aerator Type		750T
32	Number of aeration units	units	1
33	Water Pressure	psig	2.79
34	Aerator Pressure Loss	psig	0.55
35	Header/Feeder P Loss	psig	1.30
36	Total Operating Pressure	psig	4.64
37	Design Motor Pressure	psig	5.64

The NitrOx® Process

The patented NitrOx Process was developed based on the principle that nitrification will reliably occur when the proper conditions are created. For wastewater lagoon systems that receive primarily domestic waste, the critical conditions required for nitrification include:

- ❖ CBOD of 20–30 mg/L
- ❖ Dissolved Oxygen of 4.6 lb/O2 per pound of NH3-N (Metcalf & Eddy)
- ❖ Sufficient population of Nitrifying bacteria
- ❖ Given sufficient Nitrifying bacteria, a water temperature of 4-5° C

The NitrOx Process utilizes the existing lagoon infrastructure for 90% BOD removal, after which nitrifying bacteria begin to nitrify. The effluent from the lagoons then flows hydraulically or is pumped into a two-stage nitrification reactor. In colder climates where the winter water temperature drops below 4° C, a thermal regulation heat exchanger is added in order to increase the water temperature; typically, only a few degrees during the coldest months of the year. In the two NitrOx Reactor cells, there are millions of individual biofilm carriers that provide a habitat for nitrifying bacteria, ensuring that there are sufficient nitrifying bacteria even in the coldest water conditions. Each NitrOx Reactor cell has aeration to provide the necessary oxygen, as well as to create a complete mix environment to keep the biofilm carriers in constant motion. The two cells are covered with floating insulated covers to mitigate heat loss and the media is kept in the tanks with stainless steel sieves. Finally, the effluent from the second NitrOx Reactor is discharged into a final polishing/clarification lagoon prior to the ultimate discharge from the lagoon system.

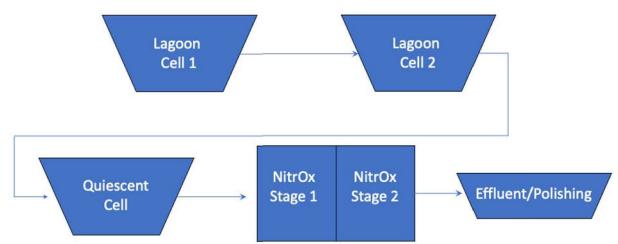


Figure 1: Typical flow process of the NitrOx Lagoon Ammonia Removal Process.

^{*}Note that other configurations are possible.

TRIPLEPOINT ENVIRONMENTAL **Detailed Design Calculations: NitrOx**

	Plant Influent Characteristics	Units	Values
1	Annual Average Daily Flow	gpd	115,000
2	Maximum Monthly Average Daily Flow	gpd	145,000
3	Peak Daily Flow	gpd	179,001
4	Peak Hourly Flow	gpd	1,450,000
5	Influent BOD	mg/L	131
6	Influent BOD	lbs/day	158.4
7	Influent TSS	mg/L	154
8	Influent TSS	lbs/day	186.2
9	Influent NH3-N	mg/L	20.0
10	Influent NH3-N	lbs/day	24.2
11	Influent TKN	mg/L	25.0
12	Influent TKN	lbs/day	30.2
A1	Influent NOx-N	mg/L	0.0
A2	Influent NOx-N	lbs/day	0.0
13	Influent pH		7
14	Water Temperature	deg-C	12
	NitrOx Influent Characteristics	Units	Values
15	Annual Average Daily Flow	gpd	115,000
16	Maximum Monthly Average Daily Flow	gpd	145,000
17	Peak Daily Flow	gpd	162,000
18	Peak Hourly Flow	gpd	797,500
19	Influent BOD	mg/L	20
20	Influent TSS	mg/L	20
21	Influent NH3-N	mg/L	20.0
22	Influent TKN	mg/L	25.0
23	Design Influent TKN	mg/L	25.0
А3	Design Influent NOx-N	mg/L	(
A4	Alkalinity Required as CaCO3 (Minumum)	mg/L	200
24	Influent pH		7
25	NitrOx Water Temperature	deg-C	5
1MAF	RY - General Design Parameters		
	NitrOx Tank Sizing Summary	Units	Values
26	Number of Treatment Trains Proposed		1
27	Number of Tanks Per Train		2
28	Total Number of Tanks		2
29	Length of Each	ft	16.0
30	Width of Each	ft	8.0
31	Side Water Depth of Each	ft	14
32	Tank Height of Each	ft	17
33	Volume of Each	gallons	13,404
34	Volume Total	gallons	26,808
35	Hydraulic Retention Time at Max Month Flow	hours	4.4
36	Hydraulic Retention Time at Peak Hourly Flow	hours	0.8
40	Number of Ares Units per Tank	110013	2
	in a contract of the contract		-

NitrOx Air	Requirement (Per Treatment Train)	Stage 1	Stage 2
42	AOR (lbs/day)	86	86
43	Assumed Diffuser Subm. at AWL (ft.)	13.25	13.25
44	Elevation (ft.)	774	774
45	Alpha	0.70	0.70
46	Beta	0.95	0.95
47	Target DO Residual (MBBR Process) (mg/L)	5.0	5.0
48	SOR (lbs/day)	261	260
49	Target Diffuser Efficiency/ft. Submergence	2.3	2.3
50	Airflow (scfm)	34	34

	NitrOx Blower Requirement Summary	Units	Values
51	No. of Blowers (Includes one redundant)		2
52	Airflow Requirement per Blower	scfm	68 + 20 SCFM Airlift
53	Airflow per 1,000 scfm	scfm/1,000 cf	19
54	Water Pressure at Air Release Depth	psig	5.74
55	Piping and Diffuser Losses	psig	1.50
57	Maximum Design Discharge Pressure	psig	7.24
58	Assumed Overall Efficiency		0.62
59	Approximate BHP Requirement/Blower	bhp	3.3
60	Approximate BHP Requirement Total	bhp	3.3
61	Estimated Nameplate HP / Blower (adder for lagoon aeration requirement and airlift included)	hp	10.0
62	Blower Type		Tri-Lobe PD

SUMMAR	SUMMARY - Calculated Output Values										
	NitrOx Effluent Parameters	Units	Values								
63	Effluent SCBOD	mg/L	7.5								
64	Effluent SCBOD	lbs/day	9.1								
65	Effluent NH3-N in Winter (Monthly Average)	mg/L	2.6								
66	Effluent NH3-N in Winter (Monthly Average)	lbs/day	3.1								
67	Effluent NH3-N in Summer (Monthly Average)	mg/L	1.1								
68	Effluent NH3-N in Summer (Monthly Average)	lbs/day	1.3								

4. FTE = α (SOTE) $\theta^{(T-20)}$ ($\beta C^*_{\infty T} - DO$) ÷ $C^*_{\infty 20}$	field transfer efficiency
--	---------------------------

Where,

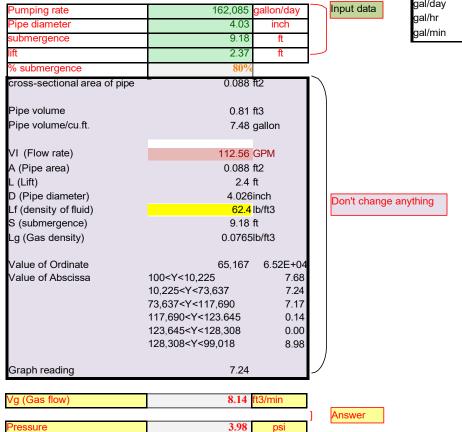
α contaminant factor (contaminants, depth, bubble size) (range: 0.40–0.70)

β TDS factor {total dissolved solids} (range: 0.90–1.00)

 $\theta = 1.024$ temperature factor

DO target dissolved oxygen level (mg/L)

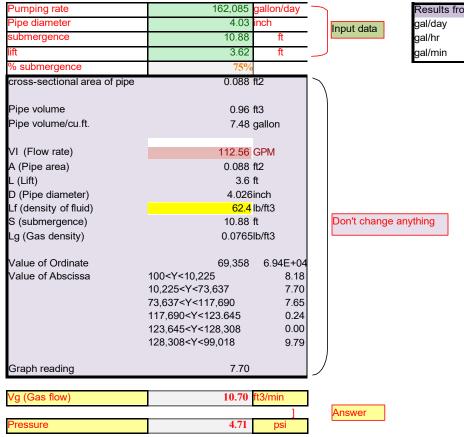
 $C^*_{\sim T}$ saturation oxygen concentration at site—adjusted for water depth $C^*_{\sim 20}$ sat. oxygen concentration at STP conditions—adjusted for water depth


T water temperature (Celsius)

Braymer Primary Air Lift Calculations (162,085 GPO)

·

Enter data in green cells only

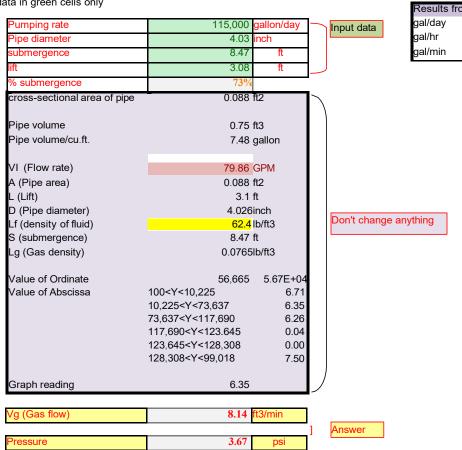


		-		
lesults fro	m left		Calculate r	needed gals/day
al/day	162,085		4166.667	gal/hr
al/hr	6753.54		100,000	gal/day
al/min	112.56	-		

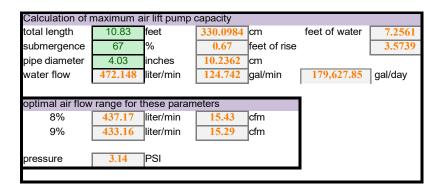
total length	10.83	feet	330.0984	cm	feet of water	7.2561
submergence	67	%	0.67	feet of rise		3.5739
pipe diameter	4.03	inches	10.2362	cm		
water flow	472,148	liter/min	124.742	gal/min	179,627.85	gal/day
		J		J 941/111111	177,027.00	944, 444)
optimal air flow	range for t	hese paran	neters		177,027.03	gair aay
	range for t	J		cfm cfm	173,027100	gail aay

Braymer Secondary Air Lift Calculations (162,085 GPD)

Enter data in green cells only

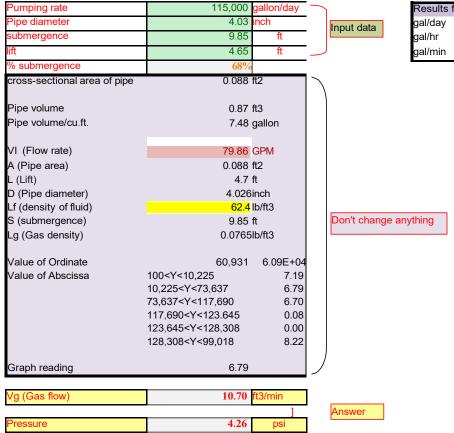


sults from left			Calculate r	needed gals/day
/day	162,085		4166.667	gal/hr
/hr	6753.54		100,000	gal/day
/min	112.56	'		


total length	10.83	feet	330.0984	cm	feet of water	7.2561
submergence	67	%	0.67	feet of rise		3.5739
pipe diameter	4.03	inches	10.2362	cm		
water flow	472.148	liter/min	124.742	gal/min	179,627.85	gal/day
					_	
optimal air flow	range for t	hese paran	neters			
8%	437.17	liter/min	15.43	cfm		
•			15.43	cfm cfm		
8%	437.17	liter/min	15.43			

Braymer Primary Air Lift Calculations (115,000 GPO) Enter

data in green cells only



esults fro	m left		Calculate r	needed gals/day
al/day	115,000		4166.667	gal/hr
al/hr	4791.67		100,000	gal/day
al/min	79.86	•		

Braymer Secondary Air Lift Calculations (115,000 GPD)

Enter data in green cells only

Results fro	m left
gal/day	115,000
gal/hr	4791.67
gal/min	79.86

	Calculate needed gals/day									
	4166.667	gal/hr								
I	100,000	gal/day								

total length	10.83	feet	330.0984	cm	feet of water	7.2561
submergence	67	%	0.67	feet of rise		3.5739
pipe diameter	4.03	inches	10.2362	cm		
water flow	472.148	liter/min	124.742	gal/min	179,627.85	gal/day
optimal air flow	range for t			cfm		
00/	427 17					
8% 9%		liter/min liter/min		cfm		

CHECK OF RECIRCULATION NEEDS FOR HIGH EVAPORATION DURING DRY SUMMER MONTHS TO MAINTAIN FLOW THROUGH TRIPLEPOINT

CHECK OF BRAYMER PROJECT

Total from MO Atlas 37.25

Total 38.10 (MONTHLY DATA IS IN FIGURES 3 THROUGH 14 OF ATLAS, CHECK TOTAL AGAINST FIGURE TOTAL SHOWN IN FIGURE 28

Braymer Lagoon Cell 1 Surface Area: 349,750.00 ft Braymertagoon Cell 2 Surface Area: 184,465.00 ft Average Daily Flow (ADF): 45,253.00 gallons per day

SSOAPP analysis shows low flow of dry weather diurnal pattern at 92,094 GPO and an average daily flow of 115,000, the facility plan suggest a current hydraulic loading of 88,604 GPD

		Net Gallons into Lagoon (without consideration of collection system I&I) (AVERAGE YEAR)										
	Jan	Fob	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
days/month:	31	- 28	- 31	- 30	- 31	- 30	M31	- 31	- 30	31	30	31
Gallons per Month:	1,802,43	1,733,276	2,301,927	1,200,169	1,389,552	788,654	618,624	470,549	1,313,001	1,338,452	1,936,69	1,907,056
Gallons per Day:	58,143	61,903	74,256	40,006	44,824	26,288	19,956	15,179	43,767	43,176	64,556	61,518

	Average Rainfall in Inches per Month (1 in 10 quest year))			
Jan	Fob	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total from MO Atlas •per month values figure from per month percentage for avg
0.89	1.03	1.99	2.66	3.69	3.25	3.17	2.43	3.32	2.43	1.92	1.33	28.1 year applied to total inches for 1 in 10 driest year
				Net R	ainfall in In	nches per f	/lonth				•	(MONTHLY DATA JS IN FIGURES 3 THROUGH 14 OF ATLAS, CHECK TOTALAGAINST FIGURE TOTAL SHOWN IN FIGURE 2)
Jan	Fob	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
0.89	1.03	1.99	-1.42	-1.35	-2.86	-3.48	-3.67	-1.32	-1.06	1.06	1.04	-9.15

Design Flow: 145,000 GPO

Percentage of Design Flow 4.05% <30% SO RECIRCULATION IS REQUIRED

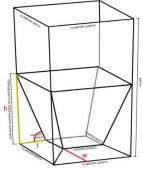
Gallons per Month: Gallons per Day:

		Net	t Gallons into	Lagoon (w	ithout cons	ideration of	collection	system I&I) (in droug g	h€onditions	5)	
	Jan	Fob	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
days/month:	31	28	31	30	31	30	31	31	30	31	30	31
s per Month:	1.402.843	1.267.08	1.402.843	1.390	275.418	676,519	813.250	628.331	-185.472	239.572	1.070.909	1.307.66

7 42,183 f these flows were negative, we may consider the impact of extreme drought

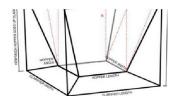
CLARIFIER SIZING CALCULATIONS Indicate

Indicate alue (do not edit formula)

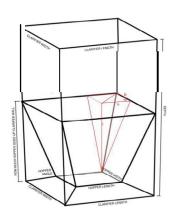

Clarifier Sizing Length and width dimension must match for volume cal in this tab. The equations for the hopper comers are ba pyramids, and additional calculations are necessary if p not exist (length/width dimensions di	sed on right to	triangular			
length (l	12.00	ft			
width(w) 12.00 ft					
depth (d	17.00	ft			

Hopper Bottom Dimensions Length and Width Dimensions must match for volum correct in this tab.	e calculations	s to be
length (I)	4.50	ft
width(w)	4.50	ft

Height of Hopper on Side Walls	check on width		
Length between Hopper and Side Wall (I	3.75	ft	3.75
Angle of Hopper	60.00	deg	60.00
Height hopper goes up Clarifier Wall (h	6.50	ft	6.50
			OK



Volume of Hopper Rectangle		
length (I)	4.50	ft
width(w)	4.50	ft
height (h)	6.50	ft
Volume	131.53	ft^3



Volume of Hopper Right Triangular Prisms					
base length (b)	3.75	ft			
prism length (I)	4.50	ft			
height (h)	6.50	ft			
Volume Per Prism	54.80	ft^3			
Total Volume (4 Prisms)	219.21	ft^3			

Volume of Hopper Right Triangular Pyramids					
Triangle base length (b	3.75	ft			
Triangle height (h	3.75	ft			
Pyramid Length (I	6.50	ft			
Volume Per Pyramid	15.22	ft^3			
Total Volume (8 Pyramids	121.78	ft^3			

Volume of Clarifier Above Hopper		
length (I	12.00	ft
width(w	12.00	ft
height (h	10.50	ft
Volume	1512.69	ft^3

Usable Volume Summary			
	Volume of Hopper	472.53 l	ft^3
	Volume above Hopped	1,512.69	ft^3
	Total Usable Volume	1.985.22	ft^3

DOUBLE CHECK USING ONLINE CALCULATOR HERE:

CLARIFIER WEIR TROUGH CALCULATIONS

Project No. 20114.003

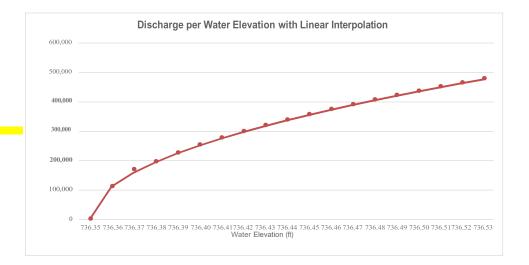
Project: Braymer Wastewater System Improvements

Subject: Weir Trough Design Location: Braymer, MO

Weir Trough Orifice Discharge Calculations Orifice calcs:

Equations Used:

 $Q_{o} = C_{o}A_{o}J2g(H - EJ)$ Orifice: Q = orifice outflow $C_{o}^{-} \text{ orifice discharge coefficient}$ $g = \text{acceleration due to gravity } 32.2 \text{ ft/s}^{2}$ $A = \text{net opening area} = \pi d^{2}/4$ H - water Elevation E = elevation of orifice


C₀ = 0.62 Weir Saw Tooth Elevation: 736.85 peak flow plus IQ 277,085 dimension to bottom of trough (in) 6 verify with jetincorp cut sheet

#1:

FL orifice= 736.35 ft (assuming hole in bottom of weir trough)

Number of orifices= 1
Diameter of Orifice = 8 in

Water							
Elevation	Н	Q	Q	Н			
(ft)	(ft)	(cfs)	(gpd)	(m)			
736.35	0.00	0.00	0	0.00	1		
736 36	0 01	0.17	112,242	0.12	ADF		
736.37	0.02	0.25	158,735	0.24	peak		
736 38	0 03	0.30	194,410	0.36			
736.39	0.04	0.35	224,485	0.48			
736.40	0 05	0.39	250,982	0.60			
736.41	0.06	0.43	274,937	0.72	peak plu	s 1XQ	return
736.42	0 07	0.46	296,966	0.84			
736.43	0.08	0.49	317,470	0.96			
736.44	0 09	0.52	336,727	1.08			
736.45	0.10	0.55	354,942	1.20			
736.46	0 11	0.58	372,266	1.32			
736.47	0.12	0.60	388,819	1.44			
736.48	0 13	0.63	404,696	1.56			
736.49	0.14	0.65	419,973	1.68			
736 50	0 15	0.67	434,713	1.80			
736.5 I	0.16	0.69	448,970	1.92			
736 52	0 17	0.72	462,788	2.04			
736.53	0.18	0.74	476,205	2.16			

2/27/2025 1 OF 4

Bartlett & West

Project No. 20114.003

Project: Braymer Wastewater System Improvements

Subject: Weir Trough Design Location: Braymer, MO

Clarifier Weir using the Kindsvater-Shen equation

CLARIFIER WEIR:

Inputs:

 Qmin (MGD):
 0

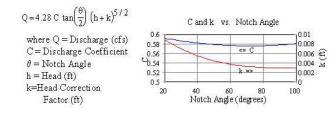
 Qmax (MGD):
 0.277085

 θ (degrees):
 90

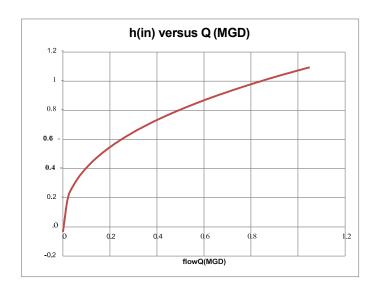
spacing between v notch weirs (in): 6
length of weir (ft): 24

Elevation of v-notch weir opening (ft): 736.85

Total opening height of each v-notch weir (in): 3.00


Outputs:

C: 0.5779049


 $\begin{array}{cc} & \textbf{k} \text{ (ft)} & 0.0029025 \\ \textbf{Number of v notch weirs:} & 48 \end{array}$

Q vs h table:

Q(MGD)	Q	h (ft)	h (in)	WSE (ft)	1
0.000	0.00	-0.0029	-0.03	736.85	1
0.006	3.85	0.0192	0.23	736.87	1
0.011	7.70	0.0262	0.31	736.88	
0.017	11.55	0.0313	0.38	736.88	1
0.022	15.39	0.0355	0.43	736.89	1
0.028	19.24	0.0391	0.47	736.89	
0.033	23.09	0.0423	0.51	736.89	
0.039	26.94	0.0451	0.54	736.90	
0.044	30.79	0.0478	0.57	736.90	
0.050	34.64	0.0502	0.60	736.90	
0.055	38.48	0.0525	0.63	736.90	
0.061	42.33	0.0546	0.66	736.90	1
0.067	46.18	0.0567	0.68	736.91	1
0.072	50.03	0.0586	0.70	736.91	
0.078	53.88	0.0605	0.73	736.91	1
0.083	57.73	0.0622	0.75	736.91	1
0.089	61.57	0.0639	0.77	736.91	1
0.094	65.42	0.0656	0.79	736.92	(low diurnal pattern of dry weather flow)
0.100	69.27	0.0672	0.81	736.92	
0.105	73.12	0.0687	0.82	736.92	1
0.111	76.97	0.0702	0.84	736.92	
0.116	80.82	0.0716	0.86	736.92	(ADF)
0.122	84.66	0.0730	0.88	736.92	
0.127	88.51	0.0744	0.89	736.92	
0.133	92.36	0.0757	0.91	736.93	
0.139	96.21	0.0770	0.92	736.93	1
0.144	100.06	0.0783	0.94	736.93	(max month/permitted design flow)
0.150	103.91	0.0795	0.95	736.93	
0.155	107.76	0.0807	0.97	736.93	
0.161	111.60	0.0819	0.98	736.93	
0.166	115.45	0.0831	1.00	736.93	(peak flow from cell 2 per HEC-HMS)
0.172	119.30	0.0842	1.01	736.93	

C = 0.607165052 - 0.000874466963 Ø + 6.10393334x10⁻⁶ Ø² k (ft.) = 0.0144902648 - 0.00033955535 Ø + 3.29819003x10⁻⁶ Ø² - 1.06215442x10⁻⁸ Ø³ where Ø is the notch angle in degrees

