STATE OF MISSOURI

DEPARTMENT OF NATURAL RESOURCES

MISSOURI CLEAN WATER COMMISSION

MISSOURI STATE OPERATING PERMIT

In compliance with the Missouri Clean Water Law (Chapter 644 RSMo, hereinafter, the Law), and the Federal Water Pollution Control Act (Public Law 92-500, 92nd Congress) as amended,

Permit No.	MO-0109878
Owner:	City of St. Joseph
Address:	1100 Frederick Avenue, St. Joseph, MO 64501
Continuing Authority:	Same as above
Address:	Same as above
Facility Name:	St. Joseph Sanitary Landfill
Facility Address:	9431 50 th Rd. SE, St. Joseph, MO 64507
Legal Description:	See following pages
UTM Coordinates:	See following pages
Receiving Stream:	See following pages
First Classified Stream and ID:	See following pages
USGS Basin & Sub-watershed No	.: See following pages

is authorized to discharge from the facility described herein, in accordance with the effluent limitations and monitoring requirements as set forth herein:

FACILITY DESCRIPTION

SEE PAGE 2

Leachate cannot be discharged. Stormwater which has come into contact with leachate is considered leachate and cannot be discharged. Leachate, and stormwater which has come into contact with leachate, must be managed in accordance with the provisions contained in the Missouri Solid Waste Management Laws, regulations, and Sanitary Landfill Operating Permit; and Hazardous Waste Program (if applicable).

This permit authorizes only stormwater discharges under the Missouri Clean Water Law and the National Pollutant Discharge Elimination System; it does not apply to other regulated areas.

June 1, 2022 Effective Date

May 31, 2027 Expiration Date

Chris Wieberg, Director, Water Protection Program

Permit No. MO-0109878 Page 2 of 10

FACILITY DESCRIPTION (CONTINUED)

St. Joseph landfill is an active sanitary waste landfill which operates under DNR solid waste permit number 102102. It was initially permitted for solid waste in 1977. The total permitted landfill footprint is approximately 89 acres. It accepts primarily municipal solid waste for disposal in active landfill cells, although industrial waste is also accepted. On-site operations include disposal of solid waste, major appliances, and tires; and maintenance and construction on three closed landfills. It discharges stormwater through six outfalls. Average flow to the outfalls is dependent on precipitation. Wastewater (leachate) is not discharged at this facility. Leachate is collected in two ponds, two sumps, and one condensate holding tank. Leachate is sent to a POTW as necessary. Waste oils and anti-freeze are collected by a contract environmental company for disposal.

OUTFALL #001 - Stormwater; SIC # 4953

Receives stormwater from an active landfill, sedimentation basin treatment.						
Legal Description:	SW ¹ / ₄ , NE ¹ / ₄ , Sec.13, T56N, R35W, Buchanan County					
UTM Coordinates:	X = 347940, Y = 4392462					
Receiving Stream:	Tributary to Pigeon Creek					
First Classified Stream and ID:	Pigeon Creek (C) WBID#349					
USGS Basin & Sub-watershed No.:	Pigeon Creek-Platte River (10240012-0602)					
Maximum Flow:	2.6 MGD (based on a 10 yr 24 hr precip. event)					

<u>OUTFALL #002</u> – Stormwater; SIC # 4953 Receives stormwater from an active landfill sedimentation basin treatm

Receives stormwater from an active landfill,	, sedimentation basin treatment.
Legal Description:	SW ¹ / ₄ , NE ¹ / ₄ , Sec.13, T56N, R35W, Buchanan County
UTM Coordinates:	X = 347680, Y = 4392459
Receiving Stream:	Tributary to Pigeon Creek
First Classified Stream and ID:	Pigeon Creek (C) 349
USGS Basin & Sub-watershed No.:	Pigeon Creek-Platte River (10240012-0602)
Maximum Flow:	2.6 MGD (based on a 10 yr 24 hr precip. event)

OUTFALL #003 – Removed in 2019.

OUTFALL #004 – Downstream monitoring point for outfalls #003, #005, #006						
Legal Description:	NW ¹ /4, SW ¹ /4, Sec.18, T56N, R34W, Buchanan County					
UTM Coordinates:	X = 348503, Y = 4392249					
Receiving Stream:	Tributary to Pigeon Creek (C)					
First Classified Stream and ID:	100K Extent-Remaining Streams (C) 3960					
USGS Basin & Sub-watershed No.:	Pigeon Creek-Platte River (10240012-0602)					

OUTFALL #005 – Stormwater; SIC # 4953

Receives stormwater from an active landfill, white goods crushing, and tire storage areas. Sedimentation basin treatment.Legal Description:NE¹/₄, NE¹/₄, Sec.13, T56N, R35W, Buchanan CountyUTM Coordinates:X = 348113, Y = 4393187Receiving Stream:Tributary to Pigeon CreekFirst Classified Stream and ID:100K Extent-Remaining Streams (C) 3960USGS Basin & Sub-watershed No.:Pigeon Creek-Platte River (10240012-0602)Maximum Flow:1.6 MGD (based on a 10 yr 24 hr precip. event)

OUTFALL #006 – Stormwater; SIC # 4953Receives stormwater from an active landfill, sedimentation basin treatment.Legal Description:SE¹/₄, NE¹/₄, Sec.13, T56N, R35W, Buchanan CountyUTM Coordinates:X = 348406, Y = 4392799Receiving Stream:Tributary to Pigeon CreekFirst Classified Stream and ID:100K Extent-Remaining Streams 3960USGS Basin & Sub-watershed No.:Pigeon Creek-Platte River (10240012-0602)Maximum Flow:1.6 MGD (based on a 10 yr 24 hr precip. event)

FACILITY DESCRIPTION (CONTINUED)

OUTFALL #007 - Stormwater; SIC # 4953

Receives stormwater from an active landfill, sedimentation basin treatment. Legal Description: SE¹/4, SE¹/4, Sec.13, T56N, R35W, Buchanan County UTM Coordinates: X = 348326, Y = 4391779 **Receiving Stream:** Tributary to Pigeon Creek Pigeon Cr. (C) 349 First Classified Stream and ID: Pigeon Creek-Platte River (10240012-0602) USGS Basin & Sub-watershed No.: Est. Flow in 10 yr 24 hr precip. event: 4.1 MGD (based on a 10 yr 24 hr precip. event)

OUTFALL #008 - Stormwater; SIC # 4953

Emergency outfall. Receives stormwater from an active landfill, sedimentation basin treatment. Legal Description: **UTM Coordinates: Receiving Stream:** First Classified Stream and ID: USGS Basin & Sub-watershed No.: Maximum Flow:

SW¹/₄, SW¹/₄, Sec.18, T56N, R34W, Buchanan County X = 348354, Y = 4391829 Tributary to Pigeon Creek 100K Extent-Remaining Streams (C) 3960 Pigeon Creek-Platte River (10240012-0602) 4.1 MGD (based on a 10 yr 24 hr precip. event)

A. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

OUTFALL #001, #002,
#005, #006
Stormwater Only

TABLE A-1 FINAL EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

The facility is authorized to discharge from outfall(s) as specified. The final effluent limitations shall become effective on <u>June 1, 2022</u> and remain in effect until expiration of the permit. Discharges shall be controlled, limited, and monitored by the facility as specified below:

EFFLUENT PARAMETERS		FINAL LIMITATIONS		_	MONITORING REQUIREMENTS ^{\$\varphi\$}	
	Units	Daily Maximum	Monthly Average	BENCHMARKS	Measurement Frequency◊	Sample Type
Physical						
Flow	MGD	*		-	once/quarter	24 hr. est
CONVENTIONAL						
Chemical Oxygen Demand	mg/L	**		120	once/quarter	grab
Oil & Grease	mg/L	**		10	once/quarter	grab
pH ^Ω	SU	6.5 to 9.0		-	once/quarter	grab
Settleable Solids	mL/L/hr	**		1.5	once/quarter	grab
Total Dissolved Solids	mg/L	*		-	once/quarter	grab
Total Suspended Solids	mg/L	**		100	once/quarter	grab
METALS						
Aluminum, Total Recoverable	μg/L	**		750	once/quarter	grab
Arsenic, Total Recoverable	μg/L	*		-	once/quarter	grab
Chromium (III), Total Recoverable	μg/L	*		-	once/quarter	grab
Chromium (VI), Dissolved \in	μg/L	*		-	once/quarter	grab
Copper, Total Recoverable	μg/L	24		-	once/quarter	grab
Iron, Total Recoverable	μg/L	4000		-	once/quarter	grab
Lead, Total Recoverable	μg/L	*		-	once/quarter	grab
Manganese, Total Recoverable	μg/L	*		-	once/quarter	grab
Selenium, Total Recoverable ¥	μg/L	*		-	once/quarter	grab
Zinc, Total Recoverable	μg/L	191		-	once/quarter	grab
NUTRIENTS						
Ammonia as N	mg/L	*		-	once/quarter	grab
OTHER						
Benzene	μg/L	*		-	once/quarter	grab
Chloride	μg/L	*		-	once/quarter	grab
Chloride + Sulfate	μg/L	*		860	once/quarter	grab
Fluoride	μg/L	*		1000	once/quarter	grab
Phenol	μg/L	*		-	once/quarter	grab
Sulfate	μg/L	*		-	once/quarter	grab
MONITORING REPORTS SHAL THERE SHALL BE NO DISCHA						

OUTFALL #007, #008

Stormwater Only

<u>TABLE A-2</u> FINAL EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

The facility is authorized to discharge from outfall(s) as specified. The final effluent limitations shall become effective on June 1, 2022 and remain in effect until expiration of the permit. Discharges shall be controlled, limited, and monitored by the facility as specified below:

EFFLUENT PARAMETERS		FINAL LIMITATIONS		_	Monitoring Requirements $^{\infty}$	
	Units	DAILY MAXIMUM	Monthly Average	BENCHMARKS	Measurement Frequency◊	Sample Type
PHYSICAL						
Flow	MGD	*		-	once/quarter	24 hr. est
Precipitation	inches	*		-	once/quarter	measured
CONVENTIONAL						
Biochemical Oxygen Demand ₅	mg/L	**		60	once/quarter	grab
Chemical Oxygen Demand	mg/L	**		120	once/quarter	grab
Oil & Grease	mg/L	**		10	once/quarter	grab
pН ^Ω	SU	6.5 to 9.0		-	once/quarter	grab
Settleable Solids	mL/L/hr	**		1.5	once/quarter	grab
Total Dissolved Solids	mg/L	*		-	once/quarter	grab
Total Suspended Solids	mg/L	**		100	once/quarter	grab
METALS						
Aluminum, Total Recoverable	μg/L	*		-	once/quarter	grab
Arsenic, Total Recoverable	μg/L	*		-	once/quarter	grab
Chromium (III), Total Recoverable	μg/L	*		-	once/quarter	grab
Chromium (VI), Dissolved €	μg/L	*		-	once/quarter	grab
Copper, Total Recoverable	μg/L	*		-	once/quarter	grab
Iron, Total Recoverable	μg/L	**		4000	once/quarter	grab
Lead, Total Recoverable	μg/L	*		-	once/quarter	grab
Manganese, Total Recoverable	μg/L	*		-	once/quarter	grab
Selenium, Total Recoverable ¥	μg/L	*		-	once/quarter	grab
Zinc, Total Recoverable	μg/L	**		210	once/quarter	grab
NUTRIENTS						
Ammonia as N	mg/L	*		-	once/quarter	grab
OTHER						
Benzene	μg/L	*		-	once/quarter	grab
Chloride	μg/L	**		860	once/quarter	grab
Chloride + Sulfate	μg/L	**		1000	once/quarter	grab
Fluoride	μg/L	*		-	once/quarter	grab
Phenol	μg/L	*		-	once/quarter	grab
Sulfate	μg/L	*		-	once/quarter	grab
MONITORING REPORTS SHAI THERE SHALL BE NO DISCHA						

OUTFALL #004

Instream monitoring

TABLE A-3 FINAL EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

The facility is authorized to discharge from outfall(s) as specified. The final effluent limitations shall become effective on **June 1, 2022** and remain in effect until expiration of the permit. Discharges shall be controlled, limited, and monitored by the facility as specified below:

EFFLUENT PARAMETERS	Units	FINAL LIMITATIONS			Monitoring Requirements $^{\infty}$		
		Daily Maximum	Monthly Average	BENCHMARKS	Measurement Frequency◊	SAMPLE Type	
PHYSICAL							
Flow	MGD	*		-	once/quarter	measured	
Precipitation	inches	*		-	once/quarter	measured	
CONVENTIONAL							
Chemical Oxygen Demand	mg/L	*		-	once/quarter	grab	
pH ^Ω	SU	*		-	once/quarter	grab	
Total Dissolved Solids	mg/L	*		-	once/quarter	grab	
Total Suspended Solids	mg/L	*		-	once/quarter	grab	
METALS							
Total Hardness as CaCO ₃	mg/L	*		-	once/quarter	grab	
Aluminum, Total Recoverable	μg/L	*		-	once/quarter	grab	
Copper, Total Recoverable	μg/L	*		-	once/quarter	grab	
Iron, Total Recoverable	μg/L	*		-	once/quarter	grab	
Zinc, Total Recoverable	μg/L	*		-	once/quarter	grab	
NUTRIENTS							
Ammonia as N	mg/L	*		-	once/quarter	grab	
HYDROCARBONS							
Benzene	μg/L	*		-	once/quarter	grab	
Other							
Chloride	μg/L	*		-	once/quarter	grab	
Chloride + Sulfate	μg/L	*		-	once/quarter	grab	
Sulfate	μg/L	*		-	once/quarter	grab	
MONITORING REPORTS SHALL BE SUBMITTED <u>QUARTERLY</u> ; THE NEXT REPORT IS DUE <u>OCTOBER 28, 2022</u> . THERE SHALL BE NO DISCHARGE OF FLOATING SOLIDS OR VISIBLE FOAM IN OTHER THAN TRACE AMOUNTS.							

Notes:

- * Monitoring requirement only.
- ** Monitoring and reporting requirement with benchmark. See Special Conditions #16.
- ∞ All samples shall be collected from a discharge resulting from a precipitation event greater than 0.1 inches in magnitude and that occurs at least 72 hours from the previously measurable precipitation event. If a discharge does not occur within the reporting period, report as no discharge. The total amount of precipitation should be noted from the event from which the samples were collected.
- Ω The facility will report the minimum and maximum values. pH is not to be averaged.
- ¥ This permit establishes monitoring for total recoverable selenium which are below the most commonly used analytical methods detection limits. However, 40 CFR 136 indicates effluent characteristics can be effectively quantified using EPA approved method 200.9 or 3113B. These methods have detection limits of $0.6 \mu g/L$ and $2 \mu g/L$ respectively; either may be used to determine compliance with this permit. Additionally, if monitoring only, the facility must choose one of the above methods to attain compliance with Standard Conditions Part I §A No. 4.
- € This permit establishes monitoring for dissolved hexavalent chromium. This permit establishes the requirement to use Standard Method 3500-Cr C-2011 or newer to ensure data submitted to the Department conforms to the most sensitive method as required by Standard Conditions Part I §A No. 4 and is analyzed within the required method holding times.

MINIMUM QUARTERLY SAMPLING REQUIREMENTS						
QUARTER	MONTHS	EFFLUENT PARAMETERS	REPORT IS DUE			
First	January, February, March	Sample at least once during any month of the quarter	April 28th			
Second	April, May, June	Sample at least once during any month of the quarter	July 28th			
Third	July, August, September	Sample at least once during any month of the quarter	October 28th			
Fourth	October, November, December	Sample at least once during any month of the quarter	January 28th			

B. STANDARD CONDITIONS

Quarterly campling

Δ

In addition to specified conditions stated herein, this permit is subject to the attached <u>Part I</u> standard conditions dated <u>August 1, 2014</u> and hereby incorporated as though fully set forth herein.

C. SPECIAL CONDITIONS

- 1. This permit establishes ammonia monitoring based on Missouri's current Water Quality Standard. On August 22, 2013, the U.S. Environmental Protection Agency (EPA) published a notice in the Federal Register announcing of the final national recommended ambient water quality criteria for protection of aquatic life from the effects of ammonia in freshwater. The EPA's guidance, Final Aquatic Life Ambient Water Quality Criteria for Ammonia Fresh Water 2013, is not a rule, nor automatically part of a state's water quality standards. States must adopt new ammonia criteria consistent with EPA's published ammonia criteria into their water quality standards that protect the designated uses of the water bodies. The Department of Natural Resources has initiated stakeholder discussions on how to best incorporate these new criteria into the State's rules. A date for when this rule change will occur has not been determined. Also, refer to Section IV of this permit's factsheet for further information including estimated future effluent limits for this facility. It is recommended the permittee view the Department's 2013 EPA criteria Factsheet located at http://dnr.mo.gov/pubs/pub2481.htm.
- 2. This permit may be reopened and modified, or alternatively revoked and reissued, to:
 - (a) Comply with any applicable effluent standard or limitation issued or approved under Sections 301(b)(2)(C) and (D),
 - 304(b)(2), and 307(a) (2) of the Clean Water Act, if the effluent standard or limitation so issued or approved:
 - (1) contains different conditions or is otherwise more stringent than any effluent limitation in the permit; or
 - (2) controls any pollutant not limited in the permit.
 - (b) Incorporate new or modified effluent limitations or other conditions, if the result of a waste load allocation study, toxicity test, or other information indicates changes are necessary to assure compliance with Missouri's Water Quality Standards.
 - (c) Incorporate new or modified effluent limitations or other conditions if, as the result of a watershed analysis, a Total Maximum Daily Load (TMDL) limitation is developed for the receiving waters which are currently included in Missouri's list of waters of the state not fully achieving the state's water quality standards, also called the 303(d) list.

The permit as modified or reissued under this paragraph shall also contain any other requirements of the Clean Water Act then applicable.