0.177	123.15	0.0853	1.02	736.94]
0.183	127.00	0.0864	1.04	736.94	
0.188	130.85	0.0875	1.05	736.94	
0.194	134.69	0.0885	1.06	736.94	
0.200	138.54	0.0896	1.07	736.94	
0.205	142.39	0.0906	1.09	736.94	
0.211	146.24	0.0916	1.10	736.94	
0.216	150.09	0.0926	1.11	736.94	
0.222	153.94	0.0935	1.12	736.94	
0.227	157.78	0.0945	1.13	736.94	
0.233	161.63	0.0954	1.15	736.95	(ADF plus 1 times return Q)
0.238	165.48	0.0964	1.16	736.95	
0.244	169.33	0.0973	1.17	736.95	
0.249	173.18	0.0982	1.18	736.95	
0.255	177.03	0.0991	1.19	736.95	
0.260	180.87	0.1000	1.20	736.95	
0.266	184.72	0.1008	1.21	736.95	
0.272	188.57	0.1017	1.22	736.95	
					(peak flow from cell 2 per HEC-HMS plus 1
0.277	192.42	0.1025	1.23	736.95	times return Q)
0.283	196.27	0.1034	1.24	736.95	
0.288	200.12	0.1042	1.25	736.95	
0.294	203.97	0.1050	1.26	736.96	
0.299	207.81	0.1058	1.27	736.96	
0.305	211.66	0.1066	1.28	736.96	
0.310	215.51	0.1074	1.29	736.96	
0.316	219.36	0.1082	1.30	736.96	
0.321	223.21	0.1090	1.31	736.96	
0.327	227.06	0.1098	1.32	736.96	
0.333	230.90	0.1105	1.33	736.96	
0.338	234.75	0.1113	1.34	736.96	
0.344	238.60	0.1120	1.34	736.96	
0.349	242.45	0.1128	1.35	736.96	
0.355	246.30	0.1135	1.36	736.96	
0.360	250.15	0.1142	1.37	736.96	
0.366	253.99	0.1149	1.38	736.96	
0.371	257.84	0.1156	1.39	736.97	
0.377	261.69	0.1163	1.40	736.97	
0.382	265.54	0.1170	1.40	736.97	
0.388	269.39	0.1177	1.41	736.97	
0.393	273.24	0.1184	1.42	736.97	
0.399	277.09	0.1191	1.43	736.97	
0.405	280.93	0.1198	1.44	736.97	
0.410	284.78	0.1205	1.45	736.97	

Manning's Equation (for open channels) Location: BRAYMER WEIR TROUGH

input:

Channel Length (ft): Channel Slope (ft/fl): 0.0010 verify with jetincorp cut sheet Bottom Width (fl): verify with jetincorp cut sheet

Left Side Slope (X:1): vertical walls Right Side Slope (X:1): vertical walls

or 2.4 inches Depth (fl): 0.2

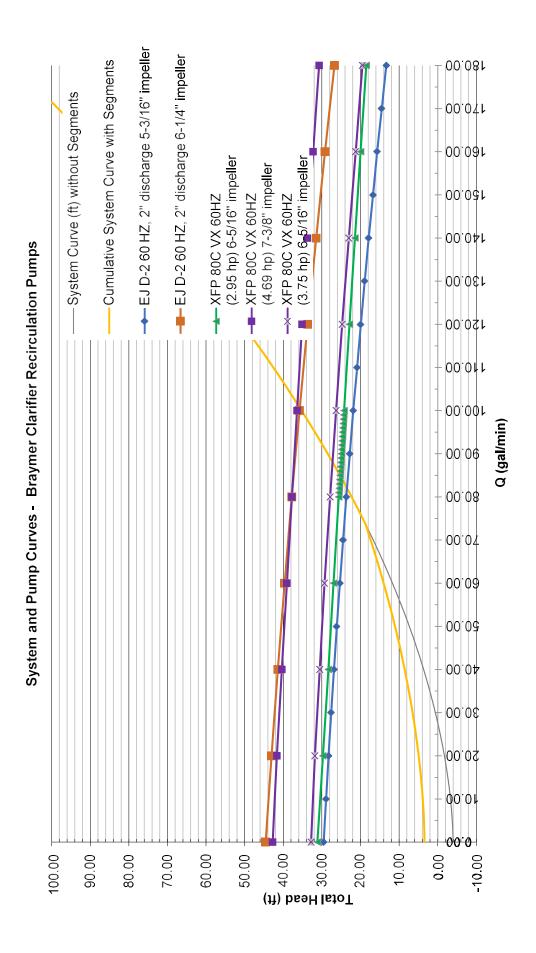
Ditch Conditions: Steel

output:

Storm Drain Length (fl): 6.00 A (fl²':

0.20 p (ft): 1.40 R(fl): 0.142857143 0.012 n: Q (ft³/s): 0.21

Q(gpm): 96.31 Q(GPD): 138,692 Depth (in): 2.4


V (ft/s): 1.07 lime in ditch (min): 0.09 half of peak future flow condition (each half of 12' length of weir) is 277,100/2 = 138,550 GPO

CLARIFIER PUMP HYDRAULIC CALCULATIONS

System content														_					
Part	Smin (solimini)			SYS	E CALCULAT	ION			PR	OPOSED CONDI	TION SYSTEM CUR	VE	PUMP CURVES						
Part		200 Design Flow	gern):	79,85 Note on design (ov	should be approxima	tely ADF for recirculation	from clarifier			System Curve (ft) without	System Curve (ft) Segment 1	System Curve (1) Segment 2	Curvaletive System						
Martin property 1/3		r		2,6"		5"		e		Segments	STA 0+00 = 14+75 (includes 12' vertical	STA 14+75 - 22+34	Curve with Segments		Medium Duly	Premium Duty	Premium Duty	Premium Duty	
The part of the				11.71 4.67			4	.78 .91		734,75 732,8	736,75	740,2 732,8		3 Phase	3 Phase	3 Phase	3 Phase	Single Phase	
The property of 1			$\overline{}$		0,01	001217 00000				-3.95	3,45	-7.4							
	Inside Diameter D (in):	2,182 0,028		2.642		.214 .016	4.	133	Length of 2.5°	2,259	1,501	0 758							
State Stat	Relative Roughness C/D:	0,0000275	-	0,0000227	0,0	900187	0,00	60165	Length of 4": Sum of K values (2")	0,20	0,20	0,00		EJ D-2 60 HZ, 2" discharge	EJ 0-2 60 HZ, 2" discharge	XFP 80C VX 80HZ (2,66 hp)			
Substrate Western We									Sum of K values (3")	4,59	4,44	0,15							
Victor V		friction factor, f in 2" velocity in 2" (f 0.00008 0.00	(sec) friction factor	f in 2,5" velocity in 2,5" (ft/sec 27 0.00	friction factor, f in 3 p.pages	" velocity in 3" (ft/eec) 0.00	friction factor, f in 4" 0.00095	velocity in 4" (ft/sec) 0.00	Common or response (or)	System Curve (ft)	System Curve (ft) 3.45	System Curve (ft)		5-8/16" impeller 29.54		6-5/16" impeller 31.19	7-3/6" impeller 42.77	8-5/18" impeller 32-81	
10	1,00 2,00	0,08020 0,09	0,0841	67 0,06 10 0,12	0,07024	0,04	0,07817	0,02		-3,94 -3,91	3,46 3,48	7.40 7.39	3,46 3,48						
March Marc	4,00	0,03759 0,34	0,039	8 0.23	0.04241	0,12 0,16	0.04605	0,10		-3,86 -3,81	3,51 3,54	7.37	3,54						
March Marc	5,00 6,00	0,03338 0,51	0,0350	77 0.35	0.03738	0.20 0.24	0,04038	0.14		-3,57	3,54	7.31	3,64						
1	8,00	0,03081 0,03	0,032	7 0.47	0,03433	0.28	0,03697	0,19		-3,49	3,76		3,76						
1	9,00 10,00	0.02901 0.86	0,030	13 0,53 13 0,59	0.03222	0,36	0.03461			3,39	3,83	7.21 7.18	3,10	28,94					
14	11,00 12,00	0,02766 1,03	0,0250	76 0,64 37 0,70	0,03138	0.47	0,03367	0,26 0,29		#3,16 #3,03	3,98 4,97		3,18 4,07						
10	13,00	0,02710 1,12 0,02660 1.30	0,028	17 0.78 12 0.82	0,02968	0.51 0.55	0,03212 0,03148	0,31		-2,89	416	7.05	4,16 4,26						
10	15,00	0.02814 1.29	0.0274	13 0.88	0.02588	0,59	0.03087	0.36		2.59	436		4,36						
1.00	17,00	0.02534 1.46	0,026	57 0.99	0.02793	0.67	0,02984	0,41		-2.26	4.59	4.84	4,19						
1.00	19,00	0,02466 1,63	0,0250	p 111	0.02714	0,75	0,02195	0,45		-1,90	4,83	4,73	4,83						
Section Color Co	21,00	0,02407 1,80	0,025	1,23	0,02645	0,63	0,02821	0,50		-1,50	5,10	8.80	5,10	20,00	4000	69400	*107	2102	
17.00 17.00 18.0	23,00	0,02355 1,97	0,024	72 1,29 95 1,35	0.02588	0.91	0,02755	0,55		=1,08	5,38	6.46	5,38						
200 200	25,00	0,02332 2,08 0,02310 2,15	0,0241	99 1,40 15 1,48	0,02533	0,96	0,02697	0,57		-0,62	5,69		5,69						
1.00	27,00	0.02269 2.32	0,023	M 1,58	0.02485	1.07	0.02644	0.45		0.14	5,01	6.15	9,61						
1.00	29,00	0.02250 2.40 0.02232 2.49	0,0233	51 1.64 32 1.70	0,02442	1.11	0,02597	0,49		0,37	6,36	-5,99	6,36						
3.00	31,00	0,02198 2,66	0,022	13 1.76 15 1,81	0.02403	1.19	0,02554	0,74			6,72	5,81	6,53 6,72	27,60					
3.00	33,00	0,02182 2,75 0,02167 2,83	0,0229	78 1,87 32 1,93	0,02368	1,27	0,02515	0,79		1,19	8,91 7,10	5,62	8,91 7,10						
3.00	35,00	0,02152 2,92 0,02138 3,00	0,022	77 1,99 32 2,05	0.02335	1,34 1,38	0,02479	0.84		1,77									
4,000 5,00	36,00	0,02125 3,09 0,02112 3,17	0,0221	17 2,11 n. 217	0,02319	1,42	0,02462	0,86 0,88		2,38	7,74 7,92	5,33 5,23	7,71 7,92						
4,000 5,00	38,00	0.02099 3.26 0.02087 3.35	0,0211	77 2.28	0,02290	1,50	0.02430	0.91		3,02	8,14	5.12 5.02	8,14 8,36						
4.02	40,00	0,02076 3,43	0,0210	15 2,34 12 2,40	0,02263	1,58	0,02403	0,96		3,68	8,59	-4,91	8,19 8.12	26,89	41,42	29,35	40,40	20,56	
44.02	42,00	0,03054 3,60	0,0214	11 2,48	0.02237	1,66	0,02372	1.00		4,37	9,05		9,05						
14.00	44,00	0.02033 3.78	0,0211	9 2,58	0,02213	1,74	0,02346	1,05		5,00	9.53	4.45	9,53						
14.00	46.00	0,02013 3,95	0,020	38 2,69	0.02191	1,82	0.02321	1.10			10,64	1,21	10,04						
14.00	48,90	0,01986 4,12	0,020	78 2,75 78 2,81	0,02170	1,90	0,02293	1,15		9,90	10,55								
\$2,00	50,00	0.01986 4.29 0.01978 4.29	0,0200	19 2,83	0.02150	1,94	0,02276	1,20		7.39	10.82		11.09	26,15					
55,00	52,00	0,01969 4,38 0,01961 4,46	0,020	50 2,98 12 3,04	0,02131	2,02	0,02256	1,24			11,37	3.43	11,54						
55,00	53,00 54.00	0,01963 4,55 0,01945 4,63	0,020	33 3,10 25 3,16	0.02113	2,10 2,14	0,02236	1,27			11,93 12,22	3,29	11,93						
60.02	55,00 56,00	0.01938 4.72	0,020	7 3.22	0.02104	2,18	0,02228	1,32		9,40	12,51 12,80	3.01 2.87	12.51 12.80						
60.02	57,00 58,00	0,01923 4.89 0,01916 4.98	0,0200	01 3.34 34 3.39	0.02087	2,25		1,36		10,38	13,10	2.73	13,10						
6.02	59,00	0,01910 5,06	0,0190	3.45	0,02071	2,33	0,02191	1,41		11,29	13,72	2.43	13.72	16.56	36.67	27.40	10.00	56.33	
6.02	61,00	0.01896 5.23	0,019	2 3,57	0.02054	2,41	0.07174	146		12,22	14,35	2.13	14,35	20,00	30,01	21700	30,00	20,02	
60.00 5.0781	00,09	0,01884 5,41	0,0198	19 3,69	0,02042	2,49	0,02158	1,51		13,18	15,60	4.82	15,00						
67,70	65.00		0,019	52 3,75 16 3,83	0.02028	2,57	0,02143	1.55		14,18	15,86	#1,50	15,88						
77-20	67,00	0,01860 5,75	0,0190	3 3,92	0.02014	2.65	0.02128	1,60		14,67 15,17	16,60 16,34	1,33	16,00 16,34						
77-20	69,00	0.01849 5.92	0,0190	21 4.04	0,02002	2,69 2,73	0.02114	1.45		16,21	16,69 17,64		16.69 17.04						
77,00 Control 4,00	71,00	0,01843 6,01 0,01838 6,09	0,0191	15 4.10 10 4.16	0,01989	2,81	0,02101	1,70		17,26	17,40	-0.49	17.40 17.75	24.52					
Physic Content A-44 Content A-39 Content A-	72,00	0,01833 6,18 0,01827 6,26	0,0196	M 4.21 M 4.27	0,01963	2,85	0,02094	1,72		17,80	18,12	0.32	10,12						
79,00 0,0183 4,52 0,0182 4,65 0,0180 3,16 0,0269 1,52 2,00 19,81 0,49 29,91 0,77,00 0,0180 4,10 0,01877 4,51 0,0180 5,36 0,0269 1,54 22,65 0,49 29,85 0,77 2,76 0,77,00 0,77,0	74,00	0,01822 6,35	0,0181	13 4.33	0.01971	2,93	0,02081	1,77		18,90	18,86		18,90						
79,00 0,01788 0,78 0,01987 4,62 0,01944 3,12 0,02051 1,89 21,74 26,78 0,49 21,74	76,00	0,01813 6,52	0,0188	12 4.45	0,01960	3,01	0,02069	1,82		20,01	19,61		20,01						
7-79/7 1/77 1/77 1/77 1/77 1/77 1/77 1/77	78,00	0,01803 0,69	0.0187	72 4.57	0.01949	3,08	0.02057	1.87		21,15	26,38	6,77	21 16						
\$1.07 \$4.100	00,08	0,01784 6,86	0,018	33 4,69	0,01939	3,16	0.02049	1,91		22,32	21,17	1,15	22.32	23,69	37,81	25,45	27,77	27,88	
	81290	m/1/89 6,95	1 4,0181	20 4,74	0.01804	34.09	(10200)	1,94		2691	21,07	1,84	22,91			20,05			

Smin (sal/min):		[SYSTEM CURVE CALCULATION								OPOSED CONDIT	ION SYSTEM CUR	VE		PUMP CURVES					
Q _{max} (gal/min):	200 De	esign Flow (gpm):	79,88	Note on design (ow:	should be approximate	ly ADF for recirculation	n from cjerifier			System Curve (ft) without Segments	System Curve (#) Segment 1 STA 0+30 = 14+75	System Curve (ft) Segment 2	Curveletive System Curve with Segments			Sidoer	Subse	Sulzer		
Velocity (fittee) based on Quest	17,16		7,0 11,0		7	- 91		4* 1.78	Start (or lowest) Elevation (ft):	734,75	(includes 12' vertical workers pipe) 724,75	STA 14+75 = 22+34 740,2	Curve wan segments	Solver Medium Duty 3 Phase	Sidner Medium Duty 3 Phone	Premium Duty (centinasus duty) 3 Phase	Premium Duty (continuous duty) 3 Phase	Premium Duty (continuous duty) Single Phase		
Velocity (ftisec) based on 1Q: viscosity y (ft ² /sec)	8.85 0,00001217	,	0,000	67	3 0,000	16		1.81 001217	End (or highest) Elevation (ft): Static Head (ft):	732,8 -3.95	740,2 3,45	732,6 -7.4				37.330	37.111	Sign rate		
Specific Roughness C (II): Inside Diameter D (in): Pipe Area (II*):	0,000005 2,182 0,026		0,00 2.6 0.0	0005 942 108	0,00 3,00 0,00	9005 F14		,133 ,093	Length of 2*: Length of 2.5*: Length of 3*:	0 0 2,259	0 0 1,501	0 0 758								
Relative Roughness G/D:	0,0000275		0,000	1127	0,00	10187	0,0	160145	Langth of 4" Sum of K values (2") Sum of K values (2,5")	0,20	0,20 0,00	0,00 0,00		EJ D-2 60 HZ, 2" discharge	EJ 0-2 60 HZ, 2" discharge	XFP 80C VX 60HZ (2,66 bp)	XFP 80C VX 60HZ (4,69 tp)	XFP 80C VX 60HZ (3,75 hp)		
Q (gallimin)	friction factor, f in 2" velo	on to stance I	fining frates (in 18)	and and the state of the state of the	. distant frates d in 90	velocity in 3" (fi/sec)	I distriction to d	velocity in 4" (filter)	Sum of K values (3") Sum of K values (4")	4,59 0,00 System Curve (ft)	4,64 0,00 System Curve (R)	0,15 0,00 System Curve (ft)	System Curve (ft)	5-3/16' irrester			7-3/8" impeller	6-5/16" impeller		
82,00 83,00	0.01785	7.04	0,01853 0,01848	4,90	0.01929	3,24	0,02034	1,96		23.51 24.12	21.68 22.28	1,54	23,51 24,12	5-3/16" inpitiar	6-1/4" impeller	25,51 25,44	7-2/6" impalier	e-orte: impeller		
84,00 85,00 84,00	0,01776 0,01772 0,01768	7.21 7.29 7.38	0,01844 0,01839 0,01835	4,92 4,97 5,03	0,01919 0,01914 0,01909	3,32 3,36 3,40	0,02024 0,02018 0,02013	2,01 2,03 2,08	_	24.73 25.34	22,60 23,24 23,63	1,93 2,13	24.73 25.34			25,37 25,30				
87,00 88,00	0,01764	7,46	0,01831	5.09	0,01905	3,44	0,02008	2,08		25.50 26.50	24,66	2,33 2,53	25,96 26,59			25.23 25.16				
89,00 90,00	0.01768 0.01758 0.01752	7,55 7,84	0,01826 0,01822 0,01818	5,15 5,21 5,27	0,01890 0,01895 0,01891	3,48 3,52 3,56	0,02503 0,01598 0,01593	2,10 2,13 2,15 2,18		25,65 25,59 27,72 27,85 28,51 25,62 35,43 31,45 31,62 32,50	24,48 24,92 25.35	2,74 2,95	25,68 26,59 27,22 27,28 28,51 29,18 29,82 30,48	20.74		25.43				
91,00 92,00	0,01748 0,01745	7.72 7.81 7.99	0,01814 0,01810	5,37 5,38 5,38 5,44 6,50 6,50	0,01887	3,60 3,64	0,01589	2,18		29.19	25,79	3,10 3,37 3,58	29,18 29,18 29,82	22,08		24.89				
83,00	0,01745 0,01741 0,01737	7 89 7 98 8 07 8 15	0,01508	5,44	0,01882 0,01878 0,01874	3,68 3,72	0,01979	2,20 2,22 2,25 2,27 2,30		25-62 30-48	26,24 26,68	3 ₁ 79 4.61	39,48			24,75 24,75				
94.00 95.00	0,01734	8.15	0,01793	6,64	0,01870	3,76	0,01970	2,25		31.15 31.82	27,14 27,59 28,65	4,23	31.15 31.82			24,81				
96.00 97.00	0,01738	8.24 8.32	0,01794	5,62 5,68	0,01865	3,80	0.01866	2,32		37,50 33,19	28,52	4,45	32,50 23,19			24,55 24,48				
58.00 59.00	0,01723	8.41 8.49	0,01787	5,68 5,74 5,79 5,85	0,01858	3,68	0,01957	2,34		33, 19 33, 88 34, 58 35, 28	28,58 29,46 29,53	4,50 5,12	33,88 34,58 35,28			24,41 24,34				
100,00	0,01718	8.58 8.67	0,01779	5,85 5,91	0,01850	3,56 3,50	0,01949	2,39 2,42		35,28 35,99	30,41	5,35 5,58	35.99	21,93	35,81	24,27	30,46	26,33		
102,00	0,01716	8,75	0,01772	5,61 5,67 6,03 6.09 6.15	0,01842	4,03	0,01940	2,32 2,34 2,37 2,39 2,42 2,42 2,46 2,46 2,48		35,59 35,79 37,42 38,15	30,89	5,81 5,64	36,76 37,42 38,15							
104.00	0.01703 0.01700	8,84 8,92 8,01	0.01766	6.09	0.01836 0.01831	4.11 4.15	0.01932	2,51		35.53	31,38 31,67 32,37	6,28 6,52	30,15 30,38							
100,00	0,01697	8.10 8.18	0.01759	6,20 6,26 6,32 6,38	0,01828	4,19	0,01924	2,54 2,56 2,58 2,61		39,62	32,06	5,75 5,99	39,62 60,36							
100,00	0,01691	9.27 9.35	0.01752	6,32	0,01821	4,23 4,27 4,31	0,01917	2,58		40,36 41,11 41,87	33,87 34,38	7,24	41,11							
110,00	0,01885	9,44 9,52	0,01748	6,44 6,50 6,65 6,61 6,67	0,01814	4,35 4,39	0,01509	2,65 2,65 2,68 2,70 2,73		42 83 43 39 44 15	34,50 35,42	7,73	41,87 42,83 43,39	20,93						
112,00	0,01679	9.81 9.70	0,01740 0,01737	6,55	0,01807	4,43	0,01502	2,68		44,16	35,64	8,22 8,48	44.18							
114,00	0,01674	9,78 9,87	0,01734	6,67 6,73	0,01801	4,51 4,56	0,01895	2,73		44,64 45,72 48,61	36,46 36,69 37,63	5,73 5,98	44,94 45,72 46,51							
116.00	0.01668	8.95 10,04	0.01728	6,79	0.01794	4,59 4,63	0,01888	2,75 2,77 2,80 2,82		47.31	37,66 38,66	9,24 9,50	47,31 48,10							
118.00	0,01663	10,12	0,01722	6,79 6,85 6,91	0,01788	4,67	0,01881	2,10		47,31 45,10 45,91 45,72 50,54	39,15 39,70	9,76	48,91							
119.00 120.00	0,01860	10,21	0,01719	6,98 7,02 7,08 7,14 7,20 7,28 7,32 7,32 7,43	0,01785	4,71	0,01878	2,85 2,87 2,89 2,92 2,94 2,97 2,96 3,01		49,72 50,54	40,25	10,02	49,72 50,54	19,94	33,71	22,88	35,15	24,77		
121,00	0,01655	10,38	0,01713	7,08 7,14	0,01779	4,79 4,82	0,01871	2,89 2,92		51,38 52,19 55,62 55,62 55,63 54,70 55,55 56,61 57,77 55,14 50,01 50,01 50,01 50,01	40,81 41,37	10,55 10,82	51,36 52,19							
123,00 124,00	0,01850	10.55 10.64	0,01708	7,20 7,28	0,01773	4,98 4,50	0,01865	2,84 2,97		53,62 53,86	41,53 42,50 43,67	11,09 11,36	53,85 53,86 54,76							
125,00 126,00	0,01644 0,01642	10,64 10,73 10,81	0,01702	7,32 7,37	0,01767	4,94 4.68	0,01858	2,56 3,01		54.70 55.55	42,65	11,36 11,63 11,91	54,70 55,55							
127.00	0,01640	10,80	0.01687	7.49	0,01762	5,00	0,01852	3,06		58,41 57,27	44,22 44,81	12,19	55,35 56,41 57,27							
129,00	0,01635	11.07 11.15 11.24	0,01692	7,56 7,61 7,67	0,01756	5,10	0,01846	3,09 3,11 3,13		58,14 59,01	45,39 45,98	12,74	58,14 59,91	18.92						
131,00	0,01636	11,24 11,33	0,01687	7,67 7,73	0,01751	5,18	0,01840	3,13 3,16		59.89 80.77	45,58 47,17 47,78	13,31 13,59 13,88	59,89 60,77 61,98							
133,00	0,01825	11.41	0,01682	7,78 7.84	0,01745	5,28 5,30 5,34	0,01835	3,18 3.20		91.66 92.65	47,78 45,38	13,88	61,98 62,65							
135,00	0,01621	11,58	0,01677	7,90	0,01740 0,01738	5,34 5,38	0,01829 0,01828	3,23		63,45	48,59	14,17 14,46 14,75 15,05	63,45							
137,00	0.01616	11,50 11,58 11,67 11,76 11,84	0.01672 0.01670	8,02 8,02	0.01735	5,42	0,01823	3,28		65,27	45,38 45,59 46,60 50,22 50,84	15,05	62,55 63,45 64,36 65,27 66,18							
138,00	0,01612	11,83	0,01668	7,78 7,84 7,90 7,98 8,02 8,08 8,14 8,19	0,01730	5,46 5,50 5,54	0,01818	3,18 3,20 3,23 3,25 3,26 3,70 3,70 3,72 3,37		92,55 93,45 94,36 95,27 95,18 97,11 68,63 98,97	51,46 52,69 52,72	15,34 15,64	87,11 68,03	17.93	24.02	21.44		****		
141,00	0,01608	12,10	0,01683	8.25	0,01725	5,58 5,62	0,01813	3,37		88,97	52,72 53,38	15,94 18,24 18,55	68,97	17.00	3139	21349	20,70	20394		
143,00	0,01804	12,18 12,27 12,36	0,01659	8,37 8,43	0,01720	5,68 5,68	0,01807	3,42		70.85	54,60	16,85 17,18	69,90 70,85							
145.00	0,01800	12,44	0,01654	8,49 8,54	0,01718	5,73	0,01502	3,44		72,75	54,60 54,64 55,28 55,63	17,16 17,47 17,78	71,80 72,75 73,71							
146,00	0,01568 0,01586	12,53 12,61 12,70	0,01652	8,54 8,60 8,66	0,01713	5,77 5.81	0,01800	3,40 3,42 3,47 3,49 3,52 3,54 3,56		73,71 74,67	56,59		73,71 74,87 75,85							
148.00 148.00	0.01584 0.01582	12,78	0,01648	0.72	0,01709	5,85 5,89	0,01795	3,54		99,90 70,85 71,80 72,75 73,71 74,67 75,65 76,62 77,60 78,50	57,24 57,91	18,40 18,72 19,03	75.55 76.52							
150,00	0,01588	12,87	0.01644	8,78 8,84	0,01704	5,93 5,97	0,01790	3,59		77.60 78.50	58,57 59,24	19,35	76,52 77,50 78,59	16,77						
152,00	0,01588	13,04	0.01639	8,78 8,84 8,90 8,95 9,01	0,01700	6,01	0,01785	3,59 3,61 3,64 3,68 3,68		79,58 80,58 81,58	59,91	19,87	79,58 80,58 81,58							
154,00 156,00	0,01582	13,21	0,01635 0,01633	9,01 9,07	0,01695	e,co e.13	0,01780			81,58 82,59	90,59 91,26 91,95	19,39 20,32 20,84	82,59							
156,00	0,01578	13,39 13,47 13,56	0,01631	9,07 9,13 9,19	0,01661	6,17 6,21 6,25	0,01775	3,73 3,75 3,78		82,59 83,60 84,62	62,63	20,97 21,30 21,83	83,60							
158.00	0.01575 0.01573	13.56 13.64	0.01627 0.01625	9,19 8,25 8,31	0.01687 0.01685	6.26 6.29	0.01771	3.78 3.80		84,62 85,65 86,68	63,32 54,62 54,72	21,93	84,92 86,95 86,98							
160.00	0,01571 0,01589	13,73	0,01624 0,01622	9,36 9,42	0,01683	6,33	0,01766	3,83 3,85 3,87		87,71 88,75 89,80	64,72 65,42 66,12	21,96 22,30 22,63	87,71 88,73	15,89	29,21	20,00	32,29	21,27		
162.00	0,01567	13,50	0,01620	9,48 9,54	0,01679	6,41 6.45	0,01762	3,87		89,80 90,85	86,12 66,83 87,54	22,97 23,31	87,74 88,75 89,80 90,85							
10000	*********	-7,00	No.	2,00	4,01077	1010	1 4,01700	3,40			97,00	24,41	20,00							