- 3. All outfalls must be clearly marked in the field.
- 4. Water Quality Standards
 - (a) To the extent required by law, discharges to waters of the state shall not cause a violation of water quality standards rule under 10 CSR 20-7.031, including both specific and general criteria.
 - (b) General Criteria. The following general water quality criteria shall be applicable to all waters of the state at all times including mixing zones. No water contaminant, by itself or in combination with other substances, shall prevent the waters of the state from meeting the following conditions:

C. SPECIAL CONDITIONS (CONTINUED)

- (1) Waters shall be free from substances in sufficient amounts to cause the formation of putrescent, unsightly or harmful bottom deposits or prevent full maintenance of beneficial uses;
- (2) Waters shall be free from oil, scum and floating debris in sufficient amounts to be unsightly or prevent full maintenance of beneficial uses;
- (3) Waters shall be free from substances in sufficient amounts to cause unsightly color or turbidity, offensive odor or prevent full maintenance of beneficial uses;
- (4) Waters shall be free from substances or conditions in sufficient amounts to result in toxicity to human, animal or aquatic life;
- (5) There shall be no significant human health hazard from incidental contact with the water;
- (6) There shall be no acute toxicity to livestock or wildlife watering;
- (7) Waters shall be free from physical, chemical or hydrologic changes that would impair the natural biological community;
- (8) Waters shall be free from used tires, car bodies, appliances, demolition debris, used vehicles or equipment and solid waste as defined in Missouri's Solid Waste Law, section 260.200, RSMo, except as the use of such materials is specifically permitted pursuant to section 260.200-260.247.
- 5. Changes in Discharges of Toxic Pollutant

In addition to the reporting requirements under §122.41(1), all existing manufacturing, commercial, mining, and silvicultural dischargers must notify the Director as soon as they know or have reason to believe:

- (a) That an activity has occurred or will occur which would result in the discharge, on a routine or frequent basis, of any toxic
 - pollutant which is not limited in the permit, if that discharge will exceed the highest of the following notification levels:
 - (1) One hundred micrograms per liter (100 μ g/L);
 - (2) Two hundred micrograms per liter (200 μ g/L) for acrolein and acrylonitrile;
 - (3) Five hundred micrograms per liter (500 µg/L) for 2,4-dinitrophenol and for 2-methyl-4, 6-dinitrophenol;
 - (4) One milligram per liter (1 mg/L) for antimony;
 - (5) Five (5) times the maximum concentration value reported for the pollutant in the permit application in accordance with 40 CFR 122.21(g)(7); or
 - (6) The notification level established by the department in accordance with 40 CFR 122.44(f).
- (b) That any activity has occurred or will occur which would result in any discharge, on a non-routine or infrequent basis, of a toxic pollutant which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - (1) Five hundred micrograms per liter (500 μ g/l);
 - (2) One milligram per liter (1 mg/l) for antimony;
 - (3) Ten (10) times the maximum concentration value reported for that pollutant in the permit application in accordance with §122.21(g)(7).
 - (4) The level established by the Director in accordance with §122.44(f).
- 6. Report as no-discharge when a discharge does not occur during the report period.
- 7. Electronic Discharge Monitoring Report (eDMR) Submission System.
 - (a) Discharge Monitoring Reporting Requirements. The permittee must electronically submit compliance monitoring data via the eDMR system. In regards to Standard Conditions Part I, Section B, #7, the eDMR system is currently the only Department approved reporting method for this permit.
 - (b) Programmatic Reporting Requirements. The following reports (if required by this permit) must be electronically submitted as an attachment to the eDMR system until such a time when the current or a new system is available to allow direct input of the data:
 - (1) Collection System Maintenance Annual Reports;
 - (2) Schedule of Compliance Progress Reports;
 - (3) Sludge/Biosolids Annual Reports;
 - (4) Any additional report required by the permit excluding bypass reporting.

After such a system has been made available by the department, required data shall be directly input into the system by the next report due date.

- (c) Other actions. The following shall be submitted electronically after such a system has been made available by the department:
 - (1) General Permit Applications/Notices of Intent to discharge (NOIs);
 - (2) Notices of Termination (NOTs);
 - (3) No Exposure Certifications (NOEs);
 - (4) Low Erosivity Waivers and Other Waivers from Stormwater Controls (LEWs); and

C. SPECIAL CONDITIONS (CONTINUED)

- (d) Electronic Submissions. To access the eDMR system, use the following link in your web browser: <u>https://edmr.dnr.mo.gov/edmr/E2/Shared/Pages/Main/Login.aspx</u>.
- (e) Waivers from Electronic Reporting. The permittee must electronically submit compliance monitoring data and reports unless a waiver is granted by the department in compliance with 40 CFR Part 127. The permittee may obtain an electronic reporting waiver by first submitting an eDMR Waiver Request Form: <u>http://dnr.mo.gov/forms/780-2692-f.pdf</u>. The department will either approve or deny this electronic reporting waiver request within 120 calendar days. Only permittees with an approved waiver request may submit monitoring data and reports on paper to the Department for the period that the approved electronic reporting waiver is effective.
- 8. Reporting of Non-Detects
 - (a) An analysis conducted by the permittee or their contracted laboratory shall be conducted in such a way that the precision and accuracy of the analyzed result can be enumerated.
 - (b) The permittee shall not report a sample result as "Non-Detect" without also reporting the detection limit of the test. Reporting as "Non-Detect" without also including the detection limit will be considered failure to report, which is a violation of this permit.
 - (c) The permittee shall report the "Non-Detect" result using the less than sign and the minimum detection limit (e.g. <10).
 - (d) Where the permit contains a Minimum Level (ML) and the permittee is granted authority in the permit to report zero in lieu of the < ML for a specified parameter (conventional, priority pollutants, metals, etc.), then zero (0) is to be reported for that parameter.
 - (e) See Standard Conditions Part I, Section A, #4 regarding proper detection limits used for sample analysis.
 - (f) When calculating monthly averages, one-half of the minimum detection limit (MDL) should be used instead of a zero. Where all data are below the MDL, the "<MDL" shall be reported as indicated in item (C).
- 9. It is a violation of the Missouri Clean Water Law to fail to pay fees associated with this permit (644.055 RSMo).
- 10. The purpose of the Stormwater Pollution Prevention Plan (SWPPP) and the Best Management Practices (BMPs) listed herein is the prevention of pollution of waters of the state. A deficiency of a BMP means it was not effective preventing pollution [10 CSR 20-2.010(56)] of waters of the state, and corrective actions means the facility took steps to eliminate the deficiency.
- 11. The facility's SIC code(s) is found in 40 CFR 122.26(b)(14) and/or 10 CSR 20-6.200(2) hence shall implement a SWPPP which must be prepared and implemented upon permit issuance. The SWPPP must be kept on-site and should not be sent to the department unless specifically requested. The SWPPP must be reviewed and updated every five (5) years or as site conditions change (see Part III: Antidegradation Analysis and SWPPP sections in the fact sheet). The permittee shall select, install, use, operate, and maintain the Best Management Practices prescribed in the SWPPP in accordance with the concepts and methods described in: *Developing Your Stormwater Pollution Prevention Plan, A Guide for Industrial Operators*, (EPA 833-B-09-002) published by the EPA in February 2009 (www.epa.gov/npdes/pubs/industrial_swppp_guide.pdf). The SWPPP must include:
 - (a) A listing of specific contaminants and their control measures (or BMPs) and a narrative explaining how BMPs are implemented to control and minimize the amount of contaminants potentially entering stormwater. The BMPs should be designed to treat the stormwater up to the 10 year, 24 hour rain event.
 - (b) For new, altered, or expanded stormwater discharges, the SWPPP shall identify reasonable and effective BMPs while accounting for environmental impacts of varying control methods. The antidegradation analysis must document why no discharge or no exposure options are not feasible. The selection and documentation of appropriate control measures shall serve as an alternative analysis of technology and fulfill the requirements of antidegradation [10 CSR 20-7.031(3)]. Failure to implement and maintain the chosen BMP is a permit violation. For further guidance, consult the antidegradation implementation procedure at http://dnr.mo.gov/env/wpp/docs/AIP050212.pdf.
 - (c) The SWPPP must include a schedule for once per month site inspections and brief written reports. The inspection report must include precipitation information for the entire period since last inspection, as well as observations and evaluations of BMP effectiveness.
 - i. Operational deficiencies must be corrected within seven (7) calendar days.
 - ii. Minor structural deficiencies must be corrected within fourteen (14) calendar days.
 - iii. Major structural deficiencies must be reported to the regional office within seven (7) days of discovery. The initial report shall consist of the deficiency noted, the proposed remedies, the interim or temporary remedies (including the general timing of the placement of the interim measures), and an estimate of the timeframe needed to wholly complete the repairs or construction. The permittee will work with the regional office to determine the best course of action, including but not limited to temporary structures to control stormwater runoff. The facility shall correct the major structural deficiency as soon as reasonably achievable.
 - iv. All actions taken to correct the deficiencies shall be included with the written report, including photographs.
 - v. Inspection reports must be kept on site with the SWPPP and maintained for a period of five (5) years. These must be made available to department and EPA personnel upon request.

C. SPECIAL CONDITIONS (CONTINUED)

- (d) A provision for designating an individual to be responsible for environmental matters.
- (e) A provision for providing training to all personnel involved in material handling and storage, and housekeeping of maintenance and cleaning areas. Proof of training shall be submitted on request of the department.
- (f) A facility map, including all outfalls, shall be maintained with the SWPPP.
- (g) Throughout coverage under this permit, the facility must perform ongoing SWPPP review and revision to incorporate any site condition changes.
- 16. This permit stipulates pollutant benchmarks applicable to your discharge. The benchmarks do not constitute direct numeric effluent limitations; therefore, a benchmark exceedance alone is not a permit violation. Benchmark monitoring and visual inspections shall be used to determine the overall effectiveness of SWPPP and to assist you in knowing when additional corrective action may be necessary to protect water quality. If a sample exceeds a benchmark concentration you must review your SWPPP and your BMPs to determine what improvements or additional controls are needed to reduce that pollutant in your stormwater discharge(s).