Qmin (col/min)		1		SYS	TEM CURVE	CALCULAT	ION			PF	OPOSED CONDI	TON SYSTEM CUF	IVE	PUMP CURVES					
Q _{eres} (galimin):	200	Design Flow (gpm):): 79,85 Note on design Cov; should be approxima		should be approximate	ould be approximately ADF for recirculation from clarifier			System Curve (ft) without Segments	System Curve (ft) Segment 1 STA 0+80=14+75	System Curve (ft) Segment 2	Curvistive System Curve with Segments			Sulper	Subser	Subser		
		r	2	,6"		r		47		049111111	(includes 12' vertical websrell pine)	STA 14+75 - 22+34		Suker Medium Duty	Subser Medium Duty	Premium Duty (continuous duty)	Premium Duty (continuous duty)	Premium Duty (continuous duty)	
Velocity (ft/sec) based on Q _{ues} :		116		1.71		91		.78	Start (or lowest) Elevation (ft):	734,75	736,75	740,2		3 Phase	3 Phase	3 Phase	3 Phase	Single Phase	
Velocity (ft/sec) based on 1Q: viscosity y (ft ² /sec)	0,000	.85		1,67 001217	0,010	16		.91	End (or highest) Elevation (ft): Static Head (ft):	732,8	740,2	732,8 •7.4							
Specific Roughness C (II):	0.00		0,00		0.00			10025	Length of 2":	4	0	-74							
Inside Diameter D (in):	2.	182	2.	.642	3.2	114	4	133	Length of 2.5"	0	0	0							
Pipe Area (ft²):		026		.038	0.0			093	Length of 3°:	2,259	1,501	758							
Relative Roughness C/D:	0,00	00275	0,00	01227	0,000	10187	0,00	60145	Length of 6": Sum of K values (2")	0,20	0,20	0.00		EJ D-2 60 HZ, 2" discharge	EJ D-2 60 HZ, 2" discharge	XFP 800 VX 80HZ (2,95 to)	XFP 80C VX 60HZ (4,69 hp)	XFP 80C VX 60HZ (3,75 hp)	
									Sum of K values (2,5")	0,00	0,00	0.00				(2,00 10)	(w/on rip)	(3,70 (9)	
									Sum of K values (3")	4,59	4,44	0,15							
									Sum of K values (4")	0,00	0,00	0,00							
Q (gellimin)	friction factor, f in 2"			velocity in 2,5" (ft/sec)	friction factor, f in 3°			velocity in 4° (ft/sec)		System Curve (ft)	System Curve (ft)	System Curve (ft)	System Curve (ft)	5-3/16" impeller	6-1/4" impeller	6-5/16" impeller	7-3/5" impeller	8-5/16" impeller	
164,00	0.01564	14.07	0,01616 0,01614	9,60 9,60	0,01675	6,49 6,53	0.01757 0.01755	3.92 3.95		91,91	98,26 98,98	23,65	91.91 92.97						
166.00	0,01562	14.16	0,01612	9.72	0,01671	5,57	0,01753	3,95		94,04	59,70	24,34	92.04						
167,00	0.01558	14,33	0,01610	8.77	0,01669	6,60	0.01751	3,59		95,11	70,43	24,68	95,11						
168,00	0,01557	14,42	0.01603	9,83	0.01667	6,64	0,01749	4,02		95,19	71,16	25,03	\$6,19						
169,00	0,01555	14,50	0.01607	9,89	0.01685	6,68	0,01747	4,04		97,27	71,89	25,38	97,27						
170,00	0,01554	14,50	0,01005	9,95	0,01663	6,72	0.01745	4,07		38,38	77,63	25,73	18,38	14,50					
171,00	0,01552	14,67 14,78	0,01603 0,01602	10,01	0,01661	6,76	0,01743	4,09 4,11		99,48 100,55	73,37 74.11	28,09 26,44	19,48 100,55						
173,00	0.01549	14.84	0.01600	10,13	0.01667	6.84	0.01739	4.14		101,66	74.86	25,80	101,66						
174,00	0.01547	14.63	0.01593	10,18	0.01655	6.88	0.01737	4.16		102,77	75,61	27,16	102,77						
176,00	0.01546	15,02	9,01596	10.24	0.01654	6.92	0.01735	4.19		107,68	76,37	27.51	103,83						
170.00 177.00	0,01544	15,10	0,01595 0,01593	10,30	0.01652	6,96 7,00	0.01733 0.01731	4,21 4,23		105,01	77,13 77,89	27,88	105,01						
178,00	0,01543	15,19	0,01191	10,42	0,01668	7,00	0,01731	4,28		199,13	75,66	29,24	107,25						
179,00	0,01540	15,36	0.01190	10,48	0.01646	7,08	0,01727	4,28		108,40	79,43	21,97	108,40						
180,00	0,01538	15,44	0,01588	10,53	0.01645	7,12	0.01725	4,20		109,54	80,20	29,34	109,54	13,33	26,75	18,52	20,71	19,52	
181,00	0,01538	15,53	0.01588	10,59	0,01643	7,18	0,01723	4,23		110,89	80,58	29,71	110,60						
182,00	0,01535	15,62	0,01585	10,65	0,01641	7,20	0,01721	4,35		111,84	81,76	30,08	111,84						
183,00	0,01533	15,70 15,79	0,01583 0,01582	10,71	0,01639	7,24 7,28	0,01719	4,38 4,40		113,00 114,16	87,54 83,33	30,46 30,83	113,00 114,16						
185.00	0,01531	15,87	0.01580	10,83	0,01636	7,32	0,01717	4,42		115,33	84,12	31,21	115,33	—					
186,00	0,01529	15,66	0,01578	10,89	0.01634	7,36	0.01714	4,45		116,50	34,92	31,56	116,60						
187,00	0.01528	16,06	0.01577	10,94	0.01633	7,40	0.01712	4,47		117,68	85.72	31,96	117.63						
189,00	0,01526	16,13	0,01575 0,01574	11,00	0.01631	7,44 7,47	0,01710	4,50 4,52		118,86 120,05	85,52 87,32	32,35	118,85						
190,00	0,01523	16,22	0.01572	11,12	0.01628	7,47	0,01701	4,54		121,25	86,13	33,11	121,25	12.01					
191,00	0,01522	16,39	0.01571	11,18	0.01626	7,55	0.01705	4,57		127,45	86,95	33,50	127,45	.200					
192,00	0,01520	16,47	0.01589	11,24	0.01624	7,50	0,01703	4,59		123,65	89,76	23,89	123,65						
193,00	0,01519	16,58	0,01588	11,30	0,01623	7,63	0,01701	4,62		124,86	90,58	34,28	124,89						
194,00	0,01518	16,66	0.01566 0.01565	11,35 11,41	0.01621	7,67 7,71	0,01699	4,64		126,07 127,30	91,40 92,23	34,97 35,06	126,67 127,30						
196,00	0,01516	16,73	0,01565	11,41	0.01623	7.75	0,01698	4,66		127,20	92,23	35,46	127,30	-					
197,00	0,01514	16,60	0,01562	11,53	0,01616	7.79	0.01694	4,71		129,75	97,50	35,86	129,75						
198,00	0.01512	16,99	0,01560	11,59	0.01615	7,63	0.01692	4,74		130,69	94,73	36,25	130,99						
189,00	0,01511	17,08	0.01559	11/65	0.01613	7.87	0,01691	4,76		132,23	95,57	20,65	132,23						
200,00	0,01510	17,16	0.01558	11,71	0.01612	7,91	0,01689	4,78		133,47	96,42	37,06	133,47	10,83	24.21	18,96	29,04	17,71	

Braymer, MO WWTF
HYDRAULIC CALCULATIONS FOR low ADF (low flow from HEC-HMS model using low flow from dry weather diurnal pattern)

DESCRIPTION: FLOW(GPDJ: FLOW(GPM)· FLOW(MGD): WWTF outfall from lagoon cell 3 through mag meter and UV to WWTF outfall 92,094 (low flow from dry weather Jay diurnal pattern) 63.95 (0.09)

TENEDO TO THE OTHER DATE.	The Visit Advisor to	FLOW	C	PIPE	NOM, DIA	OUT, DIA	ID	VELOCITY	LENGTH	PIPE	v	FIT. LOSS	CUM. LOSS	HGL	
ELEMENT	MATERIAL	(GPM)	FACTOR	CLASS	(IN)	(IN)	(IN)	(FPS)	(FT)	LOSS	FACTOR	(FT)	(FT)	(FT)	COMMENTS
达,然外流水量,但是一种产品的,并不是一种		(GFM)	FACTOR	CLASS	(214)	OLA/	(114)	(Fro)	1511	1033	IACION	0.17	tri)	(11)	
					1			l			l .				
					1			l	l		l .				
Upstream from outfall through mag r	neter through UV eq	uipment to co	ell 3		1			l	l		l .			732.0000	100 year flood elevation
SWING CHECK VALVE	DIP	63.95	140	CL 52	8.0	9,050	8.390	0.37	l		2.20	0.0047	0.0047	732,0047	
EXIT LOSS	DIP	63.95	140	CL 52	8.0	9,050	8.390	0.37			1.00	0.0021	0.0068	732,0068	
PIPE	DIP	63.95	140	CL 52	8.0	9,050	8.390	0.37	25.50	0.0020	l .		0.0088	732,0068	
TEE - BRANCH FLOW	DIP	63.95	140	CL 52	8.0	9,050	8.390	0.37	l		1.80	0.0039	0.0127	732.0127	tee downstream of UV
PIPE	DIP	63.95	140	CL 52	8.0	9,050	8.390	0.37	11.50	0.0009	l .		0.0136	732.0136	
45° BEND	DIP	63.95	140	CL 52	8.0	9,050	8.390	0.37			0.15	0.0003	0.0139	732.0139	
PIPE	DIP	63.95	140	CL 52	8.0	9,050	8.390	0.37	40.50	0.0032	l .		0.0171	732.0171	
90° BEND	DIP	63.95	140	CL 52	8.0	9,050	8.390	0.37			0.30	0.0006	0.0177	732.0177	90 deg vertical bend DS of UV under slab
PIPE	DIP	63.95	140	CL 52	8.0	9,050	8.390	0,37	7.50	0.0006	l .		0.0183	732.0183	vertical pipe length, to be verified with pdf plan set
90° BEND	DIP	63.95	140	CL 52	8.0	9,050	8.390	0.37			0.30	0.0006	0.0190	732.0190	90 deg vertical bend DS of UV above slab
PLUG VALVE	DIP	63.95	140	CL 52	8.0	9,050	8.390	0,37			0.50	0.0011	0.0200	732.0200	90 deg vertical bend DS of UV above slab
PIPE	DIP	63.95	140	CL 52	8.0	9,050	8.390	0.37	2.50	0.0002			0.0202	732.0202	
											l .				
		1	1		1			l			l .				HGL just DS of Trojan UV internal weir, max HGL here per UV vendor is 733.64
SHARP-EDGE ENTRANCE	DIP	63.95	140	CL 52	8.0	9,050	8.390	0.37			0.50	0.0011	0.0213	732.0213	(depends on elevation of housekeeping pad and this elevation is based on 290kgpd)
District and the state of the s		0.00	140	CALLE	0.0	2,000	0.570	0.05	_	_	020	0.0021	0.0210	7020200	Elevation of HGL on US end of Trojan UV per UV vendor. Assumes 3"
		1	1		1			l			l .				housekeeping pad which will require the 90 deg vertical bend be location outside
		1	1		1			l			l .			734.1500	the concrete pad footprint for maintenance of the FL-FL connection
EXIT LOSS	DIP	63.95	130	CL 52	8.0	9,050	8.390	0,37			4.00	0.0021	0.0021	734.1500	the contrate had toochtructor maintenance of the 17-17 connection
	DIP				8.0						1.00	0.0021			
PIPE		63.95	140	CL 52		9,050	8.390	0.37	2.50	0.0002			0.0023	734.1523	pipe just upstream of UV unit
90° BEND	DIP	63.95 63.95	140	CL 52	8.0	9,050	8.390	0.37			0.30	0.0006	0.0030	734.1530	90 deg vertical bend US of UV above slab
PLUG VALVE	DIP		140	CL 52	8.0	9.050	8.390	0.37			0.50	0.0011	0.0040	734.1540	90 deg vertical bend US of UV above slab
PIPE	DIP	63.95	140	CI, 52	8.0	9,050	8.390	0.37	7.50	0.0006			0.0046	734.1546	vertical pipe length, to be verified with pdf plan set
90° BEND	DIP	63.95	140	CL 52	8.0	9.050	8.390	0.37			0.30	0.0006	0.0053	734.1553	90 deg vertical bend US of UV under slab
PIPE	DIP	63.95	140	CL 52	8.0	9.050	8.390	0.37	54.00	0.0042			0.0095	734.1595	
45° BEND	DIP	63.95	140	CL 52	8.0	9.050	8.390	0.37			0.15	0.0003	0.0098	734.1598	
PIPE	DIP	63.95	140	CL 52	8.0	9.050	8.390	0.37	3.00	0.0002			0.0101	734.1601	pipe DS of mag meter/flow splitter vault
45° BEND	DIP	63.95	140	CI. 52	8.0	9.050	8.390	0.37			0.15	0.0003	0.0104	734.1604	
PIPE	DIP	63.95	140	CI. 52	8.0	9.050	8.390	0.37	1.00	0.0001			0.0105	734.1605	pipe DS of plug valve in vault - length to be confirmed with plan set pdf
PLUG VALVE	DIP	63.95	140	CI. 52	8.0	9.050	8.390	0.37			0.50	0.0011	0.0115	734.1615	
PIPE	DIP	63.95	140	CI. 52	8.0	9.050	8.390	0.37	3.00	0.0002	l .		0.0118	734.1618	pipe US of plug valve in vault - length to be confirmed with plan set pdf
TEE - BRANCH FLOW	DIP	63.95	140	CI. 52	8.0	9,050	8.390	0.37			1.80	0.0039	0.0156	734.1656	WYE fitting at connection to existing 8" serving as UV bypass
		l			1			l	l		l .				
		1	1		1			l			l .				run through 8-inch mag meter size which appears to meet 10% fill requirements -
		1	1		1			l			l .				see: "W/iProj\20000/20114/20114.003/Documents\DesignCalcs\Mag meter\check of
PIPE	DIP	63.95	140	CL 52	8.0	9.050	8.390	0.37	10.00	0.0008	I		0.0164	734.1664	8-inch mag meter for min 10 percent full xlsx"
TEE - LINE FLOW	DIP	63.95	140	CL 52	8.0	9.050	8.390	0.37			0.30	0.0006	0.0171	734.1671	
PIPE	DIP	63.95	140	CL 52	8.0	9.050	8.390	0.37	17.00	0.0013	l .		0.0184	734.1684	
TEE - LINE FLOW	DIP	63.95	140	CL 52	8.0	9.050	8.390	0.37			0.30	0.0006	0.0190	734.1690	
PIPE	DIP	63.95	140	CL 52	8.0	9.050	8.390	0.37	1.50	0.0001	l .		0.0191	734.1691	
PLUG VALVE	DIP	63.95	140	CL 52	8.0	9.050	8.390	0.37	l		0.50	0.0011	0.0202	734.1702	
PIPE	DIP	63.95	140	CL 52	8.0	9.050	8.390	0.37	29.50	0.0023	I		0.0225	734.1725	
45° BEND	DIP	63.95	140	CL 52	8.0	9.050	8.390	0.37			0.15	0.0003	0.0228	734.1728	
PIPE	DIP	63.95	140	CL 52	8.0	9.050	8.390	0.37	1.00	0.0001			0.0229	734.1729	
					1						I				HGI, in lagoon cell 3 outfall structure downstream of weir gate. Anything greater
		I	1		1			I							than WSE shot during survey @ 734.60 suggests that we need to lower the UV p-
SHARP-EDGE ENTRANCE	DIP	63.95	140	CL 52	8.0	9.050	8.390	0.37			0.50	0.0011	0.0240	734.1740	trap or internal weir. 2 ft freeboard is 734.79.

Braymer, MO WWTF
HYDRAULIC CALCULATIONS FOR ADF (permitted design flow)

WWTF outfall from lagoon cell 3 through mag meter and UV to WIVTF outfall 115,000 (ADF) 79.86 0.12

DESCRIPTION: FLOW(GPDJ: FLOW(GPM)· FLOW(MGD):