Any time a benchmark exceedance occurs a Corrective Action Report (CAR) must be completed. A CAR is a document that records the efforts undertaken by the facility to improve BMPs to meet benchmarks in future samples. CARs must be retained with the SWPPP and available to the Department upon request. If the efforts taken by the facility are not sufficient and achieved. Failure to take corrective action to address a benchmark exceedance and failure to make measureable progress towards achieving the benchmarks is a permit violation.

- 17. Permittee shall adhere to the following minimum Best Management Practices (BMPs):
 - (a) Prevent the spillage or loss of fluids, oil, grease, fuel, etc. from vehicle maintenance, equipment cleaning, or warehouse activities and thereby prevent the contamination of stormwater from these substances.
 - (b) Provide collection facilities and arrange for proper disposal of waste products including but not limited to petroleum waste products, and solvents.
 - (c) Store all paint, solvents, petroleum products and petroleum waste products (except fuels), and storage containers (such as drums, cans, or cartons) so that these materials are not exposed to stormwater or provide other prescribed BMPs such as plastic lids and/or portable spill pans to prevent the commingling of stormwater with container contents. Commingled water may not be discharged under this permit. Provide spill prevention control, and/or management sufficient to prevent any spills of these pollutants from entering waters of the state. Any containment system used to implement this requirement shall be constructed of materials compatible with the substances contained and shall also prevent the contamination of groundwater.
 - (d) Provide good housekeeping practices on the site to keep trash from entry into waters of the state.
 - (e) Provide sediment and erosion control sufficient to prevent or control sediment loss off of the property to comply with general water quality criteria, effluent limits, or benchmarks. This could include the use of straw bales, silt fences, or sediment basins, if needed.
 - (f) Ensure adequate provisions are provided to prevent surface water intrusion into the leachate storage basin, to divert stormwater runoff around the leachate storage basin, and to protect embankments from erosion.
- 18. Permittee must continue sampling and reporting at outfalls 001, 003 and 004 until construction at the site is complete. Once construction is complete, permittee shall report no discharge until the permit is renewed if no discharge of industrially exposed stormwater is occurring from these outfalls.

F. NOTICE OF RIGHT TO APPEAL

If you were adversely affected by this decision, you may be entitled to pursue an appeal before the administrative hearing commission (AHC) pursuant to 621.250 and 644.051.6 RSMo. To appeal, you must file a petition with the AHC within thirty days after the date this decision was mailed or the date it was delivered, whichever date was earlier. If any such petition is sent by registered mail or certified mail, it will be deemed filed on the date it is mailed; if it is sent by any method other than registered mail or certified mail, it will be deemed filed on the date it is received by the AHC. Any appeal should be directed to:

Administrative Hearing Commission U.S. Post Office Building, Third Floor 131 West High Street, P.O. Box 1557 Jefferson City, MO 65102-1557 Phone: 573-751-2422 Fax: 573-751-5018 Website: https://ahc.mo.gov

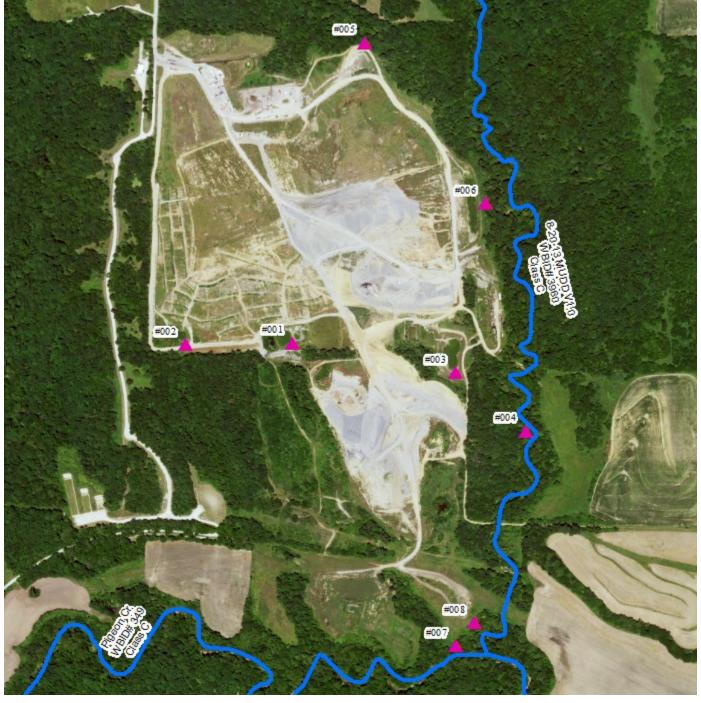
MISSOURI DEPARTMENT OF NATURAL RESOURCES FACT SHEET FOR THE PURPOSE OF RENEWAL OF MO-0109878 ST. JOSEPH SANITARY LANDFILL

The Federal Water Pollution Control Act (Clean Water Act (CWA) §402 Public Law 92-500 as amended) established the National Pollutant Discharge Elimination System (NPDES) permit program. This program regulates the discharge of pollutants from point sources into the waters of the United States, and the release of stormwater from certain point sources. All such discharges are unlawful without a permit (§301 of the Clean Water Act). After a permit is obtained, a discharge not in compliance with all permit terms and conditions is unlawful. Missouri State Operating Permits (MSOPs) are issued by the Director of the Missouri Department of Natural Resources (Department) under an approved program, operating in accordance with federal and state laws (Federal Clean Water Act and Missouri Clean Water Law 644 RSMo as amended). MSOPs may also cover underground injection, non-discharging facilities, and land application facilities. Permits are issued for a period of five (5) years unless otherwise specified for less.

As per [40 CFR Part 124.8(a)] and [10 CSR 20-6.020(1)(A)2.] a factsheet shall be prepared to give pertinent information regarding applicable regulations, rationale for the development of limitations and conditions, and the public participation process for the Missouri State Operating Permit (MSOP or permit) listed below. A factsheet is not an enforceable part of a permit.

PART I. FACILITY INFORMATION

Facility Type:	Industrial: Categorical; >1 MGD
SIC Code(s):	4953
NAICS Code(s):	562212
Application Date:	12/30/2019
Modification Date:	06/01/2019
Expiration Date:	06/30/2020
Last Inspection:	06/16/2015


FACILITY DESCRIPTION:

St. Joseph landfill is an active sanitary waste landfill which operates under DNR solid waste permit number 102102. It was initially permitted for solid waste in 1977. The total permitted landfill footprint is approximately 89 acres. It accepts primarily municipal solid waste for disposal in active landfill cells, although some industrial waste is also accepted. On-site operations include disposal of solid waste, white goods, and tires; and maintenance and construction on three closed landfills. It discharges stormwater through six outfalls. Wastewater (leachate) is not discharged at this facility. Leachate is collected and sent to a POTW as necessary. Outfalls 001, 003, and 004 will remain in the permit and must be sampled as long as there is stormwater discharging from these outfalls. Once construction at the site is complete the outfalls can be reported as no discharge, if no discharge of industrially exposed stormwater is occurring or if all stormwater from this portion of the landfill is being captured at outfalls 007 and 008. The removal of outfalls can be revisited at the time of renewal or through an additional permit modification if the facility chooses.

PERMITTED FEATURES TABLE:

OUTFALL	Average Flow (MGD)	Est Flow in 10yr/24hr precip. event* (MGD)	TREATMENT LEVEL	EFFLUENT TYPE
#001	0.08	2.6	BMPs	Landfill Stormwater
#002	0.37	2.6	BMPs	Landfill Stormwater
#003	0.03	3.0	BMPs	Landfill Stormwater
#005	0.04	1.6	BMPs	Landfill Stormwater
#006	0.04	1.6	BMPs	Landfill Stormwater
#007	Dependent on precipitation	4.1	BMPs	Landfill Stormwater
#008	Dependent on precipitation	4.1	BMPs	Landfill Stormwater

FACILITY MAP:

FACILITY PERFORMANCE HISTORY & COMMENTS:

The electronic discharge monitoring reports were reviewed for the last permit term. There were numerous exceedances of effluent limitations at outfalls 001, 002, 003, 005, and 006. Outfall 001 had exceedances of COD, Copper, Iron, and TSS. Outfall 002 had exceedances of COD, Iron, and TSS. Outfall 003 had exceedances of BOD, COD, Copper, Iron, and TSS. Outfall 005 had exceedances of COD, Copper, Iron, TSS, and Zinc. Outfall 006 had exceedances of COD and Iron.

CONTINUING AUTHORITY:

Pursuant to 10 CSR 20-6.010(2)(B)4, this facility is a Level 1 Authority.

OTHER ENVIRONMENTAL PERMITS:

In accordance with 40 CFR 122.21(f)(6), the Department evaluated other environmental permits currently held by this facility. This facility has the following permits: Missouri Air Conservation Commission Construction Permit 092015-011, Missouri Part 70 Operating Permit OP2019-007.

PART II. RECEIVING WATERBODY INFORMATION

RECEIVING WATERBODY TABLE:

OUTFALL	WATERBODY NAME	CLASS	WBID	DESIGNATED USES	DISTANCE TO SEGMENT	12-DIGIT HUC
#001	Pigeon Cr.	С	349	GEN, HHP, IRR, LWW, SCR, WBC-B, WWH (ALP)	0.57 mi	
#002	Pigeon Cr.	С	349	GEN, HHP, IRR, LWW, SCR, WBC-B, WWH (ALP)	0.54 mi	
#004	100K Extent-Remaining Stream	С	3960	GEN, HHP, IRR, LWW, SCR, WBC-B, WWH (ALP)	0.1 mi	
#005	100K Extent-Remaining Stream	С	3960	GEN, HHP, IRR, LWW, SCR, WBC-B, WWH (ALP)	0.27 mi	Platte 10240012-0602
#006	100K Extent-Remaining Stream	С	3960	GEN, HHP, IRR, LWW, SCR, WBC-B, WWH (ALP)	0.04 mi	
#007	Pigeon Cr.	С	349	GEN, HHP, IRR, LWW, SCR, WBC-B, WWH (ALP)	0.02 mi	
#008	100K Extent-Remaining Stream	С	3960	GEN, HHP, IRR, LWW, SCR, WBC-B, WWH (ALP)	0.02 mi	

Classes are representations of hydrologic flow volume or lake basin size as defined in 10 CSR 20-7.031(1)(F). L1: Lakes with drinking water supply - wastewater discharges are not permitted to occur to L1 watersheds per 10 CSR 20-7.015(3)(C); L2: major reservoirs; L3: all other public and private lakes; P: permanent streams; C: streams which may cease flow in dry periods but maintain pools supporting aquatic life; E: streams which do not maintain surface flow; and W: wetlands. Losing streams are defined in 10 CSR 20-7.031(1)(O) and are designated on the losing stream dataset or determined by the Department to lose 30% or more of flow to the subsurface.

WBID: Waterbody Identification Number: Missouri Use Designation Dataset per 10 CSR 20-7.031(1)(Q) and (S) as 100K Extant-Remaining Streams or newer; data can be found as an ArcGIS shapefile on MSDIS at <u>ftp://msdis.missouri.edu/pub/Inland_Water_Resources/MO_2014_WQS_Stream_Classifications_and_Use_shp.zip;</u> New C streams described on the dataset per 10 CSR 20-7.031(2)(A)3 as 100K Extent Remaining Streams.

HUC: Hydrologic Unit Code https://water.usgs.gov/GIS/huc.html

Designated Uses:

10 CSR 20-7.031(1)(C)1: ALP – Aquatic Life Protection (formerly AQL); current uses are defined to ensure the protection and propagation of fish shellfish and wildlife, further subcategorized as: WWH – Warm Water Habitat; CLH – Cool Water Habitat; CDH – Cold Water Habitat; EAH – Ephemeral Aquatic Habitat; MAH – Modified Aquatic Habitat; LAH – Limited Aquatic Habitat. This permit uses ALP effluent limitations in 10 CSR 20-7.031 Table A1-B3 for all habitat designations unless otherwise specified.

10 CSR 20-7.031(1)(C)2: Recreation in and on the water

- WBC is Whole Body Contact recreation where the entire body is capable of being submerged;
 - WBC-A whole body contact recreation supporting swimming uses and has public access;
 - WBC-B whole body contact recreation not included in WBC-A;
- SCR = Secondary Contact Recreation (like fishing, wading, and boating)

10 CSR 20-7.031(1)(C)3 to 7:

- HHP (formerly HHF) Human Health Protection as it relates to the consumption of fish and drinking of water;
- IRR irrigation for use on crops utilized for human or livestock consumption, includes aquifers per 10 CSR 20-7.031(6)(A);
- **LWW** Livestock and Wildlife Watering (current narrative use is defined as LWP = Livestock and Wildlife Protection), includes aquifers per 10 CSR 20-7.031(6)(A);
- DWS Drinking Water Supply, includes aquifers per 10 CSR 20-7.031(6)(A);

IND – industrial water supply

10 CSR 20-7.031(1)(C)8 to 11: Wetlands (10 CSR 20-7.031 Tables A1-B3) do not have corresponding habitat use criteria for these defined uses: WSA – storm- and flood-water storage and attenuation; WHP – habitat for resident and migratory wildlife species; WRC – recreational, cultural, educational, scientific, and natural aesthetic values and uses; WHC – hydrologic cycle maintenance.

10 CSR 20-7.015(7) and 10 CSR 20-7.031(6): GRW = Groundwater

Other Applicable Criteria:

10 CSR 20-7.031(4): **GEN** – general criteria; acute toxicity criteria applicable to all waters even those lacking designated uses 10 CSR 20-7.031(5)(N)6: **NNC** – lake numeric nutrient criteria apply Water Quality Standards Search <u>https://apps5.mo.gov/mocwis_public/waterQualityStandardsSearch.do</u>

WATERS OF THE STATE DESIGNATIONS:

Waters of the state are divided into seven categories per 10 CSR 20-7.015(1)(B)1 through 7. The applicable water of the state category is listed below. Missouri's technology-based effluent regulations are found in [10 CSR 20-7.015] and are implemented in 10 CSR 20-7.015(2) through (8). When implementing technology regulations, considerations are made for the facility type, discharge type, and category of waters of the state. Effluent limitations may not be applicable to certain waters of the state, facility type, or discharge type. In these cases, effluent limitations may be based on a best professional judgment evaluation. The best professional judgment evaluation will take site specific conditions into consideration; including facility type, the receiving water body classification, and type of discharge. Stormwater discharges and land application sites are not directly subject to limitations found in 10 CSR 20-7.015, but may be subject to limitations determined by the best professional judgment evaluation. Effluent limitation derivations are discussed in PART IV: EFFLUENTS LIMITS DETERMINATIONS.

✓ All other waters; identified at 10 CSR 20-7.015(B)7 and 10 CSR 20-7.015(8)

EXISTING WATER QUALITY & IMPAIRMENTS:

The receiving waterbody(s) segment(s), upstream, and downstream confluence water quality was reviewed. No relevant water quality data was available. The USGS <u>https://waterdata.usgs.gov/nwis/sw</u> or the Department's quality data database was reviewed. <u>https://apps5.mo.gov/mocwis_public/wqa/waterbodySearch.do</u> and <u>https://apps5.mo.gov/wqa/</u> The Department's quality data database was reviewed. <u>https://apps5.mo.gov/mocwis_public/wqa/waterbodySearch.do</u> and <u>https://apps5.mo.gov/wqa/</u> The Department's quality data database was reviewed. <u>https://apps5.mo.gov/mocwis_public/wqa/waterbodySearch.do</u> and <u>https://apps5.mo.gov/wqa/</u> Impaired waterbodies which may be impacted by discharges from this facility were determined. Impairments include waterbodies on the 305(b) or 303(d) list and those waterbodies or watersheds under a TMDL. <u>https://dnr.mo.gov/water/what-were-doing/water-planning/quality-standards-impaired-waters-total-maximum-daily-loads/tmdls</u> Section 303(d) of the federal Clean Water Act requires each state identify waters not meeting water quality standards and for which adequate water pollution controls have not been required.

https://dnr.mo.gov/water/what-were-doing/water-planning/quality-standards-impaired-waters-total-maximum-daily-loads/impairedwaters Water quality standards protect such beneficial uses of water as whole body contact (such as swimming), maintaining fish and other aquatic life, and providing drinking water for people, livestock, and wildlife. The 303(d) list helps state and federal agencies keep track of impaired waters not addressed by normal water pollution control programs. A TMDL is a calculation of the maximum amount of a given pollutant a water body can absorb before its water quality is affected; hence, the purpose of a TMDL is to determine the pollutant loading a specific waterbody can assimilate without exceeding water quality standards. If a water body is determined to be impaired as listed on the §303(d) list, then a watershed management plan or TMDL for that watershed may be developed. The TMDL shall include the WLA calculation.

✓ The permit writer has noted no upstream or downstream impairments near this facility.

WATERBODY MONITORING REQUIREMENTS:

 \checkmark No waterbody monitoring requirements are recommended at this time.

WATERBODY MIXING CONSIDERATIONS:

For all wastewater outfalls, mixing zone and zone of initial dilution are not allowed per 10 CSR 20-7.031(5)(A)4.B.(I)(a) and (b), as the base stream flow does not provide dilution to the effluent.

PART III. RATIONALE AND DERIVATION OF PERMIT CONDITIONS

ANTIBACKSLIDING:

Federal Regulations [CWA §303(d)(4); CWA §402(c); 40 CFR Part 122.44(l)] require a reissued permit to be as stringent as the previous permit with some exceptions. Backsliding (a less stringent permit limitation) is only allowed under certain conditions.