		FLOW	C	PIPE	NOM, DIA	OUT. DIA	ID	VELOCITY	LENGTH	PIPE	K	FIT. LOSS	CUM. LOSS	HGL	
ELEMENT	MATERIAL	(GPM)	FACTOR	CLASS	(IN)	(IN)	(IN)	(FPS)	(FT)	LOSS	FACTOR	(FT)	(FT)	(FT)	COMMENTS
也。所有点 AV 是 10 mm 中华 (两种流光) a		(Graa)	TACTOR	CLASS	(214)	uno	(17)	(FFS)	45.37	1033	INCION	0.17	(11)	(11)	
								1							
					1			ı			l		l .		
					1			I			l		l .		
Upstream from outfall through mag n	neter through UV eq	uipment to co	ell 3		1			I			l		l .	732.0000	100 year flood elevation
SWING CHECK VALVE	DIP	79.86	140	CL 52	8.0	9,050	8.390	0.46			2.20	0.0073	0.0073	732,0073	·
EXIT LOSS	DIP	79.86	140	CL 52	8.0	9,050	8.390	0.46			1.00	0.0033	0.0107	732,0107	
PIPE	DIP	79.86	140	CL 52	8.0	9,050	8.390	0.46	25.50	0.0030			0.0137	732.0137	
TEE - BRANCH FLOW	DIP	79.86	140	CL 52	8.0	9,050	8.390	0.46			1.80	0.0060	0.0197	732.0197	tee downstream of UV
PIPE	DIP	79.86	140	CI, 52	8.0	9,050	8.390	0.46	11.50	0.0014			0.0211	732.0211	
45° BEND	DIP	79.86	140	CL 52	8.0	9,050	8.390	0.46	12.50		0.15	0.0005	0.0216	732.0216	
PIPE	DIP	79.86	140	CL 52	8.0	9,050	8.390	0.46	40.50	0.0048	0.25	0.0000	0.0263	732.0263	
90° BEND	DIP	79.86	140	CL 52	8.0	9,050	8.390	0.46	40.50	0.0040	0.30	0.0010	0.0274	732.0274	90 deg vertical bend DS of UV under slab
PIPE	DIP	79.86	140	CL 52	8.0	9,050	8.390	0.46	7.50	0.0009	0.30	0.0010	0.0282	732.0294	vertical pipe length, to be verified with pdf plan set
90° BEND	DIP	79.86	140		8.0				7.50	0.0009	0.20	0.0010			
				CL 52		9,050	8.390	0.46			0.30	0.0010	0.0292	732.0292	90 deg vertical bend DS of UV above slab
PLUG VALVE	DIP	79.86	140	CL 52	8.0	9.050	8.390	0.46			0.50	0.0017	0.0309	732.0309	90 deg vertical bend DS of UV above slab
PIPE	DIP	79.86	140	CL 52	8.0	9,050	8.390	0.46	2.50	0.0003	l		0.0312	732.0312	
1		l	1		1			I			l		l .		THAT I WAS AN A TOTAL OF THE PARTY OF THE PA
			1		1			1							HGL just DS of Trojan UV internal weir, max HGL here per UV vendor is 733.64
SHARP-EDGE ENTRANCE	DIP	79.86	140	CL 52	8.0	9:050	8.390	0.46			0.50	0.0017	0.0329	732.0329	(depends on elevation of housekeeping pad and this elevation is based on 290kgpd)
															Elevation of HGl, on US end of Trojan UV per UV vendor. Assumes 3°
		l	1		1			I			l		l .		housekeeping pad which will require the 90 deg vertical bend be location outside
		l	1		1			I			l		l .	734.1500	the concrete pad footprint for maintenance of the FL-FL connection
EXIT LOSS	DIP	79.86	130	CL 52	8.0	9,050	8.390	0.46			1.00	0.0033	0.0033	734.1533	
PIPE	DIP	79.86	140	CL 52	8.0	9,050	8.390	0.46	2.50	0.0003	l		0.0036	734.1536	pipe just upstream of UV unit
90° BEND	DIP	79.86	140	CI, 52	8.0	9,050	8.390	0.46			0.30	0.0010	0.0046	734.1546	90 deg vertical bend US of UV above slab
PLUG VALVE	DIP	79.86	140	CL 52	8.0	9:050	8.390	0.46			0.50	0.0017	0.0063	734.1563	90 deg vertical bend US of UV above slab
PIPE	DIP	79.86	140	CI, 52	8.0	9,050	8.390	0.46	7.50	0.0009	l		0.0072	734.1572	vertical pipe length, to be verified with pdf plan set
90° BEND	DIP	79.86	140	CL 52	8.0	9,050	8.390	0.46			0,30	0.0010	0.0082	734.1582	90 deg vertical bend US of UV under slab
PIPE	DIP	79.86	140	CL 52	8.0	9,050	8.390	0.46	54.00	0.0064			0.0146	734.1646	
45° BEND	DIP	79.86	140	CL 52	8.0	9,050	8.390	0.46			0.15	0.0005	0.0151	734.1651	
PIPE	DIP	79.86	140	CL 52	8.0	9,050	8.390	0.46	3.00	0.0004			0.0154	734.1654	pipe DS of mag meter/flow splitter vault
45° BEND	DIP	79.86	140	CI. 52	8.0	9,050	8.390	0.46		1	0.15	0.0005	0.0159	734.1659	price as a range measures opening result
PIPE	DIP	79.86	140	CI. 52	8.0	9,050	8.390	0.46	1.00	0.0001	0.15	ocasoc:	0.0161	734.1661	pipe DS of plug valve in vault - length to be confirmed with plan set pdf
PLUG VALVE	DIP	79.86	140	CI. 52	8.0	9,050	8.390	0.46	1.00	0.0001	0.50	0.0017	0.0177	734.1677	pipe 120 or ping varve in value - length to be continued with plan see put
PIPE	DIP	79.86	140	CI. 52	8.0	9,050	8.390	0.46	3.00	0.0004	0.50	0.0017	0.0177	734.1677	ates TW of also reducts south. I much to be confirmed with also set will
TEE - BRANCH FLOW	DIP	79.86	140	CI. 52	8.0	9,050	8.390	0.46	3.00	0.0004	1.80	0.0060			pipe US of plug valve in vault - length to be confirmed with plan set pdf
TEE-BRANCH FLOW	DIP	79.86	140	C.1. 52	8.0	9,000	8.390	0.46			1.80	0.0060	0.0241	734.1741	WYE fitting at connection to existing 8" serving as UV bypass
1		l	1		1			1			l		l .		
1		l	1		1			1			l		l .		run through 8-inch mag meter size which appears to meet 10% fill requirements -
1		l	1		1			1			l		l .		see: "W/\Proj\20000/20114\20114.003\Documents\DesignCalcs\Mag meter\check of
PIPE	DIP	79.86	140	CL 52	8.0	9.050	8.390	0.46	10.00	0.0012	l		0.0253	734.1753	8-inch mag meter for min 10 percent full.xlsx"
TEE - LINE FLOW	DIP	79.86	140	CL 52	8.0	9.050	8.390	0.46			0.30	0.0010	0.0263	734.1763	
PIPE	DIP	79.86	140	CL 52	8.0	9.050	8.390	0.46	17.00	0.0020	l		0.0283	734.1783	
TEE - LINE FLOW	DIP	79.86	140	CL 52	8.0	9.050	8.390	0.46			0.30	0.0010	0.0293	734.1793	
PIPE	DIP	79.86	140	CL 52	8.0	9.050	8.390	0.46	1.50	0.0002	I		0.0295	734.1795	
PLUG VALVE	DIP	79.86	140	CL 52	8.0	9.050	8.390	0.46	I		0.50	0.0017	0.0311	734.1811	
PIPE	DIP	79.86	140	CL 52	8.0	9.050	8.390	0.46	29.50	0.0035	1	1	0.0346	734.1846	
45° BEND	DIP	79.86	140	CL 52	8.0	9.050	8.390	0.46			0.15	0.0005	0.0351	734.1851	
PIPE	DIP	79.86	140	CL 52	8.0	9,050	8.390	0.46	1.00	0.0001	1	· ·	0.0352	734.1852	
1					1			1			I	l			HGI, in lagoon cell 3 outfall structure downstream of weir gate. Anything greater
		l		l	1			I	l		I				than WSE shot during survey @ 734.60 suggests that we need to lower the UV p-
SHARP-EDGE ENTRANCE	DIP	79.86	140	CL 52	8.0	9,050	8.390	0.46	l		0.50	0.0017	0.0369	734.1869	trap or internal weir. 2 ft freeboard is 734.79.
Parama apparentable	Dil.	77.00	2.00	00.00	0.0	2,000	0.050	0.00		1	0.50	0.0017	0.0000	704.1009	and an installation of the second of the sec

Braymer, MO WWTF HYDRAULIC CALCULATIONS FOR max month ADF (permitted design flow) (used for Triplepoints Basis of Design)

WWTF outfall from lagoon cell 3 through mag meter and UV to WWTF outfall 145,000 (max month/permitted design flow) 100.69 0.15

DESCRIPTION: FLOW(GPDJ: FLOW(GPM)· FLOW(MGD):

TO STATE AND ADDRESS OF THE PARTY OF THE PARTY.		FLOW	C	PIPE	NOM, DIA	OUT, DIA	ID	VELOCITY	LENGTH	PIPE	K	FIT. LOSS	CUM. LOSS	HGL	
ELEMENT	MATERIAL	(GPM)	FACTOR	CLASS	(IN)	(IN)	(IN)	(FPS)	(FT)	LOSS	FACTOR	(FT)	(FT)	(FT)	COMMENTS
Sayamho charac-mapasayamho char	Cappertant de proposition	SUSPENIO	50,2710	Square to state	Search be s	Course to the fi	20,72,00	September C	CHARACTER OF	Sarring	CALL ST. DOS	realized this is	CALLY THE R	COLUMN TO SERVICE	
	1	'	1		1			1							
					1			1							
Upstream from outfall through mag	meter through UV eq	uinment to c	ell 3		1	l .		l			l			732.0000	100 year flood elevation
SWING CHECK VALVE	DIP	100.69	140	CL 52	8.0	9,050	8.390	0.58			2.20	0.0117	0.0117	732,0117	
EXIT LOSS	DIP	100.69	140	CL 52	8.0	9,050	8.390	0.58			1.00	0.0053	0.0170	732,0170	
PIPE	DIP	100.69	140	CL 52	8.0	9,050	8.390	0.58	25.50	0.0046	1.10		0.0216	732,0216	
TEE - BRANCH FLOW	DIP	100.69	140	CL 52	8.0	9,050	8.390	0.58			1.80	0.0095	0.0311	732,0311	tee downstream of UV
PIPE	DIP	100.69	140	CL 52	8.0	9,050	8.390	0.58	11.50	0.0021			0.0332	732,0332	
45° BEND	DIP	100.69	140	CL 52	8.0	9,050	8.390	0.58			0.15	0.0008	0.0340	732,0340	
PIPE	DIP	100.69	140	CI, 52	8.0	9,050	8.390	0.58	40.50	0.0074	l		0.0414	732.0414	
90° BEND	DIP	100.69	140	CL 52	8.0	9,050	8.390	0.58			0.30	0.0016	0.0430	732.0430	90 deg vertical bend DS of UV under slab
PIPE	DIP	100.69	140	CL 52	8.0	9,050	8.390	0.58	7.50	0.0014	l		0.0443	732.0443	vertical pipe length, to be verified with pdf plan set
90° BEND	DIP	100.69	140	CL 52	8.0	9,050	8.390	0.58			0.30	0.0016	0.0459	732.0459	90 deg vertical bend DS of UV above slab
PLUG VALVE	DIP	100.69	140	CL 52	8.0	9,050	8.390	0.58			0.50	0.0027	0.0486	732.0486	90 deg vertical bend DS of UV above slab
PIPE	DIP	100.69	140	CL 52	8.0	9,050	8.390	0.58	2.50	0.0005	l		0.0490	732.0490	
					1	l .		l			l				
					1	l .		l			l				HGL just DS of Trojan UV internal weir, max HGL here per UV vendor is 733.64
SHARP-EDGE ENTRANCE	DIP	100.69	140	CL 52	8.0	9,050	8.390	0.58			0.50	0.0027	0.0517	732.0517	(depends on elevation of housekeeping pad and this elevation is based on 290kgpd)
															Elevation of HGL on US end of Trojan UV per UV vendor. Assumes 3"
					1	l .		l			l				housekeeping pad which will require the 90 deg vertical bend be location outside
					1	l .		l			l			734.1500	the concrete pad footprint for maintenance of the FL-FL connection
EXIT LOSS	DIP	100.69	130	CL 52	8.0	9,050	8.390	0.58			1.00	0.0053	0.0053	734.1553	
PIPE	DIP	100.69	140	CL 52	8.0	9,050	8.390	0.58	2.50	0.0005	l		0.0058	734.1556	pipe just upstream of UV unit
90° BEND	DIP	100.69	140	CL 52	8.0	9,050	8.390	0.58			0.30	0.0016	0.0073	734.1573	90 deg vertical bend US of UV above slab
PLUG VALVE	DIP	100.69	140	CI. 52	8.0	9,050	8.390	0.58			0.50	0.0027	0.0100	734.1600	90 deg vertical bend US of UV above slab
PIPE	DIP	100.69	140	CL 52	8.0	9,050	8.390	0.58	7.50	0.0014	l		0.0114	734.1614	vertical pipe length, to be verified with pdf plan set
90° BEND	DIP	100.69	140	CL 52	8.0	9,050	8.390	0.58			0.30	0.0016	0.0130	734.1630	90 deg vertical bend US of UV under slab
PIPE	DIP	100.69	140	CL 52	8.0	9,050	8.390	0.58	54.00	0.0098	l		0.0228	734.1728	
45° BEND	DIP	100.69	140	CL 52	8.0	9.050	8.390	0.58			0.15	0.0008	0.0236	734.1736	
PIPE	DIP	100.69	140	CL 52	8.0	9.050	8.390	0.58	3.00	0.0005			0.0241	734.1741	pipe DS of mag meter/flow splitter vault
45° BEND	DIP	100.69	140	CI. 52	8.0	9,050	8.390	0.58			0.15	0.0008	0.0249	734.1749	
PIPE	DIP	100.69	140	CI. 52	8.0	9.030	8.390	0.58	1.00	0.0002			0.0251	734.1751	pipe DS of plug valve in vault - length to be confirmed with plan set pdf
PLUG VALVE	DIP	100.69	140	CI, 52	8.0	9.050	8.390	0.58			0.50	0.0027	0.0277	734.1777	
PIPE	DIP	100.69	140	CI, 52	8.0	9.030	8.390	0.58	3.00	0.0005			0.0283	734.1783	pipe US of plug valve in vault - length to be confirmed with plan set pdf
TEE - BRANCH FLOW	DIP	100.69	140	CI, 52	8.0	9.050	8.390	0.58			1.80	0.0095	0.0378	734.1878	WYE fitting at connection to existing 8" serving as UV bypass
					1	l .		l			l				
					1	l .		l			l				run through 8-inch mag meter size which appears to meet 10% fill requirements
perper	7379	100.60	140	CI, 52		0.050	9 300	0.50	10.00	0.0016	1		0.0396	704 100-	see: "W/Proj/20000/20114/20114.003/Documents/DesignCalcs/Mag meter/check of
PIPE	DIP	100.69	140	CL 52 CL 52	8.0 8.0	9.050 9.050	8.390 8.390	0.58 0.58	10.00	0.0018	0.30	0.0016	0.0396	734.1896 734.1912	8-inch mag meter for min 10 percent full.xlsx"
TEE - LINE FLOW	DIP			CL 52 CL 52	8.0	21000	8.390	0.58			0.30	0.0016			
PIPE	DIP	100.69	140		8.0	9.050			17.00	0.0031			0.0443	734.1943	
TEE - LINE FLOW		100.69	140	CL 52		9.050	8.390	0.58		0.0000	0.30	0.0016	0.0459	734.1959	
PIPE	DIP DIP	100.69	140 140	CL 52 CL 52	8.0 8.0	9.050	8.390 8.390	0.58	1.50	0.0003	0.50	0.0027	0.0462	734.1962	
PLUG VALVE PIPE	DIP	100.69	140	CL 52 CL 52		9.050	8.390	0.58	29.50	0.0054	0.50	0.0027	0.0488	734.1988	
		201.03			8.0				29.50	0.0054	0.45	0.0000		734.2042	
45° BEND	DIP	100.69	140	CL 52	8.0	9,050 9,050	8.390	0.58	1.00	0.0000	0.15	0.0008	0.0550	734.2050	
PIPE	DIP	100.69	140	CL 52	8.0	9,050	8.390	0.58	1.00	0.0002	1		0.0552	734.2052	THE TAIL AND
		1			1			1			1				HGL in lagoon cell 3 outfall structure downstream of weir gate. Anything greater
SHARP-EDGE ENTRANCE	DIP	100.69	140	CL 52	8.0	9.050	e 200°	0.58			0.50	0.0027	0.0578	724 2070	than WSE shot during survey @ 734.60 suggests that we need to lower the UV p- trap or internal weir. 2 ft freeboard is 734.79.
SHARP-EUGE ENTRANCE	DU	100.69	140	CEBZ	8.0	9,050	8.390	0.58	I	l	0.50	0.0027	0.0578	734.2078	trap or internal weir. 2 tt treeboard is 754.79.

WWTF outfall from lagoon cell 3 through mag meter and UV to WWTF outfall 162,085 (peak outflow from cell 2 per HEC-HMS-rip run scenario) 112.56 016

DESCRIPTION: FLOW(GPDJ: FLOW(GPM)· FLOW(MGD):

		FLOW	С	PIPE	NOM. DIA	OUT. DIA	ID	VELOCITY	LENGTH	PIPE	K	FIT. LOSS	CUM. LOSS	HGL	
ELEMENT	MATERIAL.	(GPM)	FACTOR	CLASS	(IN)	(IN)	(IN)	(FPS)	(FT)	LOSS	FACTOR	(FT)	(FT)	(FT)	COMMENTS
		and a second contract of													
					l .										
					l .										100 year flood elevation
Upstream from outfall through mag r SWING CHECK VALVE	neter through UV eq	112.56	140	CL 52	8.0	9,050	8.390	0,65			2.20	0.0146	0.0146	732.0000 732.0146	100 year flood elevation
EXIT LOSS	DIP	112.56	140	CL 52	8.0	9,050	8.390	0.65			1.00	0.0066	0.0212	732,0212	
PIPE	DIP	112.56	140	CL 52	8.0	9,050	8.390	0.65	25.50	0.0057	1.00	0.0000	0.0269	732,0269	
TEE - BRANCH FLOW	DIP	112.56	140	CL 52	8.0	9,050	8.390	0.65	20.00	0.000.7	1.80	0.0119	0.0388	732,0388	tee downstream of UV
PIPE	DIP	112.56	140	CL 52	8.0	9,050	8.390	0.65	11.50	0.0026			0.0414	732.0414	
45° BEND	DIP	112.56	140	CL 52	8.0	9:050	8.390	0.65			0.15	0.0010	0.0424	732.0424	
PIPE	DIP	112.56	140	CL 52	8.0	9,050	8.390	0.65	40.50	0.0090			0.0514	732.0514	
90° BEND	DIP	112.56	140	CL 52	8.0	9:050	8.390	0.65			0.30	0.0020	0.0534	732.0534	90 deg vertical bend DS of UV under slab
PIPE	DIP	112.56	140	CL 52	8.0	9,050	8.390	0.65	7.50	0.0017			0.0551	732,0551	vertical pipe length, to be verified with pdf plan set
90° BEND	DIP	112.56	140	CL 52	8.0	9.050	8.390	0.65			0.30	0.0020	0.0571	732.0571	90 deg vertical bend DS of UV above slab
PLUG VALVE	DIP	112.56	140	CL 52	8.0	9,050	8.390	0.65			0.50	0.0033	0.0604	732,0604	90 deg vertical bend DS of UV above slab
PIPE	DIP	112.56	140	CL 52	8.0	9,050	8.390	0.65	2.50	0.0006			0.0610	732.0610	
					I			l							THOSE AND AND A TOTAL OF THE PARTY.
															HGL just DS of Trojan UV internal weir, max HGL here per UV vendor is 733.64
SHARP-EDGE ENTRANCE	DIP	112.56	140	CL 52	8.0	9,050	8.390	0.65			0.50	0.0033	0.0643	732.0643	(depends on elevation of housekeeping pad and this elevation is based on 290kgpd)
					I	l		l							Elevation of HGL on US end of Trojan UV per UV vendor. Assumes 3"
					I	l		l						734.1500	housekeeping pad which will require the 90 deg vertical bend be location outside the concrete pad footprint for maintenance of the FL-FL connection
EXIT LOSS	DIP	112.56	130	CL 52	8.0	9,050	8.390	0,65			1.00	0.0066	0.0066	734,1566	the contrete pad tootprincipe maintenance of the FL-FL connection
PIPE	DIP	112.56	140	CL 52	8.0	9,050	8.390	0.65	2.50	0.0006	1.00	0.0000	0.0072	734.1572	pipe just upstream of UV unit
90° BEND	DIP	112.56	140	CL 52	8.0	9,050	8,390	0.65	250	0.0000	0.30	0.0020	0.0092	734.1592	90 deg vertical bend US of UV above slab
PLUG VALVE	DIP	112.56	140	CL 52	8.0	9,050	8.390	0.65			0.50	0.0033	0.0125	734.1625	90 deg vertical bend US of UV above slab
PIPE	DIP	112.56	140	CL 52	8.0	9,050	8.390	0,65	7.50	0.0017			0.0142	734.1642	vertical pipe length, to be verified with pdf plan set
90° BEND	DIP	112.56	140	CL 52	8.0	9,050	8.390	0.65			0,30	0.0020	0.0161	734.1661	90 deg vertical bend US of UV under slab
PIPE	DIP	112.56	140	CL 52	8.0	9,050	8.390	0.65	54.00	0.0121			0.0282	734.1782	
45° BEND	DIP	112.56	140	CL 52	8.0	9,050	8.390	0.65			0.15	0.0010	0.0292	734.1792	
PIPE	DIP	112.56	140	CL 52	8.0	9,050	8.390	0.65	3.00	0.0007			0.0299	734.1799	pipe DS of mag meter/flow splitter vault
45° BEND	DIP	112.56	140	CI.52	8.0	9,050	8.390	0.65			0.15	0.0010	0.0309	734.1809	
PIPE	DIP	112.56	140	CI, 52	8.0	9.050	8.390	0.65	1.00	0.0002			0.0311	734.1811	pipe DS of plug valve in vault - length to be confirmed with plan set pdf
PLUG VALVE	DIP	112.56	140	CI. 52	8.0	9,050	8.390	0.65			0.50	0.0033	0.0344	734.1844	
PIPE	DIP	112.56	140	CI. 52	8.0	9:050	8.390	0.65	3.00	0.0007			0.0351	734.1851	pipe US of plug valve in vault - length to be confirmed with plan set pdf
TEE - BRANCH FLOW	DIP	112.56	140	CI. 52	8.0	9.050	8.390	0.65			1.80	0.0119	0.0470	734.1970	WYE fitting at connection to existing 8" serving as UV bypass
					I	l		l							
					I	l		l							run through 8-inch mag meter size which appears to meet 10% fill requirements - see: "W:Proj\2000/2011420114.003\Documents\DesignCalcs\Mag meter\check of
PIPE	DIP	112.56	140	CI, 52	8.0	9.050	8.390	0.65	10.00	0.0022			0.0492	734.1992	8-inch mag meter for min 10 percent full.xlsx*
TEE - LINE FLOW	DIP	112.56	140	CL 52	8.0	9.050	8.390	0.65	10.00	0.0022	0.30	0.0020	0.0492	734.2012	o-trich mag meter for min to percent function
PIPE	DIP	112.56	140	CL 52	8.0	9,050	8.390	0.65	17.00	0.0038	0.50	0.0020	0.0512	734.2050	
TEE - LINE FLOW	DIP	112.56	140	CL 52	8.0	9.050	8.390	0.65	17.00	0.00.00	0.30	0.0020	0.0570	734.2070	
PIPE	DIP	112.56	140	CL 52	8.0	9,050	8.390	0.65	1.50	0.0003	0.00	0.0020	0.0573	734,2073	
PLUG VALVE	DIP	112.56	140	CI, 52	8.0	9.050	8.390	0.65			0.50	0.0033	0.0606	734.2106	
PIPE	DIP	112.56	140	CL 52	8.0	9:050	8.390	0.65	29.50	0.0066			0.0672	734.2172	
45° BEND	DIP	112.56	140	CL 52	8.0	9:050	8.390	0.65			0.15	0.0010	0.0682	734.2182	
PIPE	DIP	112.56	140	CL 52	8.0	9:050	8.390	0.65	1.00	0.0002			0.0685	734.2185	
								l							HGL in lagoon cell 3 outfall structure downstream of weir gate. Anything greater
								l							than WSE shot during survey @ 734.60 suggests that we need to lower the UV p-
SHARP-EDGE ENTRANCE	DIP	112.56	140	CL 52	8.0	9:050	8.390	0.65			0.50	0.0033	0.0718	734.2218	trap or internal weir. 2 ft freeboard is 734.79.

Braymer, MO WWTF HYDRAULIC CALCULATIONS FOR UV Unit Capacity Flow (for information only)

WWTF outfall from lagoon cell 3 through mag meter and UV to WWTF outfall $\frac{290,000}{290,000}$ (Capacity of the UV unit) 0.29

DESCRIPTION: FLOW(GPDJ: FLOW(GPM): FLOW(MGD):

		FLOW	C	PIPE	NOM, DIA	OUT, DIA	ID	VELOCITY	LENGTH	PIPE	K	FIT. LOSS	CUM. LOSS	HGL	
ELEMENT	MATERIAL.	(GPM)	FACTOR	CLASS	(IN)	(IN)	(IN)	(FPS)	(FT)	LOSS	FACTOR	(FT)	(FT)	(FT)	COMMENTS
					1										
Upstream from outfall through mag i		i	-11 9		1									732,9000	100 year flood elevation
SWING CHECK VALVE	DOP	201.39	140	CL 52	8.0	9,050	8,390	1,17			2.20	0.0467	0.0467	732,0467	no year nooc elevation
EXIT LOSS	DIP	201.39	140	CL 52	8.0	9,050	8.390	1.17			1.00	0.0212	0.0679	732,0679	
PIPE	DIP	201.39	140	CL 52	8.0	9,050	8.390	1.17	25.50	0.0167	1.00	0.0212	0.0846	732,0846	
TEE - BRANCH FLOW	DIP	201.39	140	CL 52	8.0	9,050	8.390	1.17	2000		1.80	0.0382	0.1228	732.1228	tee downstream of UV
PIPE	DIP	201.39	140	CI, 52	8.0	9,050	8.390	1.17	11.50	0.0075		1.01-32	0.1303	732.1303	
45° BEND	DIP	201.39	140	CL 52	8.0	9,050	8.390	1.17			0.15	0.0032	0.1335	732.1335	
PIPE	DIP	201.39	140	CL 52	8.0	9,050	8.390	1.17	40.50	0.0265			0.1600	732.1600	
90° BEND	DIP	201.39	140	CI, 52	8.0	9.050	8.390	1.17			0.30	0.0064	0.1664	732.1664	90 deg vertical bend DS of UV under slab
PIPE	DIP	201.39	140	CL 52	8.0	9,050	8.390	1.17	7.50	0.0049			0.1713	732.1713	vertical pipe length, to be verified with pdf plan set
90° BEND	DIP	201.39	140	CL 52	8.0	9,050	8.390	1.17			0.30	0.0064	0.1776	732.1776	90 deg vertical bend DS of UV above slab
PLUG VALVE	DIP	201.39	140	CL 52	8.0	9.050	8.390	1.17			0.50	0.0106	0.1883	732.1883	90 deg vertical bend DS of UV above slab
PIPE	DIP	201.39	140	CL 52	8.0	9,050	8.390	1.17	2.50	0.0016			0.1899	732.1899	
			1		1	l		I							
			1		1	l		I							HGL just DS of Trojan UV internal weir, max HGL here per UV vendor is 733.64
SHARP-EDGE ENTRANCE	DIP	201.39	140	CL 52	8.0	9.050	8.390	1.17			0.50	0.0106	0.2005	732.2005	(depends on elevation of housekeeping pad and this elevation is based on 290kgpd)
															Elevation of HGl, on US end of Trojan UV per UV vendor. Assumes 3"
			1		1	l		I							housekeeping pad which will require the 90 deg vertical bend be location outside
			1		1	l		I						734.1500	the concrete pad footprint for maintenance of the FL-FL connection
EXIT LOSS	DIP	201.39	130	CL 52	8.0	9,050	8.390	1.17			1.00	0.0212	0.0212	734.1712	
PIPE	DIP	201.39	140	CI, 52	8.0	9,050	8.390	1.17	2.50	0.0016			0.0228	734.1728	pipe just upstream of UV unit
90° BEND	DIP	201.39	140	CI, 52	8.0	9,050	8.390	1.17			0.30	0.0064	0.0292	734.1792	90 deg vertical bend US of UV above slab
PLUG VALVE	DIP	201.39	140	CI. 52	8.0	9.050	8.390	1.17			0.50	0.0106	0.0398	734.1898	90 deg vertical bend US of UV above slab
PIPE	DIP	201.39	140	CI, 52	8.0	9.050	8.390	1.17	7.50	0.0049			0.0447	734.1947	vertical pipe length, to be verified with pdf plan set
90° BEND	DIP	201.39	140	CL 52	8.0	9,050	8.390	1.17			0.30	0.0064	0.0511	734.2011	90 deg vertical bend US of UV under slab
PIPE	DIP	201.39	140	CL 52	8.0	9.050	8.390	1.17	54.00	0.0354			0.0865	734.2365	
45° BEND	DIP	201.39	140	CL 52	8.0	9.050	8.390	1.17			0.15	0.0032	0.0896	734.2396	
PIPE	DIP	201.39	140	CL 52	8.0	9,050	8.390	1.17	3.00	0.0020			0.0916	734.2416	pipe DS of mag meter/flow splitter vault
45° BEND	DIP	201.39	140	CI. 52	8.0	9.030	8.390	1.17			0.15	0.0032	0.0948	734.2448	
PIPE	DIP	201.39	140	CI. 52	8.0	9.030	8.390	1.17	1.00	0.0007			0.0955	734.2455	pipe DS of plug valve in vault - length to be confirmed with plan set pdf
PLUG VALVE	DIP	201.39	140	CI. 52	8.0	9.050	8.390	1.17			0.50	0.0106	0.1061	734.2561	
PIPE	DIP	201.39	140	CI. 52	8.0	9.030	8.390	1.17	3.00	0.0020			0.1080	734.2580	pipe US of plug valve in vault - length to be confirmed with plan set pdf
TEE - BRANCH FLOW	DIP	201.39	140	CI. 52	8.0	9.050	8.390	1.17			1.80	0.0382	0.1462	734.2962	WYF. fitting at connection to existing 8" serving as UV bypass
			1		1			I							
			1		1	l		I							run through 8-inch mag meter size which appears to meet 10% fill requirements - see: "W:\Proj\2000\20114\20114.003\Documents\DesignCalcs\Mag meter\check of
PIPE	DIP	201.39	140	CI. 52	8.0	9.050	8.390	1.17	10.00	0.0066			0.1528	734.3028	8-inch mag meter for min 10 percent full also"
TEE - LINE FLOW	DIP	201.39	140	CL 52 CL 52	8.0	9.050	8.390	1.17	10.00	0.0066	0.30	0.0064	0.1528	734.3091	o-tach mag meter for man to percent runtansx
PIPE	DIP	201.39	140	CL 52	8.0	9.050	8.390	1.17	17.00	0.0111	0.50	0.0064	0.1703	734.3203	
TEE - LINE FLOW	DIP	201.39	140	CL 52	8.0	9.050	8.390	1.17	17.00	0.0111	0.30	0.0064	0.1766	734.3266	
PIPE	DIP	201.39	140	CL 52	8.0	9.050	8.390	1.17	1.50	0.0010	0.50	0.0064	0.1766	734.3276	
PLUG VALVE	DIP	201.39	140	CL 52	8.0	9.050	8.390	1.17	1.30	0.0010	0.50	0.0106	0.1776	734.32/6	
PIPE	DIP	201.39	140	CL 52	8.0	9.050	8.390	1.17	29.50	0.0193	0.50	0.0100	0.2075	734.3575	
45° BEND	DIP	201.39	140	CL 52	8.0	9.050	8.390	1.17	29.30	0.0/193	0.15	0.0032	0.2107	734.3607	
PIPE	DIP	201.39	140	CL 52	8.0	9.050	8.390	1.17	1.00	0.0007	0.13	0.0002	0.2107	734.3614	
r	Dil	201.39	1.00	06.02	0.0	9000	0.5%	1.17	1.00	0.0007			0.4114	20000000	HGL in lagoon cell 3 outfall structure downstream of weir gate. Anything greater
					1			I							than WSE shot during survey @ 734.60 suggests that we need to lower the UV p-
SHARP-EDGE ENTRANCE	DIP	201.39	140	CL 52	8.0	9.050	8.390	1.17			0.50	0.0106	0.2220	734.3720	trap or internal weir. 2 ft freeboard is 734.79.
Parish recorded and the control of t	50	201.09	240	25.05	3.0	2,000	0.090	1.11			0.00	0.0100	1.220	2020720	and as a second

Lagoon cell2 through MBBR to lagoon cell 3

115,000 (peak outflow from cell 2 with 4inch pipe per HEC-HMS -rip run scenario)
7986
012

DESCRIPTION: FLOW(GPD): FLOW(GPM): FLOW(MGD):

DITLOS	ELEMENT	MATERIAL	FLOW	C	PIPE	NOM. DIA	OUT. DIA	ID	VELOCITY	LENGTH	PIPE	K	FIT. LOSS	CUM. LOSS	HGL	COMMENTS
DITLOS		egminyaha.	(GPM)	FACTOR	CLASS	(IN)	(LN)	(IN)	(FPS)	(F1)	1055	FACTOR	(F1)	(F1)	(F1)	
DITLOS																
Property 10																ELEVATION OVER EXISTING FLOW CONTROL WEIR (LAGOON CELL 3 WSE)
Part	EXIT LOSS											1.00	0.0106			
Per										31.50	0.0153					
The Lambar Class												0.50	0.0053			
Part Dig										2.50	0.0012	0.70	0.0000			
## PRINCH 197 7946 140 CL.32 4.0 4.00 6.20										9.50	0.0017	0.30	0.0032			
Part Dip										5.50	0.0017	0.15	0.0016			horizontal bend
SPEND DIP 79.66 140 CL.32 6.3 6.90									911111	17.00	0.0082	,,,,,,	0.0010			
EDUCICE PIPE	45° BEND											0.15	0.0016			horizontal bend
Per	PIPE	DIP	79.86	140	CL 52	6.0	6.900	6.280	0.83	10.00	0.0048			0.0536	735.1936	
PRE	REDUCER	DIP	79.86	140	CL 52	6.0	6.900	6.280	0.83			0.20	0.0021	0.0557	735.1957	
Property	PIPE									3.50	0.0004					
EXT LOSS DIF 79.86 140 CL 52 8.0 9.00 8.390 0.66 1.00 0.0003 78.5200 78												0.30	0:0010			
Details Details Details Details Page Details	PIPE	DIP	79.86	140	CL 52	8.0	9.050	8.390	0.46	1.50	0.0002			0.0573	735.1973	vertical pipe to weir trough
Details Details Details Details Page Details																THE CONTRACTOR OF THE CONTRACT
PETE - RANCH FLOW	EVELT ODG	DID	70.04	140	CT EX		0.050	0.000	0.44			1.00	0.0000	0.0030		HGL per weir trough cates
THE - REACH FLOW DIF 79.86 140 CL.52 8.0 9.980 8.990 0.46 1.00 0.0004 1.00 0.0004 1.00 0.0006 75.5208 0.0002 7										4.00	0.0005	100	0.0000			
Property										9,00	0.0000	1.80	0.0060			
RUBBER FLAPFER CHECK V < 6 FPS PUP DIP 79.86 140 CL.52 8.0 9.050 8.390 0.46 1.0 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.0004 0.0007 77.1217 FLACE HOLDER FOR MBBR RETENTION SLIVE HEADLOSSIS - THIS WAS PULL DEFEND in braditions in pulled from Auchild bradients preadded that was built from North Public Properties of the bradients in pulled from Auchild bradients preadded that was built from North Public Properties of the bradients in pulled from Auchild bradients preadded that was built from North Public Properties of the bradients in pulled from Auchild bradients preadded that was built from North Public Properties of the bradients in pulled from Auchild bradients preadded that was built from North Public Properties of the bradients in pulled from Auchild bradients preadded that was built from North Public Properties of the bradients in pulled from Auchild bradients preadded that was built from North Public Properties of the Bradients in Public Properties of the Auchild bradients in pulled from Auchild bradients preadded that was built from North Public Properties of the Auchild bradients in pulled from Auchild bradients preadded that was built from North Public Properties of the Auchild bradients in pulled from Auchild bradients preadded that was built from North Public Properties of the Auchild bradients preadded that was built from North Public Properties of the Auchild bradients preadded that was built from North Public Properties of the Auchild Bradients in Public Properties of the Auchild Bradients Bradients Bradients of the Auchild Bradients Properties										3.00	0.0004	*****	011000			(common wall)
RUBBER FLAPFER CIECK V < 6 FPS PIPE DIP 79.86 140 CL 52 8.0 9.85 8.79 8.79 8.79 8.79 8.79 8.79 8.79 8.79							,,,,,,									PLACE HOLDER FOR MBBR MEDIA RETENTION SEIVE HEADLOSSES - THIS
RUBBER FLAPTER CHECK: V < 6 FPS PPE DIP 79.6 140 CL 52 8.0 9.050 8.590 0.66 1.0 0.0002 0.0003 0.0002 0.0003 0.0000 0.0003 0.000				1			I						0.0833	0.0935	737.0135	WAS PULLED FROM CLARKSBURG
PPE DIP 79.66 140 CL 52 8.0 9.050 8.360 0.66 1.30 0.0002 F 0.6633 0.2670 737.2570 (common wall) RUBBER FLAFFER CHECK V < 6 IPS PPE DIP 79.86 140 CL 52 8.0 9.050 8.360 0.66 0.6650 0.6650 0.0007 F 0.0002																this headloss is pulled from duckbill headloss spreadsheet that was built from
RUBBER FLAPFER CHECK V < 6 FTS PIPE DIF 79.86 140 CL.52 8.0 9.850 8.390 0.66 5.00 0.000 0.300 0.000 0.3994 773.1370 0.3994 0.3994 773.1370 0.3994 773.1370 0.3994 773.1370 0.3994 773.1370 0.3994 0.3994 773.1370 0.3994 773.1370 0.3994 773.1370 0.3994 773.1370 0.3994 0.3994 0.3994 773.1370 0.3994 0.3994 0.3994 773.1370 0.3994 773.1370 0.3994 773.1370 0.3994	RUBBER FLAPPER CHECK: V < 6 FPS												0.1100			headlosses provided by vendor - may need to be modified
RUBBER FLAPFER CHECK V < 6 FTS PIPE BURD DIF 79.86 140 CL.52 8.0 9.850 8.360 0.46 140 CL.52 8.0 9.850 0.46 140 0.857 0.850 0.4017 0.3991	PIPE	DIP	79.86	140	CL 52	8.0	9.050	8.390	0.46	1.50	0.0002			0.2037	737.1237	
RUBBER FLAPFER CHECK V < 6 IPS PUPE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 6.30 0.0004 DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 6.30 0.0004 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 6.30 0.0004 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 6.30 0.0007 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 6.30 0.0007 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 6.30 0.0007 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 6.30 0.0007 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 6.30 0.0007 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 6.30 0.0007 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 6.30 0.0007 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 6.30 0.0007 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 6.30 0.0007 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 6.30 0.0007 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 6.30 0.0007 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 6.30 0.0007 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 6.30 0.0007 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 6.30 0.0007 PUPE DIP 99.60 140 CL.52 8.0 9.050 8.390 0.66 6.30 0.0007 PUPE PUP 99.60 PUP ASTM 79.86 120 SDR 26 (60 PS) 6.0 6.650 6.110 0.67 5.00 0.0005 PUP 99.60 PUP ASTM 79.86 120 SDR 26 (60 PS) 6.0 6.650 6.110 0.67 15.00 0.0005 PUP 99.60 PUP ASTM 79.86 120 SDR 26 (60 PS) 6.0 6.650 6.110 0.67 15.00 0.0005 PUP 99.60 PUP ASTM 79.86 120 SDR 26 (60 PS) 6.0 6.650 6.110 0.67 15.00 0.0005 PUP ASTM 79.86 120 SDR 26 (60 PS) 6.0 6.650 6.110 0.67 15.00 0.0005 PUP ASTM 79.86 120 SDR 26 (60 PS) 6.0 6.650 6.110 0.67 15.00 0.0005 PUP ASTM 79.86 120 SDR 26 (60 PS) 6.0 6.650 6.110 0.67 15.00 0.0005 PUP ASTM 79.86 120 SDR 26 (60 PS) 6.0 6.650 6.110 0.67 15.00 0.0005 PUP ASTM 79.86 120 SDR 26 (60 PS) 6.0 6.650 6.110 0.67 15.00 0.0005 PUP ASTM 79.86 120 SDR 26 (60 PS) 6.0 6.650 6.110 0.67 15.00 0.0005 PUP ASTM 79.86 120 SDR 26 (60 PS) 6.0 6.650 6.110 0.67 15.00 0.0005 PUP ASTM 79.86 120 SDR 26 (60 PS) 6.0 6.650 6.110 0.67 15.00 0.0005 PUP ASTM 79.86 120 SDR 26 (60 PS) 6.0 6.050 6.110 0.67 15.00 0.0005 PUP ASTM 79.86 120 SDR 26 (60 PS) 6.0 6.050 6.11																
RUBBER LAPFER CHECK: V < 6 FPS PUPE DIP 79.86 140 CL.52 8.0 9.050 8.360 0.66 0.0007 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.360 0.66 0.0007 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.360 0.66 0.0007 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.360 0.66 0.0007 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.360 0.66 0.0007 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.360 0.66 0.0007 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.360 0.66 0.0007 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.360 0.66 0.0007 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.360 0.66 0.0007 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.360 0.66 0.66 0.0007 PUPE DIP 79.86 140 CL.52 8.0 9.050 8.360 0.66 0.0007 PUPE PUPC STM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.67 0.0007 PUPE PUPC STM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.67 0.0007 PUPE PUPC STM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.67 0.0007 PUPE PUPC STM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.67 0.0007 PUPE PUPC STM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.67 0.0007 PUPE PUPC STM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.67 0.0007 PUPE PUPC STM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.67 0.0007 PUPE PUPC STM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.67 0.0007 PUPC STM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.67 0.0007 PUPC STM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.67 0.0007 PUPC STM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.67 0.0007 PUPC STM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.67 0.0007 PUPC STM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.67 0.0007 PUPC STM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.67 0.0007 PUPC STM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.67 0.0007 PUPC STM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.67 0.0007 PUPC STM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.67 0.0007 PUPC STM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.67 0.0007 PUPC STM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.67 0.0007 PUPC STM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.67 0.0007 PUPC STM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.67 0.0007 PUPC STM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.67 0.0007 PUPC STM 79.86 0.0007 P				1			I						0.0833	0.2870	737.2070	
PIPE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 5.0 0.0004 0.30 0.0010 0.394 77.73.174 (common wall) PIPE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 6.00 0.0007 0.30 0.0010 0.394 77.73.184 vertical pipe in air lift structure PROJECTING ENTRANCE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 6.00 0.0007 0.66 0.0007 77.73.217 vertical pipe in air lift structure PROJECTING ENTRANCE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 6.00 0.0007 0.6007 77.73.217 vertical pipe in air lift structure PROJECTING ENTRANCE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 0.0007 0.66 0.0007 0.0007 77.73.217 vertical pipe in air lift structure PROJECTING ENTRANCE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 0.0007 0.66 0.0007 0.0007 77.73.217 vertical pipe in air lift structure PROJECTING ENTRANCE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 0.0007 0.66 0.0007 0.0007 77.73.217 vertical pipe in air lift structure PROJECTING ENTRANCE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 0.650 0.0007 0.0007 0.0007 0.0007 77.73.217 vertical pipe in air lift structure PROJECTING ENTRANCE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 0.0007 0.0007 0.0007 0.0007 77.73.217 Vertical pipe in air lift structure PROJECTING ENTRANCE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 0.0007 0.0007 0.0007 0.0007 77.73.217 Vertical pipe in air lift structure PROJECTING ENTRANCE DIP 79.86 140 CL.52 8.0 9.050 8.390 0.66 0.0007 0.0007 0.0007 0.0007 77.73.217 Vertical pipe in air lift structure PROJECTING ENTRANCE DIP 79.86 140 CL.52 8.0 9.050 0.0007 0.0007 0.0007 0.0007 77.73.217 Vertical pipe in air lift structure PROJECTING ENTRANCE DIP 79.86 140 CL.52 8.0 9.050 0.0007 0.0007 0.0007 0.0007 77.73.217 Vertical pipe in air lift structure PROJECTING ENTRANCE DIP 0.0007 0	DATE OF THE PARTY													0.000	CONT. 04.000	
Second Dip 79.86 140 CL 52 8.0 9.050 8.360 0.46 6.00 0.0007 0.30 0.0010 0.3984 737.3184 vertical pipe in air lift structure		DIR	70.96	140	CI EN		0.050	0 200	0.46	2.00	0.0004		0.1100			
PROJECTING ENTRANCE DIP 79.86 140 CL.52 8.0 9.80 9.80 8.80 0.46 0.60 0.0007 0.80 0.0007 0.0008										3700	0.0009	030	0.0010			(COTTURNIT WHIL)
PROJECTING ENTRANCE DIP 79.86 140 CL 52 8.0 9.080 8.360 0.46 0.66 0.0027 0.4017 737.3217 HGL IN AIR LIFT VERTICAL OUTFALL PIPING EXTLOSS PVC_ASTM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.87 5.00 0.002 0.019 0.0119 73.0919 PVC_ASTM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.87 5.00 0.002 0.015 0.018 0.018 733.090 PVC_ASTM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.87 0.002 0.0095 0.008 0.008 733.090 PVC_ASTM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.87 0.0095 0.009 0.009 0.0096 733.090 PVC_ASTM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.87 0.0095 0.009 0.0096 0.0097 733.090 PVC_ASTM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.87 0.0095 0.0095 0.009 0.0097 733.090 PVC_ASTM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.87 0.0095 0.0095 0.0099 0.0097 733.090 PVC_ASTM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.87 0.0095 0.0095 0.0099 0.0097 733.090 PVC_ASTM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.87 0.0095 0.0095 0.0099 0.0096 733.3095 (P. Lat 782.96, HGL from true gravity flow is 733.13 PVC_ASTM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.87 0.0095 0.0099 0.0096 0.0099 0.0096 733.3096 (P. Lat 782.96, HGL from true gravity flow is 733.13 PVC_ASTM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.87 0.0095 0.0099 0.0096 0.0099 0.0096 733.3096 (P. Lat 783.86, HGL from true gravity flow is 733.13 PVC_ASTM 79.86 130 SDR 26 (40 PS) 6.0 6.630 6.110 0.87 0.0095 0.0099 0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 0.0099 0.0096 0										6.00	0.0007	0.00	0.0010			vertical nine in air lift atructure
EMTLOSS PVC_ASTM 79.86 130 SDR 26 (460 PSI) 6.0 6.630 6.110 0.87 1.00 0.0119 0.0119 733.0950 FL into addit it at 732.86, HGL from true gravity flow is 733.03 PPE PVC_ASTM 79.86 130 SDR 26 (460 PSI) 6.0 6.630 6.110 0.87 5.00 0.0002 0.15 0.0018 0.0180 733.0940 FL at 732.82, HGL from true gravity flow is 733.05 PPE PVC_ASTM 79.86 130 SDR 26 (460 PSI) 6.0 6.630 6.110 0.87 15.00 0.0095 0.0095 0.0095 733.0940 FL at 732.82, HGL from true gravity flow is 733.05 PL at 732.82, HGL from true gravity flow is 733.05 PPC PVC_ASTM 79.86 130 SDR 26 (400 PSI) 6.0 6.630 6.110 0.87 15.00 0.0095 0.0095 0.0095 733.1097 PPC PVC_ASTM 79.86 130 SDR 26 (400 PSI) 6.0 6.630 6.110 0.87 15.00 0.0095 0.0095 0.0095 0.0095 PL at 732.82, HGL from true gravity flow is 733.05 PL at 732.82, HGL from true gravity flow is 733.05 PL at 732.82, HGL from true gravity flow is 733.05 PL at 732.82, HGL from true gravity flow is 733.05 PPC PVC_ASTM 79.86 130 SDR 26 (400 PSI) 6.0 6.630 6.110 0.87 15.00 0.0095 0.0095 0.0095 0.0095 PL at 732.82, HGL from true gravity flow is 733.13 PL at tranh basket structure 733.03, HGL from true gravity flow is 733.26 PVC_ASTM 79.86 130 SDR 26 (400 PSI) 6.0 6.630 6.110 0.87 15.00 0.0095 0.0095 0.0095 0.0095 0.0095 PL at 732.80 PL at 732.82, HGL from true gravity flow is 733.26 PVC_ASTM 79.86 130 SDR 26 (400 PSI) 6.0 6.630 6.110 0.87 15.00 0.0095 0.0095 0.0095 0.0095 0.0095 PL at 732.82, HGL from true gravity flow is 733.26 PVC_ASTM 79.86 130 SDR 26 (400 PSI) 6.0 6.630 6.110 0.87 15.00 0.0095 0.0095 0.0095 0.0095 0.0095 PL at 732.82, HGL from true gravity flow is 733.00 PVC_ASTM 79.86 130 SDR 26 (400 PSI) 6.0 6.630 6.110 0.87 15.00 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 PVC_ASTM 79.86 130 SDR 26 (400 PSI) 6.0 6.630 6.110 0.87 15.00 0.0095			77330				31000		0.110	0.00				0.0551		The state of the s
EXIT LOSS PVC_ASTM 79.86 130 SDR 26 (640 PSI) 6.0 6.650 6.110 0.87 1.00 0.002 1.00 0.0119 733.0919 PVC_ASTM 79.86 130 SDR 26 (640 PSI) 6.0 6.650 6.110 0.87 0.002 0.15 0.002 0.15 0.0018 733.090 PVC_ASTM 79.86 130 SDR 26 (640 PSI) 6.0 6.650 6.110 0.87 0.002 0.15 0.005 0.008 733.090 PVC_ASTM 79.86 130 SDR 26 (640 PSI) 6.0 6.650 6.110 0.87 0.0095 0.15 0.0095 0.009 0.027 733.1063 PVC_ASTM 79.86 130 SDR 26 (640 PSI) 6.0 6.650 6.110 0.87 0.0095 0.009 0.027 733.107 PVC_ASTM 79.86 130 SDR 26 (640 PSI) 6.0 6.650 6.110 0.87 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 PVC_ASTM 79.86 130 SDR 26 (640 PSI) 6.0 6.650 6.110 0.87 0.0095	PROJECTING ENTRANCE	DIP	79.86	140	CL 52	8.0	9.050	8,390	0.46			0.80	0.0027	0.4017	737.3217	HGL IN AIR LIFT VERTICAL OUTFALL PIPING
PPE PVC_ASTM 79.86 130 SDR 26 (160 PSI) 6.0 6.650 6.110 0.87 5.00 0.0102 0.0150 0.0150 733.0950 1.2 733.0950 1															733,0800	FL into airlift at 732.80, HGL from true gravity flow is 733.03
45° BEND PVC_ASTM 79.86 120 SDR 26 (160 PS) 6.0 6.630 6.110 0.87 15.00 0.018 0.018 0.018 733.094 FL at 732.82, HGL from true gravity flow is 733.05 PVC_ASTM 79.86 120 SDR 26 (160 PS) 6.0 6.630 6.110 0.87 15.00 0.095 0.0095 0.0095 0.0095 733.1003 PVC_ASTM 79.86 120 SDR 26 (160 PS) 6.0 6.630 6.110 0.87 15.00 0.095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 PVC_ASTM 79.86 120 SDR 26 (160 PS) 6.0 6.630 6.110 0.87 27.50 0.0175 0.0095 0.	EXIT LOSS	PVC_ASTM	79.86	130	SDR 26 (160 PSI)	6.0	6.630	6.110	0.87			1.00	0.0119	0.0119	733.0919	
PIPE PVC_ASTM 79.86 130 SDR 26 (160 PSI) 6.0 6.630 6.110 0.87 15.00 0.095 0.0095 0.0009 0.0272 733.1083 732.108	PIPE	PVC_ASTM	79.86		SDR 26 (160 PSI)		6.630	6.110	0.87	5.00	0.0032				733.0950	
22.5° BEND	45° BEND	PVC_ASTM	79.86	130	SDR 26 (160 PSI)	6.0	6.630	6.110	0.87			0.15	0.0018	0.0168	733.0968	FL at 732.82, HGL from true gravity flow is 733.05
PIPE PVC_ASTM 79.86 130 SDR 26 (160 PSI) 6.0 6.630 6.110 0.87 27.50 0.0179 0.50 0.0059 0.0067 733.1247 SHARP-EDGE ENTRANCE PVC_ASTM 79.86 130 SDR 26 (160 PSI) 6.0 6.630 6.110 0.87 0.50 0.0059 0.0059 0.0059 733.306	PIPE	PVC_ASTM	79.86	130	SDR 26 (160 PSI)	6.0	6.630	6.110	0.87	15.00	0.0095			0.0263	733.1063	
SHARP-EDGE ENTRANCE PVC_ASTM 79.86 130 SDR 26 (140 PSI) 6.0 6.630 6.110 0.897 0.50 0.0099 0.0506 733.1306 [FL at tranb basket structure = 733.03, HGL from true gravity flow in 733.26 733.200 CONTROLLED HGL at US end of 6" (HGL in tranh basket structure) 733.000 bottom of tranh basket, the confirmed	22.5° BEND	PVC_ASTM	79.86	130	SDR 26 (160 PSI)	6.0	6.630	6.110	0.87			0.08	0.0009	0.0272	733.1072	FL at 732.90, HGL from true gravity flow is 733.13
733.2600 CONTROLLING HGL at US end of 6' (HGL in trash basket structure) 733.7300 bottom of trash basket, to be confirmed	PIPE	PVC_ASTM	79.86	130	SDR 26 (160 PSI)	6.0	6.630	6.110	0.87	27.50	0.0175			0.0447	733.1247	
733,7300 bottom of trash basket, to be confirmed	SHARP-EDGE ENTRANCE	PVC_ASTM	79.86	130	SDR 26 (160 PSI)	6.0	6.630	6.110	0.87			0.50	0.0059	0.0506		
													4 5005	0.5000		
	TWEET COS	mic cont	70.07		CDD AC (LCC DCD		6.000	6 110					0.5000		734.2300	PLACE HOLDER FOR TRASH BASKET HEADLOSS
	EXIT LOSS PIPE									9.50	0.0000	1,00	0.0119			PL at 754.46, FIGH. from true gravity flow is 754.71
	PLUG VALVE									3.30	0.0022	0.50	0.0053			EL at 734 49, ELGI, from true granity flow is 734 72
	PIPE									31.00	0.0150	0.50	0.0003			
734.8700 CONTROLLING HGL at US end of 6° (HGL at 4° x 6° reducer)			17.00			-		100000	0.00	51.00				0.004		CONTROLLING HGL at US end of 6' (HGL at 4' x 6' reducer)
10F6			,					,					'			1 OF 6