- Limitations in this operating permit reissuance conform to the anti-backsliding provisions of CWA §402(o), and 40 CFR 122.44.
 40 CFR 122.44(l)(i)(B)(1); information is available which was not available at the time of permit issuance (other than revised
 - regulations, guidance, or test methods) which would have justified the application of a less stringent effluent limitation.
 - Monitoring for precipitation was removed from this permit. Precipitation monitoring is no longer required as rainfall data can be easily acquired using online databases which are available to the public. The facility SWPPP continues to require the precipitation information kept.
 - Monitoring for Biochemical Oxygen Demand was removed from this permit. The DMR data did not indicate a water quality concern for this parameter, and oxygen demand at the site continues to be monitored through COD.
 - Daily maximum limits for oil and grease was removed since reasonable potential cannot be determined because DMRs showed values ranging from 0 mg/L to 6 mg/L, well below the water quality standard. Per permit writer's best professional judgment, this parameter will remain in the permit with monitoring only with a daily maximum benchmark of 10 mg/L.
 - Daily maximum limits for settleable solids was removed since reasonable potential cannot be determined, as there is no
 water quality standard for this parameter. Per permit writer's best professional judgment, this parameter will remain in
 the permit with monitoring only with a daily maximum benchmark of 1.5 mL/L/hr.
 - Daily maximum limits for total suspended solids was removed since reasonable potential cannot be determined, as there is no water quality standard for this parameter. Per permit writer's best professional judgment, this parameter will remain in the permit with monitoring only with a daily maximum benchmark of 100 mg/L.
 - Daily maximum limits for chloride and chloride plus sulfate were removed since reasonable potential cannot be determined. All DMRs submitted by the permittee showed values well below the water quality standard. Per permit writer's best professional judgment, this parameter will remain in the permit with monitoring only with a daily maximum benchmark of 860 mg/L for chloride and 1000 mg/L for chloride plus sulfate.
 - Monitoring for ethylbenzene and Naphthalene were removed from all outfalls as they were determined to be unnecessary to detect BMP failures. The permit writer used best professional judgement to determine that Benzene and Oil and Grease were sufficient enough and would detect failures of stormwater BMPs at all outfalls. Benzene has the lowest water quality standard for the protection of human health, and therefore will be the most protective to monitor for. Oil & Grease is a broad laboratory test which will detect most of the heavier petroleum products and waxes. It often does not correctly evaluate the lighter pollutants such as Benzene, and thus Benzene is retained in addition to Oil and Grease

Special conditions 1, 2, and 3 were removed from the permit as the facility no longer recycles and composts yardwaste.

- 40 CFR 122.44(l)(i)(B)(2); the Department determined technical mistakes or mistaken interpretations of law were made in issuing the permit under CWA §402(a)(1)(b).
 - The previous permit's special conditions required sampling of total petroleum hydrocarbons (TPH) under the decision model to discharge stormwater having a sheen in secondary containment. The special condition has been revised in all permits beginning in 2015 to remove TPH as 40 CFR 136 does not contain any approved methods for the TPH parameter nor are there water quality standards for TPH. This permit requires oil and grease and BTEX (benzene, toluene, ethylbenzene, and xylene) sampling of the potentially contaminated stormwater in secondary containment. The facility need only sample for these constituents prior to release when a sheen or petroleum odor is present.
 - The previous permit special condition stated: "Any pesticide discharge from any point source shall comply with the requirements of Federal Insecticide, Fungicide and Rodenticide Act, as amended (7 U.S.C. 136 et. seq.) and the use of such pesticides shall be in a manner consistent with its label."
 - The permit writer has determined this special condition was outside the scope of NPDES permitting and was removed.
 - The previous permit special condition indicated spills from hazardous waste substances must be reported to the department. However, this condition is covered under standard conditions therefore was removed from special conditions.

ANTIDEGRADATION REVIEW:

Process water discharges with new, altered, or expanding flows, the Department is to document, by means of antidegradation review, if the use of a water body's available assimilative capacity is justified. In accordance with Missouri's water quality regulations for antidegradation [10 CSR 20-7.031(3)], degradation may be justified by documenting the socio-economic importance of a discharge after determining the necessity of the discharge. Facilities must submit the antidegradation review request to the Department prior to establishing, altering, or expanding discharges. See https://dnr.mo.gov/document-search/antidegradation-implementation-procedure Per [10 CSR 20-7.015(4)(A)], new discharges to losing streams shall be permitted only after other alternatives including land application, discharges to a gaining stream, or connection to a regional wastewater treatment facility have been evaluated and determined to be unacceptable for environmental and/or economic reasons.

✓ Not applicable; the facility has not submitted information proposing expanded or altered process water discharge; no further degradation proposed therefore no further review necessary.

BEST MANAGEMENT PRACTICES:

Minimum site-wide best management practices are established in this permit to ensure all facilities are managing their sites equally to protect waters of the state from certain activities which could cause negative effects in receiving water bodies. While not all sites require a SWPPP because the SIC codes are specifically exempted in 40 CFR 122.26(b)(14), these best management practices are not specifically included for stormwater purposes. These practices are minimum requirements for all industrial sites to protect waters of the state. If the minimum best management practices are not followed, the facility may violate general criteria [10 CSR 20-7.031(4)]. Statutes are applicable to all permitted facilities in the state, therefore pollutants cannot be released unless in accordance with 644.011 and 644.016 (17) RSMo.

COST ANALYSIS FOR COMPLIANCE (CAFCOM):

Pursuant to 644.145 RSMo, when incorporating a new requirement for discharges from publicly owned facilities, or when enforcing provisions of this chapter or the CWA, pertaining to any portion of a publicly owned facility, the Department shall make a finding of affordability on the costs to be incurred and the impact of any rate changes on ratepayers upon which to base such permits and decisions, to the extent allowable under this chapter and the CWA. This process is completed through a CAFCom. Permits not including new requirements may be deemed affordable.

✓ The Department is not required to determine cost analysis for compliance because the permit contains no new conditions or requirements conveying a new cost to the facility.

CHANGES IN DISCHARGES OF TOXIC POLLUTANT:

This special condition reiterates the federal rules found in 40 CFR 122.44(f) for technology treatments and 122.42(a)(1) for all other toxic substances. In these rules, the facility is required to report changes in amounts of toxic substances discharged. Toxic substances are defined in 40 CFR 122.2 as "...any pollutant listed as toxic under section 307(a)(1)" or, in the case of "sludge use or disposal practices," any pollutant identified in regulations implementing section 405(d) of the CWA." Section 307 of the clean water act then refers to those parameters listed in 40 CFR 401.15 and any other toxic parameter the Department determines is applicable for reporting under these rules in the permit. The facility should also consider any other toxic pollutant in the discharge as reportable under this condition and must report all increases to the Department as soon as discovered in the effluent. The Department may open the permit to implement any required effluent limits pursuant to CWA §402(k) where sufficient data was not supplied within the application but was supplied at a later date by either the permittee or other resource determined to be representative of the discharge, such as sampling by Department personnel.

COMPLIANCE AND ENFORCEMENT:

Enforcement is the action taken by the Water Protection Program (WPP) to bring an entity into compliance with the Missouri Clean Water Law, its implementing regulations, and/or any terms and conditions of an operating permit. The primary purpose of the enforcement activity in the WPP is to resolve violations and return the entity to compliance.

✓ Applicable; the facility is currently under enforcement action due to causing pollution to waters of the state, failure to submit required reports, and failure to meet permit limits.

DISCHARGE MONITORING REPORTING - ELECTRONIC (EDMR) SUBMISSION SYSTEM:

The U.S. Environmental Protection Agency (EPA) promulgated a final rule on October 22, 2015, to modernize Clean Water Act reporting for municipalities, industries, and other facilities by requiring electronic data reporting. To comply with the federal rule, the Department is requiring all facilities to submit discharge monitoring data and reports online. To review historic data, the Department's database has a publically facing search engine, available at https://apps5.mo.gov/mocwis_public/dmrDisclaimer.do

Registration and other information regarding MoGEM can be found at https://dnr.mo.gov/mogem. Information about the eDMR system can be found at https://dnr.mo.gov/env/wpp/edmr.htm.The first user shall register as an Organization Official and the association to the facility must be approved by the Department. To access the eDMR system, use:

https://apps5.mo.gov/mogems/welcome.action For assistance using the eDMR system, contact edmr@dnr.mo.gov or call 855-789-3889 or 573-526-2082. To assist the facility in entering data into the eDMR system, the permit describes limit sets designators in each table in Part A of the permit. Facility personnel will use these identifiers to ensure data entry is being completed appropriately. For example, M for monthly, Q for quarterly, A for annual, and others as identified.

Per 40 CFR 127.15 and 127.24, permitted facilities may request a temporary waiver for up to 5 years or a permanent waiver from electronic reporting from the Department. To obtain an electronic reporting waiver, a facility must first submit an eDMR Waiver Request form available on the Department's web page. A request must be made for each operating permit. An approved waiver is not transferable. The Department must review and notify the facility within 120 calendar days of receipt if the waiver request has been approved or rejected [40 CFR 124.27(a)]. During the Department review period as well as after a waiver is granted, the facility must continue submitting a hard-copy of any reports required by their permit. The Department will enter data submitted in hard-copy from those facilities allowed to do so, and electronically submit the data to the EPA on behalf of the facility.

 \checkmark This facility has not been granted a waiver, nor would this facility qualify for a waiver.

DOMESTIC WASTEWATER, SLUDGE, AND BIOSOLIDS:

Domestic wastewater is defined as wastewater originating primarily from the sanitary conveyances of bathrooms and kitchens. Domestic wastewater excludes stormwater, wash water, animal waste, process and ancillary wastewater.