DESCRIPTION: FLOW(GPD): FLOW(GPM): FLOW(MGD): WWTF outfall from lagoon cell 3 through mag meter and UV to WWTF outfall
115,000 (peak outflow from cell 2 with 4inch pipe per HEC-HMS – rip run scenario)
79,86
0.12

ELEMENT	MATERIAL	FLOW (GPM)	C FACTOR	PIPE CLASS	NOM. DIA (IN)	OUT. DIA (IN)	ID (IN)	VELOCITY (FPS)	LENGTH (FT)	PIPE LOSS	K FACTOR	FIT. LOSS (FT)	CUM. LOSS (FT)	HGL (FT)	COMMENTS
REDUCER	DIP	79.86	140	CL 52	4.0	4.800	4.220	1.83			0.20	0.0104	0.0104	734.8804	
PIPE	DIP	79.86	140	CL 52	4.0	4.800	4.220	1.83	2.00	0.0067			0.0171	734.8871	
90° BEND	DIP	79.86	140	CL 52	4.0	4.800	4.220	1.83			0.30	0.0156	0.0328	734.9028	
PIPE	DIP	79.86	140	CL 52	4.0	4.800	4.220	1.83	4.00	0.0134			0.0462	734.9162	VERTICAL PIPE AT INTAKE
PROJECTING ENTRANCE	DIP	79.86	140	CL 52	4.0	4.800	4.220	1.83			0.80	0.0417	0.0879	734.9579	HGL at cell 2 if outlet controlled CELL 2

Lagoon cell 2 through MBBR to lagoon cell 3
162.085 (peak outflow from cell 2 with 4inch pipe per HEC-HMS- rip run scenario) 162,085 112.56 0.16

DESCRIPTION: FLOW(GPD): FLOW(GPM): FLOW(MGD):

	OF THE COLD IN	FLOW	C	PIPE	NOM, DIA	OUT. DIA	ID	VELOCITY	LENGTH	PIPE	K	FIT. LOSS	CUM. LOSS	HGL	
ELEMENT	MATERIAL	(GPM)	FACTOR	CLASS	(IN)	(IN)	(IN)	(FPS)	(FT)	LOSS	FACTOR	(FT)	(FT)	(FT)	COMMENTS
	Surfer have read to print	5-02597-00-02-0	Course this	Suran kn e ran so	ALC: PLAT	Course hore	200000000000000000000000000000000000000	Sale Facilities C	Colpanian i	200200000			Saparan cr	200000000000000000000000000000000000000	Control for the control to the control for the
														735.1900	ELEVATION OVER EXISTING FLOW CONTROL WEIR (LAGOON CELL 3 WSE)
EXIT LOSS	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17			1.00	0.0211	0.0211	735.2111	
PIPE	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17	31.50	0.0288			0.0499	735.2399	
PLUG VALVE	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17			0.50	0.0106	0.0605	735.2505	
PIPE	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17	2.50	0.0023			0.0627	735.2527	
TEE - LINE FLOW	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17			0.30	0.0063	0.0691	735.2591	
PIPE	DIP	112.56	140	CL 52	6.0	6.900	6.280	1,17	3.50	0.0032			0.0723	735.2623	
45° BEND PIPE	DIP	112.56 112.56	140 140	CL 52 CL 52	6.0 6.0	6.900	6.280 6.280	1.17			0.15	0.0032	0.0754	735.2654 735.2810	horizontal bend
45° BEND	DIP	112.56	140	CL 52	6.0	6.900 6.900	6.280	1.17	17.00	0.0155	0.15	0.0032	0.0910		hadanah I had
PIPE	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17	10.00	0.0091	0.15	0.0032	0.1033	735.2841 735.2933	horizontal bend
REDUCER	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17	10.00	0.0091	0.20	0.0042	0.1075	735,2975	
PIPE	DIP	112.56	140	CL 52	8.0	9.050	8.390	0.65	3.50	0.0008	0.20	0,0042	0.1083	735.2983	
90° BEND	DIP	112.56	140	CL 52	8.0	9.050	8.390	0.65	3.30	0.0000	0.30	0.0020	0.1103	735.3003	90 deg bend under weir trough
PIPE	DIP	112.56	140	CL 52	8.0	9.050	8.390	0.65	1.50	0.0003	0.50	0,0000	0.1106	735.3006	vertical pipe to weir trough
		ILLEGO	- 110			7.000	01150	4100	100	0.0000		_	0.2240	1000000	14 minutes and 15 min
														736,9300	HGL per weir trough calcs
EXIT LOSS	DIP	112.56	140	CL 52	8.0	9.050	8.390	0.65		1	1.00	0.0066	0.0066	736.9366	
PIPE	DIP	112.56	140	CL 52	8.0	9.050	8.390	0.65	4.00	0.0009			0.0075	736.9375	
TEE - BRANCH FLOW	DIP	112.56	140	CL 52	8.0	9.050	8.390	0.65			1.80	0.0119	0.0194	736.9494	
PIPE	DIP	112.56	140	CL 52	8.0	9.050	8.390	0.65	3.00	0.0007			0.0201	736.9501	(common wall)
										[PLACE HOLDER FOR MBBR MEDIA RETENTION SEIVE HEADLOSSES - THIS
												0.0833	0.1034	737.0334	WAS PULLED FROM CLARKSBURG
															this headloss is pulled from duckbill headloss spreadsheet that was built from
RUBBER FLAPPER CHECK: V < 6 FPS												0.1600	0.2634	737.1934	headlosses provided by vendor - may need to be modified
PIPE	DIP	112.56	140	CL 52	8.0	9.050	8.390	0.65	1.50	0.0003			0.2638	737.1938	(common wall)
															PLACE HOLDER FOR MBBR RETENTION SEIVE HEADLOSSES - THIS WAS
												0.0833	0.3471	737.2771	PULLED FROM CLARKSBURG
															this headloss is pulled from duckbill headloss spreadsheet that was built from
RUBBER FLAPPER CHECK: V < 6 FPS												0.1600	0.5071	737.4371	headlosses provided by vendor - may need to be modified
PIPE	DIP	112.56	140	CL 52	8.0	9.050	8.390	0.65	3.00	0.0007		0.0000	0.5078	737.4378	(common wall)
90° BEND	DIP DIP	112.56	140 140	CL 52 CL 52	8.0 8.0	9.050	8.390	0.65		0.0013	0.30	0.0020	0.5098	737.4398	and the desires to a to 100 steers to a
PIPE	DIP	112.56	140	CLSZ	8.0	9.050	8.390	0.65	6.00	0.0013			0.5111	737.4411	vertical pipe in air lift structure
PROJECTING ENTRANCE	DIP	112.56	140	CL52	8.0	9.050	8,390	0.65			0.80	0.0053	0.5164	737,4464	HGL IN AIR LIFT VERTICAL OUTFALL PIPING
														733,0800	FL into airlift at 732.80, HGL from true gravity flow is 733.08
EXIT LOSS	PVC_ASTM	112.56	130	SDR 26 (160 PSI)	6.0	6.630	6.110	1.23			1.00	0.0236	0.0236	733.1036	
PIPE	PVC_ASTM	112.56	130	SDR 26 (160 PSI)	6.0	6.630	6.110	1.23	5.00	0.0060			0.0295	733.1095	
45° BEND	PVC_ASTM	112.56	130	SDR 26 (160 PSI)	6.0	6.630	6.110	1.23			0.15	0.0035	0.0331	733.1131	FL at 732.82, HGL from true gravity flow is 733.10
PIPE	PVC_ASTM	112.56	130	SDR 26 (160 PSI)	6.0	6,630	6.110	1.23	15.00	0.0180		1	0.0511	733,1311	
22.5° BEND	PVC_ASTM	112.56	130	SDR 26 (160 PSI)	6.0	6.630	6.110	1.23	15.00	0.0100	0.08	0.0018	0.0528	733.1328	FL at 732.90, HGL from true gravity flow is 733.18
PIPE	PVC_ASTM	112.56	130	SDR 26 (160 PSI)	6.0	6.630	6.110	1.23	27.50	0.0329	0.00	0.0010	0.0858	733.1658	The strategy and a normal state gravity above to rossian
SHARP-EDGE ENTRANCE	PVC_ASTM	112.56	130	SDR 26 (160 PSI)	6.0	6.630	6.110	1.23	2720		0.50	0.0118	0.0975	733,1775	FL at trash basket structure = 733.03, HGL from true gravity flow is 733.31
D. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	110000	11230		DESCRIPTION OF		0.000	5.210	1.60			00	0.0110	0.0373	733,3100	CONTROLLING HGL at US end of 6' (HGL in trash basket structure)
														733,7300	bottom of trash basket, to be confirmed
			130									0.5000	0.5000	734.2300	PLACE HOLDER FOR TRASH BASKET HEADLOSS
EXIT LOSS	PVC_ASTM	112.56	130	SDR 26 (160 PSI)	6.0	6.630	6.110	1.23			1.00	0.0236	0.5236	734.2536	FL at 734.48, HGL from true gravity flow is 734.76
PIPE	PVC_ASTM	112.56	130	SDR 26 (160 PSI)	6.0	6.630	6.110	1.23	3.50	0.0042			0.5278	734.2578	
PLUG VALVE	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17			0.50	0.0106	0.5383	734.2683	FL at 734.49, HGL from true gravity flow is 734.77
PIPE	DIP	112.56	140	CL 52	6.0	6.900	6.280	1,17	31.00	0.0283			0.5666	734,2966	FL at 734.64, HGL from true gravity flow is 734.92
1		I					l							734.9200	CONTROLLING HGL at US end of 6" (HGL at 4" x 6" reducer) 3 OF 6
															3 OF 6

lagoon cell 2 through MBBR to lagoon cell 3

162.085 (peak outflow from cell 2 with 4inch pipe per HEC-HMS- rip run scenario)

112.56 (0.16 DESCRIPTION: FLOW(GPD): FLOW(GPM): FLOW(MGD):

ELEMENT	MATERIAL	FLOW (GPM)	C FACTOR	PIPE CLASS	NOM. DIA (IN)	OUT. DIA ((N))	ID (IN)	VELOCITY (FPS)	LENGTH (FT)		K FACTOR	FIT. LOSS (FT)	CUM. LOSS (FT)	HGL (FT)	COMMENTS
REDUCER	DIP	112.56	140	CL 52	4.0	4.800	4.220	2.58			0.20	0.0207	0.0207	734.9407	
PIPE	DIP	112.56	140	CL 52	4.0	4.800	4.220	2.58	2.00	0.0126			0.0334	734.9534	
90° BEND	DIP	112.56	140	CL 52	4.0	4.800	4.220	2.58			0.30	0.0311	0.0644	734.9844	
PIPE	DIP	112.56	140	CL 52	4.0	4.800	4.220	2.58	4.00	0.0253			0.0897	735.0097	VERTICAL PIPE AT INTAKE
PROJECTING ENTRANCE	DIP	112.56	140	CL.52	4.0	4.800	4.220	2.58			0.80	0.0828	0.1725	735.0925	HGL at cell 2 if outlet controlled CELL 2

Braymer, MO WWTF
HYDRAULIC CALCULATIONS FOR peak daily flow (peak flow from HEC-HMS model using SCS rip run plus RECIRCULATED 1XQ FOR FUTURE RETURN)

DESCRIPTION: FLOW(GPD): FLOW(GPM): FLOW(MGD):

 Ingoon cell 2 through MBBR to Ingoon cell 3
 Recirc. Flow:
 277,083 GPD

 162,085
 (peak outflow from cell 2 with 4 inch pipe per HEC-HMS- rip run seenario)
 Recirc. Flow:
 277,083 GPD

 112.56
 192.42 gpm
 0.16
 0.28MGD
 0.28MGD

0.16								.28MGD							
ELEMENT	MATERIAL	FLOW (GPM)	C FACTOR	PIPE CLASS	NOM. DIA (IN)	OUT. DIA (IN)	ID (IN)	VELOCITY (FPS)	LENGTH (FT)	PIPE LOSS	K FACTOR	FIT. LOSS (FT)	CUM. LOSS (FT)	HGL (FT)	COMMENTS
													()	735,1900	ELEVATION OVER EXISTING FLOW CONTROL WEIR (LAGOON CELL 3)
XIT LOSS	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17			1.00	0.0211	0.0211	735.2111	
TPE	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17	31.50	0.0288			0.0499	735.2399	
LUG VALVE	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17		1.0210	0.50	0.0106	0.0605	735.2505	
TPE	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17	2.50	0.0023	****		0.0627	735.2527	
EE - LINE FLOW	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17			0.30	0.0063	0.0691	735.2591	
TPE	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17	3,50	0.0032			0.0723	735.2623	
5° BEND	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17		***************************************	0.15	0.0032	0.0754	735.2654	horizontal bend
TPE	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17	17.00	0.0155	0.1.5	0.000.2	0.0910	735.2810	
5° BEND	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17	27.00	0.01.00	0.15	0.0032	0.0941	735.2841	horizontal bend
TPE	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17	10.00	0.0091	0.15	0.0002	0.1033	735.2933	INTERNAL DELIC
EDUCER	DIP	112.56	140	CL 52	6.0	6.900	6,280	1.17	20.00	0.0091	0,20	0.0042	0.1075	735.2975	
TPE	DIP	112.56	140	CL 52	8.0	9.050	8.390	0.65	3.50	0.0006	0.20	0.0042	0.1083	735.2983	
e BEND	DIP	112.56	140	CL 52	8.0	9.050	8,390	0.65	3.30	0.0000	0.30	0.0020	0.1083		90 deg bend under weir trough
TPE	DIP	112.56	140	CL 52	8.0	9.050	8,390	0.65	1.50	0.0003	0.30	0.0020	0.1106	735,3006	vertical pipe to weir trough
are.	Dir	112.50	140	CL 52	0.0	9.030	6.390	0.00	1.50	0.0000		-	0.1106	733,3000	retous pipe to well abugo
			1										()	may 2000	****
	DIP	100.40													HGL per weir trough cales
XIT LOSS		192.42	140	CL 52	8.0	9.050	8.390	1.12			1.00	0.0194	0.0194	736.9494	
IPE	DIP	192.42	140	CL 52	8.0	9.050	8.390	1.12	4.00	0.0024			0.0218	736.9518	
EE - BRANCH FLOW	DIP	192.42	140	CL 52	8.0	9.050	8.390	1.12			1.80	0.0349	0.0566	736.9866	
TPE	DIP	192.42	140	CL 52	8.0	9.050	8.390	1.12	3.00	0.0018			0.0584	736.9884	(common wall)
			1												PLACE HOLDER FOR MBBR MEDIA RETENTION SEIVE HEADLOSSES
		192.42	1									0.0833	0.1418	737.0718	WAS PULLED FROM CLARKSBURG
												, !	()		this headloss is pulled from duckbill headloss spreadsheet that was built from
UBBER FLAPPER CHECK: V < 6 FPS		192.42	1									0.2700	0.4118	737.3418	headlosses provided by vendor - may need to be modified
TPE	DIP	192.42	140	CL 52	8.0	9.050	8,390	1.12	1.50	0.0009			0.4127	737.3427	(common wall)
			1										()		PLACE HOLDER FOR MBBR RETENTION SEIVE HEADLOSSES - THIS V
		192.42	1									0.0833	0.4960	737.4260	PULLED FROM CLARKSBURG
			1										()		this headloss is pulled from duckbill headloss spreadsheet that was built from
RUBBER FLAPPER CHECK: V < 6 FPS		192.42	1									0.2700	0.7660	737.6960	headlosses provided by vendor - may need to be modified
TPE	DIP	192.42	140	CL52	8.0	9.050	8.390	1.12	3.00	0.0018			0.7678	737.6978	(common wall)
O' BEND	DIP	192.42	140	CL 52	8.0	9.050	8.390	1.12			0.30	0.0058	0.7736	737.7036	
TPE	DIP	192.42	140	CL 52	8.0	9.050	8.390	1.12	6.00	0.0036			0.7772	737.7072	vertical pipe in air lift structure
											l i	, !	1		
ROJECTING ENTRANCE	DIP	192.42	140	CL 52	8.0	9.050	8.390	1.12			0.90	0.0155	0.7927		HGL IN AIR LIFT VERTICAL OUTFALL PIPING
		192.42	1										()		FL into airlift at 732.80, HGL from true gravity flow is 733.18
XIT LOSS	PVC_ASTM	192.42	130	SDR 26 (160 PSI)	6.0	6.630	6.110	2.11			1.00	0.0688	0.0688	733.1488	
TPE	PVC_ASTM	192.42	130	SDR 26 (160 PSI)	6.0	6.630	6.110	2.11	5.00	0.0162			0.0850	733.1650	
5° BEND	PVC_ASTM	192.42	130	SDR 26 (160 PSI)	6.0	6.630	6.110	2.11			0.15	0.0103	0.0953	733.1753	FL at 732.82, HGL from true gravity flow is 733.20
TPE	PVC_ASTM	192.42	130	SDR 26 (160 PSI)	6.0	6.630	6.110	2.11	15.00	0.0485			0.1438	733.2238	
2.5° BEND	PVC_ASTM	192.42	130	SDR 26 (160 PSI)	6.0	6.630	6.110	2.11	25500	0.0400	0.08	0.0052	0.1490		FL at 732.90, HGL from true gravity flow is 733.28
IPE	PVC_ASTM	192.42	130	SDR 26 (160 PSI)	6.0	6.630	6,110	2.11	27.50	0.0988	0.00	0.000.2	0.2378	733,3178	TE SE TOLETO, ILOU MAN GENTLY HOW IS TOOLED
HARP-EDGE ENTRANCE	PVC_ASTM	192.42	130	SDR 26 (160 PSI)	6.0	6.630	6.110	2.11	27.20	0.0000	0.50	0.0344	0.2722		FL at trash basket structure = 733.03, HGL from true gravity flow is 733.41
HARF-EDGE ENTRANCE	TYC_RSTM	192.42	130	SDK 20 (100 F31)	0.0	6.630	6.110	2.11			0.50	0.0344	0.2722	733.4100	CONTROLLING HGL at US end of 6° (HGL in trash basket structure)
		192.42										, !	(733,7300	bottom of trash basket, to be confirmed
	1		190									0.5000	0.5000		
		192.42	130										0.5000	734.2300	PLACE HOLDER FOR TRASH BASKET HEADLOSS
	PVC_ASTM	192.42	130	SDR 26 (160 PSI)	6.0	6.630	6.110	2.11			1.00	0.0688	0.5688		FL at 734.48, HGL from true gravity flow is 734.86
	PVC_ASTM	192.42	130	SDR 26 (160 PSI)	6.0	6.630	6.110	2.11	3.50	0.0113		, !	0.5802	734.3102	
TPE						6.900	6.280	1.99					0.6110	734.3410	
EXIT LOSS PEPE PLUG VALVE	DIP	192.42	140	CL 52	6.0						0.50	0.0308			FL at 734.49, HGL from true gravity flow is 734.87
TPE	DIP	192.42 192.42 192.42	140 140	CL 52 CL 52	6.0	6.900	6.280	1.99	31.00	0.0764	0.50	0.0008	0.6874	734.4174	FL at 794.94, FIGL from true gravity flow is 795.02 CNTROLLING HGL at US end of 6" (HGL at 4" x 6" reducer)

Braymer, MO WWTF
HYDRAULIC CALCULATIONS FOR peak daily flow (peak flow from HEC-HMS model using SCS rip run plus RECIRCULATED 1XQ FOR FUTURE RETURN)

DESCRIPTION: FLOW(GPD): FLOW(GPM): FLOW(MGD): lagoon cell 2 through MBBR to lagoon cell 3

162.88 (peak outflow from cell 2 with 4inch pipe per HEC-HMS-rip run scenario)

112.56

0.16 277,085GPD 192.42gpm 0.28MGD Recirc.Flow:

ELEMENT	MATERIAL	FLOW (GPM)	C FACTOR	PIPE CLASS	NOM. DIA	OUT. DIA	ID (IN)	VELOCITY (FPS)	LENGTH (FT)	PIPE LOSS	K FACTOR	FIT. LOSS (FT)	CUM LOSS (FT)	HGL (FT)	COMMENTS
REDUCER	DIP	192.42	140	CL 52	4.0	4.800	4.220	4.41			0.20	0.0605	0.0605	735.0805	
PIPE	DIP	192.42	140	CL 52	4.0	4.800	4.220	4.41	2.00	0.0341			0.0946	735.1146	
90° BEND	DIP	192.42	140	CL 52	4.0	4.800	4.220	4.41			0.30	0.0908	0.1854	735.2054	
PIPE	DIP	192.42	140	CL 52	4.0	4.800	4.220	4.41	4.00	0.0682			0.2536	735.2736	VERTICAL PIPE AT INTAKE
								1							
								1							
PROJECTING ENTRANCE	DIP	192.42	140	CL 52	4.0	4.800	4.220	4.41			0.80	0.2420	0.4956	735.5156	HGL at cell 2 if outlet controlled CELL 2

UV to Clarifier (bypass around cell 3)
162,085 (peak outflow from cell 2 per HEC-HMS-rip run scenario)
112.56

DESCRIPTION: FLOW(GPDJ: FLOW(GPM)· FLOW(MGD): 0:16

LEMENT	MATERIAL	FLOW (GPM)	C FACTOR	PIPE	NOM, DIA (IN)	OUT, DIA (IN)	ID (IN)	VELOCITY (FPS)	LENGTH (FT)	LOSS	K FACTOR	FIT. LOSS (FT)	CUM. LOSS (FT)	HGL (FT)	COMMENTS
					1										HGL at tee upstream of mag meter vault - see results here:
					1										'W:\Proj\20000\20114\20114.003\Documents\DesignCalcs\Hydraulic
					6.0										Calcs/hydraulics for yard piping-cell 3 through UV and mag meter to outfall.
PIPE	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17	7.00	0.0064			0.0064		pipe just upstream of UV unit
5° BEND	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17			0.15	0.0032	0.0096	734.1296	90 deg vertical bend US of UV above slab
PIPE	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17	10.00	0.0091			0.0187	734.1387	vertical pipe length, to be verified with pdf plan set
2.5° BEND	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17			0.08	0.0016	0.0203	734.1403	90 deg vertical bend US of UV under slab
PIPE	DIP	112.56	140	CI, 52	6.0	6.900	6.280	1.17	23.19	0.0212			0.0415	734.1615	
2.5° BEND	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17			0.08	0.0016	0.0431	734.1631	8" x 6" tee connection to pipe between cell 3 and UV
PIPE	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17	40.30	0.0368			0.0799	734.1999	
2.5° BEND	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17			0.08	0.0016	0.0815	734.2015	
PIPE	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17	20.00	0.0183			0.0998	734.2198	
5° BEND	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17			0.15	0.0032	0.1029	734.2229	
PIPE	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17	15.15	0.0138	l		0.1168	734.2368	
PIPE	DIP	112.56	140	CL 52	6,0	6.900	6.280	1.17	431.00	0.3939			0.5107	734.6307	
					1										tee connection to line from Clarifier to cell 3, less than 735.2480 so 6" is OK (
EE - BRANCH FLOW	DIP	112.56	140	CL 52	6.0	6.900	6.280	1.17			1.80	0.0380	0.5487	734.6687	this run doesn't control)

0.45

EXISTING CELL 3 FLOW CONTROL STRUCTURE

Weir calculations using the Kindsvater-Shen equation

V-NOTCH WEIR:

| Qmin (GPD): 0 | 162085.00 | 0 | (degrees): 90 | | Total Height of weir (ft): 0.42 | Elevation of bottom of v-notch: 734.79 |

Outputs:

C: 0.577904885 k (ft): 0.002902517

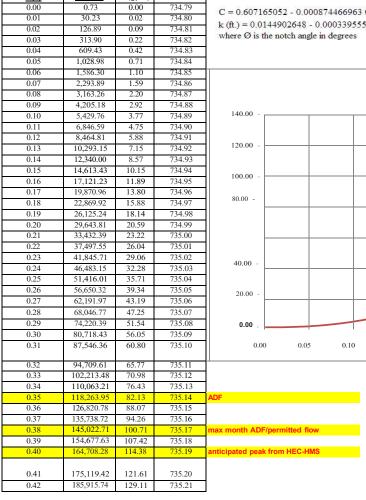
Q (GPD)

Q(gpm)

WSE

h vs Q table:

$Q = 4.28 \text{ C } \tan\left(\frac{\theta}{2}\right) \left(h + k\right)^{5/2}$		Candk v	rs. Notch Angl	е
where Q = Discharge (cfs) C = Discharge Coefficient	0.6 0.58 0.56		<= C	0.01 0.008 0.006
$\theta = ext{Notch Angle}$	0.54		k =>	0.008 4 0.004 4 0.002
h = Head (ft) k=Head Correction	0.5	40	60 80	100
Factor (ft)		Notch An	gle (degrees)	


C=0.607165052 - 0.000874466963 Ø + $6.10393334x10^{-6}$ Ø 2 k (ft.) = 0.0144902648 - 0.00033955535 Ø + $3.29819003x10^{-6}$ Ø 2 - $1.06215442x10^{-8}$ Ø where Ø is the notch angle in degrees

0.15

0.25

head h (ft)

Q (gpm) vs h (ft)

Bartlett & West

Project No. 20114.003

Project: Braymer Wastewater System Improvements Subject: Lagoon Storage and Flow Control Structures

Location: Braymer, MO

Cell 2 Discharge Calculations

Orifice calcs:

Equations Used:

 $Q_o = C_o A_o \sqrt{2g(H - E_o)}$

 $Q_o = \text{orifice outflow}$

 \widetilde{C}_{o} = orifice discharge coefficient

g = acceleration due to gravity 32.2 ft/s²

 $A_a = \text{net opening area} = \pi d^2/4$

H = water Elevation

= elevation of orifice

 $C_0 = 0.62$

#3: 735.82 ft FL orifice = 734.64 ft $Number\ of\ orifices =$ Diameter of Orifice =

> Water Elevation Q Q Н Q (ft) (gpd) (ft) (ft) (cfs)

Q Q Q (ft) (cfs) (gpd) (cfs) (gpd)

ft

in

Total Total Q Q (cfs) (gpd)

Structure between Cell 2 and Cell 3 has two pipes

leaving Cell 2 at an upward angle (elevation of pipes in Cell 2 is unknown and elevation of pipes when

enter structure is also known) and has 1 discharge

pipe leaving structure to enter Cell 3. All pipes are

8" DI.

Bottom Cell 2

727.97	-6.84	0.00	0
728.07	-6.74	0.00	0
728.17	-6.64	0.00	0
728.27	-6.54	0.00	0
728.37	-6.44	0.00	0
728.47	-6.34	0.00	0
728.57	-6.24	0.00	0
728.67	-6.14	0.00	0
728.77	-6.04	0.00	0
728.87	-5.94	0.00	0
728.97	-5.84	0.00	0
729.07	-5.74	0.00	0
729.17	-5.64	0.00	0
729.27	-5.54	0.00	0
729.37	-5.44	0.00	0
729.47	-5.34	0.00	0
729.57	-5.24	0.00	0
729.67	-5.14	0.00	0
729.77	-5.04	0.00	0
729.87	-4.94	0.00	0
729.97	-4.84	0.00	0
730.07	-4.74	0.00	0
730.17	-4.64	0.00	0
730.27	-4.54	0.00	0
730.37	-4.44	0.00	0
730.47	-4.34	0.00	0
730.57	-4.24	0.00	0
730.67	-4.14	0.00	0
730.77	-4.04	0.00	0
730.87	-3.94	0.00	0
730.97	-3.84	0.00	0
731.07	-3.74	0.00	0
731.17	-3.64	0.00	0
731.27	-3.54	0.00	0
731.37	-3.44	0.00	0
731.47	-3.34	0.00	0
731.57	-3.24	0.00	0
731.67	-3.14	0.00	0
731.77	-3.04	0.00	0
731.87	-2.94	0.00	0

731.97

-2.84

0.00

0

-8.18	0.00	0
-8.08	0.00	0
-7.98	0.00	0
-7.88	0.00	0
-7.78	0.00	0
-7.68	0.00	0
-7.58	0.00	0
-7.48	0.00	0
-7.38	0.00	0
-7.28	0.00	0
-7.18	0.00	0
-7.08	0.00	0
-6.98	0.00	0
-6.88	0.00	0
-6.78	0.00	0
-6.68	0.00	0
-6.58	0.00	0
-6.48	0.00	0
-6.38	0.00	0
-6.28	0.00	0
-6.18	0.00	0
-6.08	0.00	0
-5.98	0.00	0
-5.88	0.00	0
-5.78	0.00	0
-5.68	0.00	0
-5.58	0.00	0
-5.48	0.00	0
-5.38	0.00	0
-5.28	0.00	0
-5.18	0.00	0
-5.08	0.00	0
-4.98	0.00	0
-4.88	0.00	0
-4.78	0.00	0
-4.68	0.00	0
-4.58	0.00	0
-4.48	0.00	0
-4.38	0.00	0
-4.28	0.00	0
1.20		

727.97	0.00	0
728.07	0.00	0
728.17	0.00	0
728.27	0.00	0
728.37	0.00	0
728.47	0.00	0
728.57	0.00	0
728.67	0.00	0
728.77	0.00	0
728.87	0.00	0
728.97	0.00	0
729.07	0.00	0
729.17	0.00	0
729.27	0.00	0
729.37	0.00	0
729.47	0.00	0
729.57	0.00	0
729.67	0.00	0
729.77	0.00	0
729.87	0.00	0
729.97	0.00	0
730.07	0.00	0
730.17	0.00	0
730.27	0.00	0
730.37	0.00	0
730.47	0.00	0
730.57	0.00	0
730.67	0.00	0
730.77	0.00	0
730.87	0.00	0
730.97	0.00	0
731.07	0.00	0
731.17	0.00	0
731.27	0.00	0
731.37	0.00	0
731.47	0.00	0
731.57	0.00	0
731.67	0.00	0
731.77	0.00	0
731.87	0.00	0
731.97	0.00	0

0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0
0.00	0

2/27/2025 1 of 2

Project No. 20114.003 Project: Braymer Wastewater System Improvements Subject: Lagoon Storage and Flow Control Structures Location: Braymer, MO

732.07	-2.74	0.00	0	-4.08	0.00	0	72	2.07	0.00	0		0.00	0	i
732.07	-2.74	0.00	0	-3.98	0.00	0		2.07	0.00	0	_	0.00	0	
732.17	-2.54	0.00	0	-3.88	0.00	0		2.17	0.00	0	_	0.00	0	
732.37	-2.34	0.00	0	-3.78	0.00	0		2.27	0.00	0	_	0.00	0	
732.47	-2.44	0.00	0	-3.68	0.00	0		2.37	0.00	0	_	0.00	0	
732.57	-2.24	0.00	0	-3.58	0.00	0		2.47	0.00	0	_	0.00	0	
732.57	-2.24	0.00	0	-3.48	0.00	0		2.67	0.00	0	_	0.00	0	
732.77	-2.14	0.00	0	-3.38	0.00	0		2.77	0.00	0	_	0.00	0	
732.87	-1.94	0.00	0	-3.28	0.00	0		2.77	0.00	0	_	0.00	0	
732.97	-1.84	0.00	0	-3.18	0.00	0		2.97	0.00	0	_	0.00	0	
733.07	-1.74	0.00	0	-3.08	0.00	0		3.07	0.00	0	_	0.00	0	
733.17	-1.64	0.00	0	-2.98	0.00	0		3.07	0.00	0	_	0.00	0	
733.27	-1.54	0.00	0	-2.88	0.00	0		3.27	0.00	0	_	0.00	0	+
733.37	-1.44	0.00	0	-2.78	0.00	0		3.37	0.00	0	_	0.00	0	1
733.47	-1.34	0.00	0	-2.68	0.00	0		3.47	0.00	0	_	0.00	0	1
733.57	-1.24	0.00	0	-2.58	0.00	0		3.57	0.00	0	_	0.00	0	+
733.67	-1.14	0.00	0	-2.48	0.00	0		3.67	0.00	0	_	0.00	0	1
733.77	-1.04	0.00	0	-2.38	0.00	0		3.77	0.00	0	_	0.00	0	
733.87	-0.94	0.00	0	-2.28	0.00	0		3.87	0.00	0	_	0.00	0	+
733.97	-0.84	0.00	0	-2.18	0.00	0		3.97	0.00	0		0.00	0	†
734.07	-0.74	0.00	0	-2.08	0.00	0		4.07	0.00	0		0.00	0	†
734.17	-0.64	0.00	0	-1.98	0.00	0		4.17	0.00	0	_	0.00	0	1
734.27	-0.54	0.00	0	-1.88	0.00	0		4.27	0.00	0	_	0.00	0	1
734.37	-0.44	0.00	0	-1.78	0.00	0		4.37	0.00	0	-	0.00	0	
734.46	-0.35	0.00	0	-1.69	0.00	0	73	4.46	0.00	0		0.00	0	
734.47	-0.34	0.00	0	-1.68	0.00	0	73	4.47	0.00	0		0.00	0	
734.57	-0.24	0.00	0	-1.58	0.00	0	73	4.57	0.00	0		0.00	0	
734.64	-0.17	0.00	0	-1.51	0.00	0	73	4.64	0.00	0		0.00	0	FL4"
734.67	-0.14	0.01	9,211	-1.48	0.00	0		4.67	0.00	0	_	0.01	9,211	
734.77	-0.04	0.06	39,914	-1.38	0.00	0		4.77	0.00	0	_	0.06	39,914	
734.87	0.06	0.11	70,618	-1.28	0.00	0		4.87	0.00	0		0.11	70,618	
734.97 735.07	0.16	0.18	113,406	-1.18	0.00	0		4.97	0.00	0		0.18	113,406	
735.12	0.26	0.22	143,996 157,073	-1.08 -1.03	0.00	0		5.07	0.00	0		0.22	143,996	
735.12	0.31	0.24	162,251	-1.03 -1.01	0.00	0		5.12	0.00	0		0.24	157,073	_
735.17	0.36	0.26	169,141	-0.98	0.00	0		5.14	0.00	0		0.25	162,251	HGL from inlet c,
735.18	0.37	0.27	171,453	-0.97	0.00	0		5.17 5.18	0.00	0	_	0.26	169,141 171,453	
735.28	0.47	0.30	193,055	-0.87	0.00	0		5.28	0.00	0	_	0.27	193,055	
735.38	0.57	0.33	212,472	-0.77	0.00	0		5.38	0.00	0	_	0.33	212,472	1
735.48	0.67	0.36	230,257	-0.67	0.00	0		5.48	0.00	0	_	0.36	230,257	
735.53	0.72	0.37	238,653	-0.62	0.00	0		5.53	0.00	0	_	0.37	238,653	WSE
735.58	0.77	0.38	246,763	-0.57	0.00	0		5.58	0.00	0	_	0.38	246,763	VVSE
735.68	0.87	0.41	262,233	-0.47	0.00	0		5.68	0.00	0	_	0.41	262,233	†
735.78	0.97	0.43	276,840	-0.37	0.00	0		5.78	0.00	0		0.43	276,840	HGL from inlet c,
735.82	1.01	0.44	282,471	-0.33	0.00	0		5.82	0.00	0		0.44	282,471	FL 8"
735.88	1.07	0.45	290,713	-0.27	0.05	30,549	73:	5.88	0.00	0		0.50	321,262	
735.98	1.17	0.47	303,954	-0.17	0.13	81,463	73:	5.98	0.00	0		0.60	385,417	
736.08	1.27	0.49	316,642	-0.07	0.20	132,377		6.08	0.00	0	_	0.69	449,019	
736.18	1.37	0.51	328,841	0.03	0.28	183,291		6.18	0.00	0	_	0.79	512,132	
736.28	1.47	0.53	340,603	0.13	0.62	399,474		6.28	0.00	0	_	1.15	740,076]
736.38	1.57	0.54	351,972	0.23	0.83	534,381	<u> </u>	6.38	0.00	0	_	1.37	886,353	
736.48	1.67	0.56	362,985 373,674	0.33	1.13	733,165		6.48	0.00	0		1.55	1,004,504	
736.58 736.68	1.77	0.58	3/3,6/4	0.43	1.13	814,564		6.58	0.00	0		1.71	I,I 06,839	
736.78	1.87	0.59	394,183	0.63	1.37	888,537		6.68	0.00	0		1.85	1,198,629	4
736.88	2.07	0.63	404,047	0.03	1.48	956,808		6.78	0.00	0	_	1.98 2.11	1,282,720	4
736.98	2.17	0.64	413,676	0.73	1.58	1,020,522		6.88	0.00	0	_	2.11	1,360,855 1,434,199	-
737.08	2.27	0.65	423,086	0.93	1.67	1,080,486		7.08	0.00	0		2.33	1,503,572	1
737.18	2.37	0.67	432,292	1.03	1.76	1,137,292		7.18	0.00	0	_	2.43	1,569,584	ton of hom
737.28	2.47	0.68	441,305	1.13	1.84	1,191,393		7.28	0.00	0		2.53	1,632,698	top of berm
			<u> </u>				7.5		0.00	Ü	L		-,052,070	J

italized print indicates cells calculated by linear interpolation for flows less than ½ full as the orifice calculation is based on the centroid of the orifice (linear interpolation between FL of orifice and first non-zero flow)

2/27/2025 2 of 2

Cell 1 Elevation-Area Table for HEC-HMS: (water depth at time of survey= 4.76)

8.68
.92

Cell 2 Elevation-Area Table for HEC-HMS: (water depth at time of survey= 7.56)

Elev (ft.) A	rea (ac.) Are	a (ft²)		
727.97	3.402	148,184.97 (lagoon bottom)		
728	3.405	148321.351		
729	3.511	152924.456		
730	3.618	157586.785		
731	3.726	162308.336		
732	3.836	167089.110		
733	3.947	171929.107		
734	4.059	176828.327		
735	4.173	181786.769		
735.53	4.235	184465.260 (WSE)		
735.18	4.189	182,464.15 (2 ft freeboard)	7.21	
736	4.296	187152.470		
737	4.445	193604.250		
737.18	4.650	202571.667 (TOP OF BERM)	lowest top of berm elevation	737.18
			highest top of berm elevation	740.93

Cell 3 Elevation-Area Table: (water depth at time of survey= 7.12)

Elev (ft.)	Area (ac.) Area (ft²)			
727.47	0.876368	38,174.61	(lagoon bottom)	
728	0.904485	39399.3844		
729	0.958546	41754.2537		
730	1.013938	44167.1414		
731	1.070662	46638.0473		
732	1.128718	49166.9714		
733	1.188106	51753.9139		
734	1.248826	54398.8746		
734.59	1.285845	56011.41 (WSE)	
734.79	1.300038	56,629.65	{2 ft freeboard)	
735	1.31494	57278.7958		
736	1.374122	59856.7422		
736.79	1.485904	64725.9727 {	TOP OF BERM)	lo

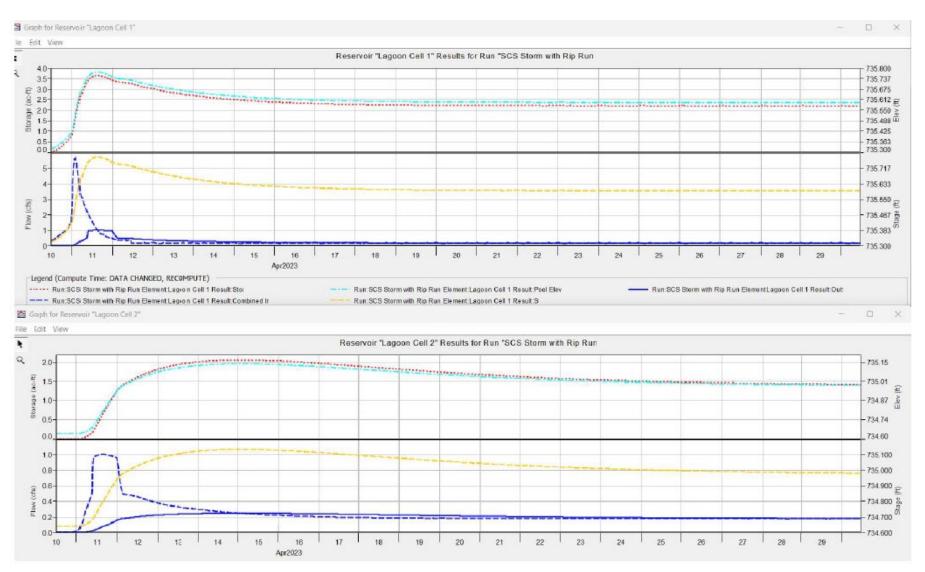
lowest top of berm elevation 736.79 highest top of berm elevation 737.92

4/10/2023 12:00 4/12/2023 10:45

 $SCS\ 1$ in $10\,$ year synthetic storm event for HEC-HMS

Date & Time (time ending)	Storm Flow (CFS)	ADF Dry weather (CFS)	Total Flow (CFS)		
2023-04-10 12:00:00	0.2		0.375		
2023-04-10 12:15:00	0.2		0.375		
2023-04-10 12:30:00	0.2		0.375	SCS Type 2 Storm - 24hour, 10year	r
2023-04-10 12:45:00	0.2		0.375		4/
2023-04-10 13:00:00	0.18		0.35	_	4/
2023-04-10 13:15:00	0.19	0.17	0.36		T /
2023-04-10 13:13:00	0.19	0.17	0.30		
2023-04-10 13:30:00	0.22	0.17	0.37		
2023-04-10 13:43:00	0.22		0.395		
2023-04-10 14:00:00	0.25	0.165	0.393		
2023-04-10 14:13:00	0.23	0.165	0.415		
2023-04-10 14:45:00	0.28		0.443		
2023-04-10 15:00:00	0.31		0.4875		
2023-04-10 15:15:00	0.33		0.5075 0.5375		
2023-04-10 15:30:00	0.36				
2023-04-10 15:45:00	0.38		0.5575		
2023-04-10 16:00:00	0.4		0.5775		
2023-04-10 16:15:00	0.43		0.6075		
2023-04-10 16:30:00	0.45		0.6275		
2023-04-10 16:45:00	0.47	0.1775	0.6475		
2023-04-10 17:00:00	0.5	0.19	0.69		
2023-04-10 17:15:00	0.51		0.7		
2023-04-10 17:30:00	0.53		0.72		
2023-04-10 17:45:00	0.55	0.19	0.74		
2023-04-10 18:00:00	0.6		0.7925		
2023-04-10 18:15:00	0.62	0.1925	0.8125		
2023-04-10 18:30:00	0.63		0.8225		
2023-04-10 18:45:00	0.65	0.1925	0.8425		
2023-04-10 19:00:00	0.66	0.1875	0.8475		
2023-04-10 19:15:00	0.68	0.1875	0.8675		
2023-04-10 19:30:00	0.7		0.8875		
2023-04-10 19:45:00	0.72	0.1875	0.9075		
2023-04-10 20:00:00	0.71	0.175	0.885		
2023-04-10 20:15:00	0.73		0.905		
2023-04-10 20:30:00	0.75	0.175	0.925		
2023-04-10 20:45:00	0.77		0.945		
2023-04-10 21:00:00	0.8	0.1775	0.9775		
2023-04-10 21:15:00	0.83		1.0075		
2023-04-10 21:30:00	0.85		1.0275		
2023-04-10 21:45:00	0.88		1.0575		
2023-04-10 22:00:00	0.91	0.1825	1.0925		
2023-04-10 22:15:00	0.95	0.1825	1.1325		
2023-04-10 22:30:00	0.98	0.1825	1.1625		
2023-04-10 22:45:00	1.02	0.1825	1.2025		
2023-04-10 23:00:00	1.08	0.2175	1.2975		
2023-04-10 23:15:00	1.13		1.3475		
2023-04-10 23:30:00	1.19	0.2175	1.4075		
2023-04-10 23:45:00	1.27	0.2175	1.4875		
2023-04-11 0:00:00	1.38	0.2	1.58		
2023-04-11 0:15:00			1.91		
2023-04-11 0:30:00	2.25		2.45		
2023-04-11 0:45:00	3	0.2	3.2		
2023-04-111:00:00	3.86	0.18	4.04		
2023-04-111:15:00	4.55	0.18	4.73		
2023-04-111:30:00		0.18	5.22		
2023-04-111:45:00	5.32	0.18	5.5		