✓ Not applicable; this facility discharges domestic wastewater to an off-site permitted wastewater treatment facility (POTW).

Sewage sludge is solid, semi-solid, or liquid residue generated during the treatment of domestic sewage in a treatment works; including but not limited to, domestic septage; scum or solids removed in primary, secondary, or advanced wastewater treatment process; and material derived from sewage sludge. Sewage sludge does not include ash generated during the firing of sewage sludge in a sewage sludge incinerator or grit and screening generated during preliminary treatment of domestic sewage in a treatment works. Biosolids are solid materials resulting from domestic wastewater treatment meeting federal and state criteria for productive use (i.e. fertilizer) and after having pathogens removed.

Additional information: <u>http://extension.missouri.edu/main/DisplayCategory.aspx?C=74</u> (WQ422 through WQ449).

✓ Not applicable; the facility does not manage domestic wastewater on-site.

EFFLUENT LIMITATIONS:

Two general types of effluent limitations, technology-based effluent limits (TBELs) and water quality based effluent limits (WQBELs) are reviewed. Permits are required to establish the most stringent or most protective limit. If the TBEL or WQBEL does not provide adequate protection for the receiving water, then the other must be used per 10 CSR 20-7.015(9)(A) or 40 CFR 122.44(b)(1). See WASTELOAD ALLOCATION below which describes how WQBEL wasteload allowances are established under the permit. Effluent limitations derived and established for this permit are based on current operations of the facility. Any flow through the outfall is considered a discharge and must be sampled and reported as provided in the permit. Daily maximums and monthly averages are required per 40 CFR 122.45(d)(1) for continuous discharges (not from a POTW).

FEDERAL EFFLUENT LIMITATION GUIDELINES:

Effluent Limitation Guidelines, or ELGs, are found at 40 CFR 400-499. These are limitations established by the EPA based on the SIC code and the type of work a facility is conducting. Most ELGs are for process wastewater and some address stormwater. Effluent guidelines are not always established for every pollutant present in a point source discharge. In many instances, EPA promulgates effluent guidelines for an indicator pollutant. Industrial facilities complying with the effluent guidelines for the indicator pollutant will also control other pollutants (e.g. pollutants with a similar chemical structure). For example, EPA may choose to regulate only one of several metals present in the effluent from an industrial category, and compliance with the effluent guidelines will ensure similar metals present in the discharge are adequately controlled. All are technology based limitations which must be met by the applicable facility at all times. Should Reasonable Potential be established for any particular parameter, and water-quality derived effluent limits are more protective of the receiving water's quality, the WQS will be used as the limiting factor in accordance with 40 CFR 122.44(d) and 10 CSR 20-7.015(9)(A).

The facility has an associated ELG (40 CFR 445) but does not discharge wastewater to waters of the state; stormwater discharges are not addressed by the ELG.

GENERAL CRITERIA CONSIDERATIONS:

In accordance with 40 CFR 122.44(d)(1), effluent limitations shall be placed into permits for pollutants determined to cause, have reasonable potential to cause, or to contribute to, an excursion above any water quality standard, including narrative water quality criteria. In order to comply with this regulation, the permit writer has completed a reasonable potential determination on whether discharges have reasonable potential to cause, or contribute to an excursion of the general criteria listed in 10 CSR 20-7.031(4). In instances where reasonable potential exists, the permit includes limitations to address the reasonable potential. In discharges where reasonable potential does not exist, the permit may include monitoring to later determine the discharge's potential to impact the narrative criteria. Additionally, 644.076.1 RSMo, as well as Part I §D – Administrative Requirements of Standard Conditions included in this permit state it shall be unlawful for any person to cause or allow any discharge of water contaminants from any water contaminant or point source located in Missouri in violation of §§644.006 to 644.141 of the Missouri Clean Water Law or any standard, rule, or regulation promulgated by the commission. See Part IV for specific determinations.

GROUNDWATER MONITORING:

Groundwater is a water of the state according to 644.016(27) RSMo, is subject to regulations at 10 CSR 20-7.015(7) and 10 CSR 20-7.031(6), and must be protected accordingly.

✓ This facility is not required to monitor groundwater for the water protection program.

LAND APPLICATION:

Land application, or surficial dispersion of wastewater and/or sludge, is performed by facilities as an alternative to discharging. Requirements for these types of operations are found in 10 CSR 20-6.015; authority to regulate these activities is from 644.026 RSMo.

✓ Not applicable; this permit does not authorize operation of a surficial land application system to disperse wastewater or sludge.

LAND DISTURBANCE:

Land disturbance, sometimes called construction activities, are actions which cause disturbance of the root layer or soil; these include clearing, grading, and excavating of the land. 40 CFR 122.26(b)(14) and 10 CSR 20-6.200(3) requires permit coverage for these activities. Coverage is not required for facilities when only providing maintenance of original line and grade, hydraulic capacity, or to continue the original purpose of the facility.

Applicable; this permit provides coverage for land disturbance activities. These activities have SWPPP requirements and may be combined with the standard site SWPPP. Land disturbance BMPs should be designed to control the expected peak discharges, the University of Missouri has design storm events for the 25 year 24 hour storm; these can be found at: http://ag3.agebb.missouri.edu/design_storm/comparison_reports/20191117_25yr_24hr_comparison_table.htm; to calculate peak discharges, the website https://www.lmnoeng.com/Hydrology/rational.php has the rational equation to calculate expected discharge volume from the peak storm events.

MAJOR WATER USER:

Any surface or groundwater user with a water source and the equipment necessary to withdraw or divert 100,000 gallons (or 70 gallons per minute) or more per day combined from all sources from any stream, river, lake, well, spring, or other water source is considered a major water user in Missouri. <u>https://dnr.mo.gov/water/business-industry-other-entities/reporting/major-water-users</u> All major water users are required by law to register water use annually (Missouri Revised Statues Chapter 256.400 Geology, Water Resources and Geodetic Survey Section). <u>https://dnr.mo.gov/document-search/frequently-asked-major-water-user-questions-pub2236/pub2236</u>

 \checkmark Not applicable; this facility cannot withdraw water from the state in excess of 70 gpm or 0.1 MGD.

MODIFICATION REQUESTS:

Facilities have the option to request a permit modification from the Department at any time under RSMo 644.051.9. Requests must be submitted to the Water Protection Program with the appropriate forms and fees paid per 10 CSR 20-6.011. It is recommended facilities contact the permit writer early so the correct forms and fees are submitted, and the modification request can be completed in a timely fashion. Minor modifications, found in 40 CFR 122.63, are processed without the need for a public comment period. Major modifications, those requests not explicitly fitting under 40 CFR 122.63, do require a public notice period. Modifications to permits should be completed when: a new pollutant is found in the discharge; operational or functional changes occur which affect the technology, function, or outcome of treatment; the facility desires alternate numeric benchmarks; or other changes are needed to the permit.

Modifications are not required when utilizing or changing additives in accordance with the publication <u>https://dnr.mo.gov/document-search/additive-usage-wastewater-treatment-facilities-pub2653/pub2653</u> nor are required when a temporary change or provisional discharge has been authorized by the regional office. While provisional discharges may be authorized by the regional office, they will not be granted for more than the time necessary for the facility to obtain an official modification from the Water Protection Program. Temporary provisional discharges due to weather events or other unforeseen circumstances may or may not necessitate a permit modification. The facility may ask for a Compliance Assistance Visit (CAV) from the regional office to assist in the decision-making process; CAVs are provided free to the permitted entity.

NUTRIENT MONITORING:

Nutrient monitoring is required for facilities characteristically or expected to discharge nutrients (nitrogenous compounds and/or phosphorus) when the design flow is equal to or greater than 0.1 MGD per 10 CSR 20-7.015(9)(D)8. This requirement is applicable to all Missouri waterways.

 \checkmark This is a stormwater only permit therefore not subject to provisions found in 10 CSR 20-7.015 per 10 CSR 20-7.015(1)(C).

Water quality standards per 10 CSR 20-7.031(5)(N) describe nutrient criteria requirements assigned to lakes (which include reservoirs) in Missouri, equal to or greater than 10 acres during normal pool conditions. The Department's Nutrient Criteria Implementation Plan (NCIP) may be reviewed at: <u>https://dnr.mo.gov/document-search/nutrient-criteria-implementation-plan-july-27-2018</u> Discharges of wastewater in to lakes or lake watersheds designated as L1 (drinking water use) are prohibited per 10 CSR 20-7.015(3)(C).

 \checkmark This is a stormwater only permit therefore not subject to provisions found in 10 CSR 20-7.015 per 10 CSR 20-7.015(1)(C).

OIL/WATER SEPARATORS:

Oil water separator (OWS) tank systems are frequently found at industrial sites where process water and stormwater may contain oils and greases, oily wastewaters, or other immiscible liquids requiring separation. Food industry discharges typically require pretreatment prior to discharge to municipally owned treatment works. Per 10 CSR 26-2.010(2)(B), all oil water separator tanks must be operated according to manufacturer's specifications and authorized in NPDES permits per 10 CSR 26-2.010(2) or may be regulated as a petroleum tank. Sludge generated by OWS is a waste pursuant to 10 CSR 25-11.279 requiring specific management standards pursuant to self-implementing regulations of 40 CFR Part 279.