Date & Time (time	Storm Flow	ADF Dry weather	Total Flow
ending)	(CFS)	(CFS)	(CFS)
2023-04-11 2:00:00	5.42	0.165	5.585
2023-04-11 2:15:00	5.48	0.165	5.645
2023-04-11 2:30:00	5.49	0.165	5.655
2023-04-11 2:45:00	5.43	0.165	5.595
2023-04-11 3:00:00	5.32	0.15	5.47
2023-04-11 3:15:00	5.15	0.15	5.3
2023-04-11 3:30:00	4.94	0.15	5.09
2023-04-11 3:45:00	4.71	0.15	4.86
2023-04-114:00:00	4.48	0.1475	4.6275
2023-04-114:15:00	4.23	0.1475	4.3775
2023-04-114:30:00	3.97	0.1475	4.1175
2023-04-114:45:00	3.71	0.1475	3.8575
2023-04-115:00:00	3.48	0.16	3.64
2023-04-11 5:15:00	3.26	0.16	3.42
2023-04-115:30:00	3.09	0.16	3.25
2023-04-11 5:45:00	2.96	0.16	3.12
2023-04-11 6:00:00	2.86	0.195	3.055
2023-04-11 6:15:00	2.77	0.195	2.965
2023-04-11 6:30:00	2.69	0.195	2.885
2023-04-11 6:45:00	2.62	0.195	2.815
2023-04-11 7:00:00	2.55	0.1875	2.7375
2023-04-11 7:15:00	2.48	0.1875	2.6675
2023-04-11 7:30:00	2.42	0.1875	2.6075
2023-04-11 7:30:00	2.35	0.1875	2.5375
2023-04-11 7:43:00	2.28	0.1625	2.4425
2023-04-118:00:00	2.28	0.1625	2.4423
2023-04-118:30:00			
2023-04-118:45:00	2.16 2.1	0.1625	2.3225
		0.1625	2.2625
2023-04-11 9:00:00	2.04	0.17	2.21
2023-04-11 9:15:00	1.98	0.17	2.15
2023-04-11 9:30:00	1.92	0.17	2.09
2023-04-11 9:45:00	1.86	0.17	2.03
2023-04-1110:00:00	1.8	0.1725	1.9725
2023-04-1110:15:00	1.74	0.1725	1.9125
2023-04-1110:30:00	1.69	0.1725	1.8625
2023-04-1110:45:00	1.63	0.1725	1.8025
2023-04-1111:00:00	1.61	0.1825	1.7925
2023-04-1111:15:00	1.55	0.1825	1.7325
2023-04-1111:30:00	1.5	0.1825	1.6825
2023-04-1111:45:00	1.44	0.1825	1.6225
2023-04-1112:00:00	1.37	0.175	1.545
2023-04-1112:15:00	1.32	0.175	1.495
2023-04-1112:30:00	1.27	0.175	1.445
2023-04-1112:45:00	1.23	0.175	1.405
2023-04-1113:00:00	1.17	0.17	1.34
2023-04-1113:15:00	1.14	0.17	1.31
2023-04-1113:30:00	1.1	0.17	1.27
2023-04-1113:45:00	1.06	0.17	1.23
2023-04-1114:00:00	1	0.165	1.165
2023-04-1114:15:00	0.96	0.165	1.125
2023-04-1114:30:00	0.92	0.165	1.085
2023-04-1114:45:00	0.88	0.165	1.045
2023-04-1115:00:00	0.83	0.1775	1.0075
2023-04-1115:15:00	0.8	0.1775	0.9775
2023-04-1115:30:00	0.76	0.1775	0.9375
2023-04-1115:45:00	0.73	0.1775	0.9075


 $SCS\ 1$ in $10\,$ year synthetic storm event for HEC-HMS

Date & Time (time	Storm Flow	ADF Dry weather	Total Flow
ending)	(CFS)	(CFS)	(CFS)
2023-04-11 16:00:00	0.7	0.1775	0.8775
2023-04-11 16:15:00	0.67	0.1775	0.8475
2023-04-11 16:30:00	0.65	0.1775	0.8275
2023-04-11 16:45:00	0.62	0.1775	0.7975
2023-04-11 17:00:00	0.61	0.19	0.8
2023-04-11 17:15:00	0.59	0.19	0.78
2023-04-11 17:30:00	0.57	0.19	0.76
2023-04-11 17:45:00	0.55	0.19	0.74
2023-04-11 18:00:00	0.57	0.1925	0.7625
2023-04-11 18:15:00	0.56	0.1925	0.7525
2023-04-11 18:30:00	0.54	0.1925	0.7325
2023-04-11 18:45:00	0.53	0.1925	0.7225
2023-04-11 19:00:00	0.5	0.1875	0.6875
2023-04-11 19:15:00	0.49	0.1875	0.6775
2023-04-11 19:30:00	0.48	0.1875	0.6675
2023-04-11 19:45:00	0.46	0.1875	0.6475
2023-04-11 20:00:00	0.42	0.175	0.595
2023-04-11 20:15:00	0.41	0.175	0.585
2023-04-11 20:30:00	0.4	0.175	0.575
2023-04-11 20:45:00	0.39	0.175	0.565
2023-04-11 21:00:00	0.38	0.1775	0.5575
2023-04-11 21:15:00	0.37	0.1775	0.5475
2023-04-11 21:30:00	0.36	0.1775	0.5375
2023-04-11 21:45:00	0.35	0.1775	0.5275
2023-04-11 22:00:00	0.34	0.1825	0.5225
2023-04-11 22:15:00	0.33	0.1825	0.5125
2023-04-11 22:30:00	0.32	0.1825	0.5025
2023-04-11 22:45:00	0.31	0.1825	0.4925
2023-04-11 23:00:00	0.31	0.2175	0.5275
2023-04-11 23:15:00	0.3	0.2175	0.5175
2023-04-11 23:30:00	0.29	0.2175	0.5075
2023-04-11 23:45:00	0.28	0.2175	0.4975
2023-04-12 0:00:00	0.27	0.2	0.47
2023-04-12 0:15:00	0.26	0.2	0.46
2023-04-12 0:30:00	0.25	0.2	0.45
2023-04-12 0:45:00	0.24	0.2	0.44
2023-04-12 1:00:00	0.23	0.18	0.41
2023-04-12 1:15:00	0.22	0.18	0.4
2023-04-12 1:30:00	0.22	0.18	0.4
2023-04-12 1:45:00	0.22	0.18	0.4
2023-04-12 2:00:00	0.21	0.165	0.375
2023-04-12 2:15:00	0.2	0.165	0.365
2023-04-12 2:30:00	0.2	0.165	0.365
2023-04-12 2:45:00	0.2	0.165	0.365
2023-04-12 3:00:00	0.21	0.15	0.36
2023-04-12 3:15:00	0.21	0.15	0.36
2023-04-12 3:30:00	0.21	0.15	0.36
2023-04-12 3:45:00	0.2	0.15	0.35
2023-04-12 4:00:00	0.2	0.1475	0.3475
2023-04-12 4:15:00	0.2	0.1475	0.3475
2023-04-12 4:30:00	0.2	0.1475	0.3475
2023-04-12 4:45:00	0.2	0.1475	0.3475
2023-04-12 5:00:00	0.21	0.16	0.37
2023-04-12 5:15:00	0.21	0.16	0.37
2023-04-12 5:30:00	0.21	0.16	0.37
2023-04-12 5:45:00	0.21	0.16	0.37

 $SCS\ 1$ in $10\,$ year synthetic storm event for HEC-HMS

Date & Time (time	Storm Flow	ADF Dry weather	Total Flow
ending)	(CFS)	(CFS)	(CFS)
2023-04-12 6:00:00	0.21	0.195	0.405
2023-04-12 6:15:00	0.21	0.195	0.405
2023-04-12 6:30:00	0.2	0.195	0.395
2023-04-12 6:45:00	0.2	0.195	0.395
2023-04-12 7:00:00	0.2	0.1875	0.3875
2023-04-12 7:15:00	0.2	0.1875	0.3875
2023-04-12 7:30:00	0.2	0.1875	0.3875
2023-04-12 7:45:00	0.2	0.1875	0.3875
2023-04-12 8:00:00	0.18	0.1625	0.3425
2023-04-12 8:15:00	0.18	0.1625	0.3425
2023-04-12 8:30:00	0.18	0.1625	0.3425
2023-04-12 8:45:00	0.18	0.1625	0.3425
2023-04-12 9:00:00	0.18	0.17	0.35
2023-04-12 9:15:00	0.18	0.17	0.35
2023-04-12 9:30:00	0.18	0.17	0.35
2023-04-12 9:45:00	0.18	0.17	0.35
2023-04-12 10:00:00	0.19	0.1725	0.3625
2023-04-12 10:15:00	0.19	0.1725	0.3625
2023-04-12 10:30:00	0.19	0.1725	0.3625
2023-04-12 10:45:00	0.19	0.1725	0.3625

<u>HEC-HMS output - Lagoon Cells 1 and 2 storage-elevation-discharge results</u> <u>for SCS 1 in 10 year wet weather event</u>

Project#: 20114.003 Project: Braymer MO Wastewater Treatment Improvements Subject: Runoff to NW Ditch for Ditch Design and Check on

Existing 30" Culvert By: MJV

Composite C Calculations

Land Cover Description	Runoff Coefficient	% of Total Runoff Area
Residential Lot Size 1, D Soils, 0-2%	0.31	2.26%
Cultivated Land, D Soils, 0-2%	0.24	97.74%

Composite C: 0.24 100.00% Project#: 20114.003

Project: Braymer MO Wastewater Treatment Improvements Subject: Runoff to NW Ditch for Ditch Design and Check on

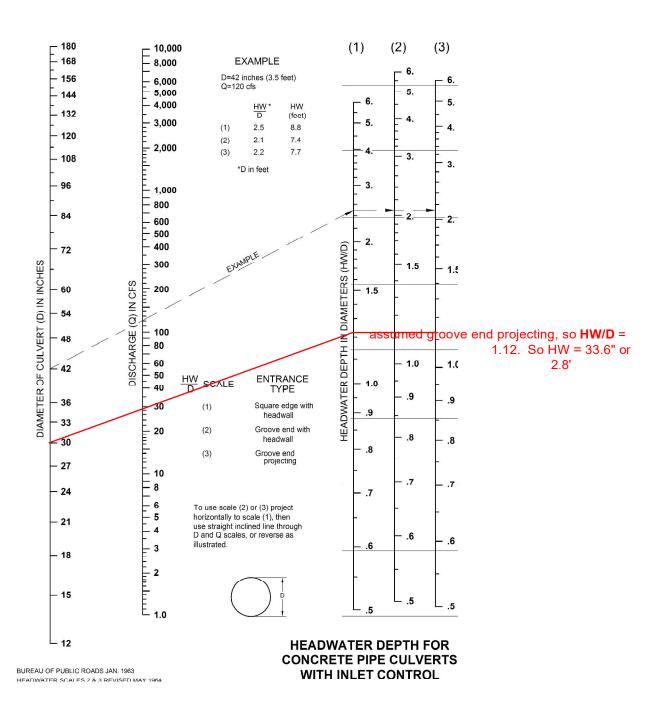
Existing 30" Culvert

Peak Runoff Calculations

Drainage Area = Runoff to Northwest Ditch

MODOT District= Northwest

Drainage Area (ac) = 16.13 Kirpich Time of Concentration (min)= 16.37 Drainage Length (ft) = 2,453 Drainage Slope (ft/ft)= 0.014


Change in Elev. (ft)= 35

Soil Type= D

Composite Runoff Coefficient (C) = 0.24

MODOT District Rainfall Intensity (in/hr)	Peak Flow (cfs)
$_{i2yr} = 3.27$	$Q_{2yr} = 12.7$
$_{\rm isyr} = 4.09$	QSyr = 16.0
$_{i10yr} = 4.72$	$Q_{10yr} = 18.4$
$_{\rm i2syr} = 5.77$	$_{\rm Q25yr} = 22.5$
$_{ m i50yr} = 6.66$	$_{ m Q50yr} = 25.9$
$_{i100yr} = 7.40$	$Q_{100yr} = 28.8$

Figure 3.1.2.2

Manning's Equation (for open channels)

Location: northwest ditch sizing

input:

 Channel Length (ft):
 810

 Channel Slope (ft/ft):
 0.007

 Bottom Width (ft):
 3.5

 Left Side Slope (X:1):
 3

 Right Side Slope (X:1):
 3

 Depth (ft):
 1.3

Ditch Conditions: Natural Channels With Stones and Weeds

output:

Storm Drain Length (ft): 812.83 A (ft^2) : 9.62 P (ft): 11.72 R (ft): 0.820684532 0.035 n: Q (ft³/s): 30.03 V (ft/s): 3.12 time in ditch (min): 4.34

2.6 ADDITIONAL INFORMATION

A. Is a topographic map attached? ☐ YES ☐ NO

B. Is a process flow diagram attached?

YES

NO see plans

MISSOURI DEPARTMENT OF NATURAL RESOURCES WATER PROTECTION PROGRAM

APPLICATION FOR CONSTRUCTION PERMIT – WASTEWATER TREATMENT FACILITY

FOR DEPARTMENT USE ONLY			
APP NO.	CP NO.		
FEE RECEIVED	CHECK NO.		
DATE RECEIVED			

APPLICATION OVERVIEW	
The Application for Construction Permit – Wastewater	Treatment Facility form has been developed in a modula

of Part A and B. **All applicants must complete Part A.** Part B should be completed for applicants who currently land-apply wastewater or propose land application for wastewater treatment. Please read the accompanying instructions before completing this form. Submittal of an incomplete application may result in the application being returned. **PART A - BASIC INFORMATION** 1.0 APPLICATION INFORMATION (Note - If any of the questions in this section are answered NO, this application may be considered incomplete and returned.) 1.1 Is this a Federal/State funded project? ☐ YES ☐ N/A Funding Agency: Project #: 1.2 Has the Missouri Department of Natural Resources approved the proposed project's antidegradation review? ☐ YES Date of Approval: □ N/A 1.3 Has the department approved the proposed project's facility plan*? ☐ YES Date of Approval: ☐ NO (If No, complete No. 1.4.) 1.4 [Complete only if answered No on No. 1.3.] Is a copy of the facility plan* for wastewater treatment facilities included with this application? ☐ YES ☐ Exempt because 1.5 Is a copy of the appropriate plans* and specifications* included with this application? ☐ YES Denote which form is submitted: ☐ Hard copy ☐ Electronic copy (See instructions.) ☐ NO 1.6 Is a summary of design* included with this application? ☐ YES ☐ NO 1.7 Has the appropriate operating permit application (A, B, or B2) been submitted to the department? ☐ YES Date of submittal: ☐ Enclosed is the appropriate operating permit application and fee submittal. Denote which form: ☐ A ☐ B ☐ B2 N/A: However, In the event the department believes that my operating permit requires revision to permit limitation such as changing equivalent to secondary limits to secondary limits or adding total residual chlorine limits, please share a draft copy prior to public notice? YES NO 1.8 Is the facility currently under enforcement with the department or the Environmental Protection Agency? 1.9 Is the appropriate fee or JetPay confirmation included with this application? See Section 7.0 * Must be affixed with a Missouri registered professional engineer's seal, signature and date. 2.0 PROJECT INFORMATION 2.1 NAME OF PROJECT 2.2 ESTIMATED PROJECT CONSTRUCTION COST 2.3 PROJECT DESCRIPTION 2.4 SLUDGE HANDLING, USE AND DISPOSAL DESCRIPTION 2.5 DESIGN INFORMATION A. Current population: _____; Design population: _____; B. Actual Flow: 43,108 gpd; Design Average Flow: 145,000 gpd; Actual Peak Daily Flow: gpd; Design Maximum Daily Flow: 165,085 gpd; Design Wet Weather Event: 1,450,000 GPD

MO 780-2189 (02-19) Page 1 of 3

design factored in lagoon attenuation based on wet weather event, and ·limits throughput flow to the design maximum daily flow based on peak

theoretical wet weather event (modeled as 10-year design storm).

.0 WASTEWATER TREATMENT FACILI	TY	TELEPHONE NUMBER WITH A	REA CODE	E-MAIL ADDRES	SS	
AME		(660) 645-2355	TEN GOODE		rk@gmail.com	
raymer WWTF	CITY	(000) 010 2000	STATE	ZIP CODE	COUNTY	
odress (PHYSICAL) 3510 Southeast Hwy N	Braymer		МО	64624	Caldwell	
		001 Of 001)	1			
/astewater Treatment Facility: Mo- 00280	1/4, NW 1/4	Sec 11 T 55N	_, R 26W			
(Use additional pages if construction of more	e than one out	fall is proposed.)		_		
.2 UTM Coordinates Easting (X): 432618 For Universal Transverse Mercator (UTM), 2	ZONE 13 NOTUI	referenced to mortin mine	rican Datum 1	983 (NAD83)		
3.3 Name of receiving streams: Tribut	- Widd C	71CCK				
.0 PROJECT OWNER		TELEPHONE NUMBER WITH A	AREA CODE	E-MAIL ADDRE	ESS	OFFICE STATE
AME		(660) 645-2355	110000	braymercle	erk@gmail.com	
ity of Braymer, MO	CITY	(000) 040 2000	STATE	ZIP CODE		
DDRESS 08 E. 2nd St.	Braymer	9	MO	64624		
5.0 CONTINUING AUTHORITY: A contin	uing authorit	v is a company, busine	ess, entity or	person(s) that	t will be operating the	e facility
and/or ensuring compliance with the permi	t requiremen	IIS.		E-MAIL ADDR		
NAME		TELEPHONE NOWDER THAT	AREA CODE		erk@gmail.com	
City of Braymer, MO	Low	(660) 645-2355	STATE	ZIP CODE	on eginamos.	
ADDRESS	Braymer		MO	64624		
08 E. 2nd St.			ad with this s	application	☐YES ☐NO	N/A
5.1 A letter from the continuing authority,	if different th	an the owner, is includ	USSION REGILLA	ala la manana	<u> </u>	
5.1 A letter from the continuing authority, 5.2 COMPLETE THE FOLLOWING IF THE CONTINUING AU	THORITY IS A MIS	SOURI PUBLIC SERVICE COM	application	? YES	NO	
A. Is a copy of the certificate of convenier	nce and nece	essity included with this	аррисацоп			
5.3 COMPLETE THE FOLLOWING IF THE CONTINUING AU	THORITY IS A PR	OPERTY OWNERS ASSOCIATION	N.			
	d covernents	included with this appli	cation	YES N		
a	quitclaim de	ed or other legal instru	iment which	transfers own	ership of the land for	the
the transfer facility to the acc	cociation incl	Moteo wiin iiis abbiicai	OTT-			
C. Is a copy of the as-filed legal instrume	nt (typically t	he plat) that provides t	he association	on with valid e	asements for all sew	ers
included with this applied on?	ES LINO					
D. Is a copy of the Missouri Secretary of	State's nonp	rofit corporation certific	ate included	with this appl	ication?	TINC
6.0 ENGINEER						
ENGINEER NAME / COMPANY NAME		TELEPHONE NUMBER WITH	AREA CODE	E-MAIL ADD	wehr@bartwest.com	
Kyle J. Landwehr, PE, ENV SP / Bartlett &	& West, Inc.	(573) 659-6727	OTATE	ZIP CODE	well @bartwest.com	
ADDRESS	CITY	C'h	MO	65101		
601 Monroe Street, Suite 201	Jefferso	in City	IVIO	100101		
7.0 APPLICATION FEE		il in the committee particle of the	0000	0004		
CHECK NUMBER		☑ JETPAY CONFIRMATION N	UMBER 2006	2631	and an along envisally	nation o
	penalty of lav	w that this document a	nd all attachi	nents were pr	epared under my din	ection o
gathering the information, the information aware that there are significant penalties	for submitting	ng false information, inc	luding the p	ossibility of fin	e and imprisonment	tor
knowing violations.	indure and	Turing page to men	used with this	парисанов.	TELL MERCHANISM	
PROJECT OWNER SIGNATURE						
PRINTED NAME	7 . 1	\		DATE 1	-28-2025	
Dennis Batchelar	elekile			0		,
TITLE OR CORPORATE POSITION		TELEPHONE NUMBER WIT	H AREA CODE	E-MAIL ADI	clerk@gmail.com	
Mayor		(660) 645-2355	150			
Mail completed copy to: MISSO	DURI DEPAF	RTMENT OF NATURAL	RESOURC	ES		
WATE		TION PROGRAM				
P.O. B	BOX 176	, MO 65102-0176				
JEFFE	EKSON CITT	END OF PART A				
REFER TO THE APPLICATION	W OVERVE	W TO DETERMINE W	HETHER P	ART B NEEDS	S TO BE COMPLET	Ε
REFER TO THE APPLICATION	N OVEKVIE	W TO DETERMINE W	T. Show I I Should be I			Page

RART B – LAND APPLICATION ONLY (Submit only if the proposed construction project includes land application of wastewater.)
8.0 FACILITY INFORMATION
8.1 Type of wastewater to be irrigated: Domestic State/National Park Seasonal business Municipal Municipal with a pretreatment program or significant industrial users Other (explain)
8.2 Months when the business or enterprise will operate or generate wastewater: 12 months per year Part of the year (list months):
8.3 This system is designed for: No-discharge. Partial irrigation when feasible and discharge rest of time. Irrigation during recreational season, April – October, and discharge during November – March. Other (explain)
9.0 STORAGE BASINS
9.1 Number of storage basins: (Use additional pages if greater than three basins.)
9.2 Type of basins: Steel Concrete Fiberglass Earthen Earthen with membrane liner
9.3 Storage basin dimensions at inside top of berm (feet). Report freeboard as feet from top of berm to emergency spillway or overflow pipe. Basin #1: Length Width Depth Freeboard Depth Safety % Slope Basin #2: Length Width Depth Freeboard Depth Safety % Slope Parth Safety % Slope
Basin #3: Length Width Depth Freeboard Depth Safety % Slope 9.4 Storage Basin operating levels (report as feet below emergency overflow level). Basin #1: Maximum operating water level ft Minimum operating water level ft Basin #2: Maximum operating water level ft Minimum operating water level ft Basin #3: Maximum operating water level ft Minimum operating water level ft
9.5 Design depth of sludge in storage basins. Basin #1: ft Basin #2: ft Basin #3: ft
9.6 Existing sludge depth, if the basins are currently in operation. Basin #1: ft Basin #2: ft Basin #3: ft
9.7 Total design sludge storage: dry tons and cubic feet
10.0 LAND APPLICATION SYSTEM
10.1 Number of irrigation sites Total Acres Maximum % field slopes Location: ¼, ¼, ¼, Sec T R County Acres Location: ¼, ¼, ¼, Sec T R County Acres (Use additional pages if greater than three irrigation sites.)
10.2 Type of vegetation: Grass hay Pasture Timber Row crops Other (describe)
10.3 Wastewater flow (dry weather) gallons per day: Average annual Seasonal Off-season
10.4 Land application rate (design flow including 1-in-10 year storm water flows): Design: inches/year inches/hour inches/day inches/week Actual: inches/year inches/hour inches/day inches/week
10.5 Total irrigation per year (gallons): Design: gal Actual: gal
10.6 Actual months used for irrigation (check all that apply): ☐ Jan ☐ Feb ☐ Mar ☐ Apr ☐ May ☐ Jun ☐ Jul ☐ Aug ☐ Sep ☐ Oct ☐ Nov ☐ Dec
10.7 Land application rate is based on: ☐ Hydraulic Loading ☐ Other (describe) ☐ Nutrient Management Plan (N&P) If N&P is selected is the plan included? ☐ YES ☐ NO