✓ Not applicable; the facility has not disclosed the use of any oil water separators they wish to include under the NPDES permit at this facility, therefore oil water separator tanks are not authorized by this permit.

OPERATOR CERTIFICATION REQUIREMENTS:

Operators or supervisors of operations at regulated domestic wastewater treatment facilities shall be certified in accordance with 10 CSR 20-9 and any other applicable state law or regulation.

✓ Not applicable; this facility is not required to have a certified operator. This permit does not cover domestic wastewater or the domestic wastewater population equivalent (PE) is less than two hundred (200) individuals. Additionally, this facility is not owned or operated by a municipality, public sewer district, county, public water supply district, or private sewer company regulated by the Public Service Commission, or operated by a state or federal agency. Private entities are exempted from the population equivalent requirement unless the Department has reason to believe a certified operator is necessary.

PERMIT SHIELD:

The permit shield provision of the Clean Water Act (Section 402(k)) and Missouri Clean Water Law (644.051.16 RSMo) provides that when a permit holder is in compliance with its NPDES permit or MSOP, it is effectively in compliance with certain sections of the Clean Water Act, and equivalent sections of the Missouri Clean Water Law. In general, the permit shield is a legal defense against certain enforcement actions, but is only available when the permittee is in compliance with its permit and satisfies other specific conditions, including having completely disclosed all discharges and all facility processes and activities to the Department at time of application. It is the permittee's responsibility to ensure that all potential pollutants, waste streams, discharges, and activities, as well as wastewater land application, storage, and treatment areas, are all fully disclosed to the Department at the time of application or during the draft permit review process. Subsequent requests for authorization to discharge additional pollutants, expanded or newly disclosed flows, or for authorization for previously unpermitted and undisclosed activities or discharges, will likely require an official permit modification, including another public participation process.

PRETREATMENT:

This permit does not regulate pretreatment requirements for facilities discharging to an accepting permitted wastewater treatment facility. If applicable, the receiving entity (the publicly owned treatment works - POTW) is to ensure compliance with any effluent limitation guidelines for pretreatment listed in 40 CFR Subchapter N per 10 CSR 20-6.100. Pretreatment regulations per 644.016 RSMo are limitations on the introduction of pollutants or water contaminants into publicly owned treatment works or facilities.

✓ Not applicable, this facility does not discharge industrial wastewater to a POTW. Domestic wastewater is not subject to pretreatment requirements.

REASONABLE POTENTIAL (RP):

Regulations per 10 CSR 20-7.015(9)(A)2 and 40 CFR 122.44(d)(1)(i) requires effluent limitations for all pollutants which are (or may be) discharged at a level causing or have the reasonable potential to cause (or contribute to) an in-stream excursion above narrative or numeric water quality standards. Per 10 CSR 20-7.031(4), general criteria shall be applicable to all waters of the state at all times; however, acute toxicity criteria may be exceeded by permit allowance in zones of initial dilution, and chronic toxicity criteria may be exceeded by permit allowance in zones of initial dilution, and chronic toxicity criteria may be exceeded by permit writer determines any given pollutant has the reasonable potential to cause or contribute to an in-stream excursion above the WQS, the permit must contain effluent limits for the pollutant per 40 CFR Part 122.44(d)(1)(iii) and the most stringent limits per 10 CSR 20-7.031(9)(A).

Permit writers use reasonable potential determinations (RPD) as provided in Sections 3.1.2, 3.1.3, and 3.2 of the TSD. An RPD consists of evaluating visual observations, non-numeric information, or small amounts of numerical data (such as 1 data point supplied in the application). A stormwater RPD consists of reviewing application data and/or discharge monitoring data and comparing those data to narrative or numeric water quality criteria. RPD decisions are based on minimal numeric samples, the type of effluent proposed for discharge, or the unavailability of numerical RPA for a parameter, such as pH, or oil and grease. Absent effluent data, effluent limits are derived without consideration of effluent variability and is assumed to be present unless found to be absent to meet the requirements of antidegradation review found in 10 CSR 20-7.031(3) and reporting of toxic substances pursuant to 40 CFR 122.44(f).

Permit writers use the Department's permit writer's manual (<u>https://dnr.mo.gov/water/business-industry-other-entities/technical-assistance-guidance/wastewater-permit-writers-manual</u>), the EPA's permit writer's manual (<u>https://www.epa.gov/npdes/npdes-permit-writers-manual</u>), program policies, and best professional judgment. For each parameter in each permit, the permit writer carefully considers all applicable information regarding: technology based effluent limitations, effluent limitation guidelines, water quality standards, inspection reports, stream water quality information, stream flows, uses assigned to each waterbody, and all applicable site specific information and data gathered by the facility through discharge monitoring reports and renewal (or new) application sampling. Best professional judgment is based on the experience of the permit writer, cohorts in the Department and resources at the EPA, research, and maintaining continuity of permits if necessary. For stormwater permits, the permit writer is required per 10 CSR 6.200(6)(B)2 to consider: A. application and other information supplied by the facility; B. effluent guidelines; C. best professional judgment of the permit writer; D. water quality; and E. BMPs. Part IV provides specific decisions related to this permit.

Secondly, permit writers use mathematical reasonable potential analysis (RPA) using the *Technical Support Document for Water Quality Based Toxics Control (TSD)* methods (EPA/505/2-90-001) for continuous discharges. The TSD RPA method cannot be performed on stormwater as the flow is intermittent. See additional considerations under Part II WATERBODY MIXING

CONSIDERATIONS and Part III WASTELOAD ALLOCATIONS. Wasteload allocations are determined utilizing the same equations and statistical methodology.

No statistical RPAs were performed for this permit, as the conditions for stormwater were based on standardized benchmarks, the effluent limits are not based on effluent variability, or where variability is not used for certain water quality limits such as pH or oil and grease.

RENEWAL REQUIREMENTS:

The renewal special condition permit requirement is designed to guide the facility to prepare and include all relevant and applicable information in accordance with 10 CSR 20-6.010(7)(A)-(C), and if applicable, federal regulations. The special condition may not include all requirements and requests for additional information may be made at the time of permit renewal under 644.051.13(5) RSMo and 40 CFR 122.21(h). Prior to submittal, the facility must review the entire submittal to confirm all required information and data is provided; it is the facility's responsibility to discern if additional information is required. Failure to fully disclose applicable information with the application or application addendums may result in a permit revocation per 10 CSR 20-6.010(8)(A) and may result in the forfeiture of permit shield protection authorized in 644.051.16 RSMo. Forms are located at: https://dnr.mo.gov/water/business-industry-other-entities/permits-certification-engineering-fees/wastewater

SAMPLING FREQUENCY JUSTIFICATION:

Sampling frequency for stormwater-only outfalls is typically quarterly even though BMP inspection occurs monthly or more often dependent on site needs. The facility may sample more frequently if additional data is required to determine if best management operations and technology are performing as expected.

SAMPLING TYPE JUSTIFICATION:

Sampling type was continued from the previous permit. The sampling types are representative of the discharges, and are protective of water quality. Discharges with altering effluent should have composite sampling; discharges with uniform effluent can have grab samples. Grab samples are usually appropriate for stormwater. Parameters which must have grab sampling are: pH, ammonia, *E. coli*, total residual chlorine, free available chlorine, hexavalent chromium, dissolved oxygen, total phosphorus, volatile organic compounds, and others. For further information on sampling and testing methods see 10 CSR 20-7.015(9)(D)2.

SCHEDULE OF COMPLIANCE (SOC):

A schedule of remedial measures included in a permit, including an enforceable sequence of interim requirements (actions, effluent limits, operations, or milestone events) leading to compliance with the Missouri Clean Water Law, its implementing regulations, and/or the terms and conditions of an operating permit. SOCs are allowed under 40 CFR 122.47 and 10 CSR 20-7.031(11) providing certain conditions are met. An SOC is not allowed:

- For effluent limitations based on technology-based standards established in accordance with federal requirements, if the deadline for compliance established in federal regulations has passed in accordance with 40 CFR 125.3.
- For a newly constructed facility in most cases per 644.029 RSMo. Newly constructed facilities must meet all applicable effluent limitations (technology and water quality) when discharge begins. New facilities are required to install the appropriate control technologies as specified in a permit or antidegradation review. A SOC is allowed for a new water quality based effluent limit not included in a previously public noticed permit or antidegradation review, which may occur if a regulation changes during construction.
- To develop a TMDL, UAA, or other study associated with development of a site specific criterion. A facility is not prohibited from conducting these activities, but a SOC may not be specifically granted for conducting these activities.

In order to provide guidance in developing SOCs, and to attain a greater level of consistency, the Department issued a policy on development of SOCs on October 25, 2012. The policy provides guidance to permit writers on standard time frames for schedules for common activities, and guidance on factors to modify the length of the schedule.

 \checkmark Not applicable; this permit does not contain a SOC.

SPILLS, OVERFLOWS, AND OTHER UNAUTHORIZED DISCHARGE REPORTING:

Per 260.505 RSMo, any emergency involving a hazardous substance must be reported to the Department's 24 hour Environmental Emergency Response hotline at (573) 634-2436 at the earliest possible moment after discovery. The Department may require the submittal of a written report detailing measures taken to clean up a spill. These reporting requirements apply whether or not the spill results in chemicals or materials leaving the permitted property or reaching waters of the state. This requirement is in addition to the noncompliance reporting requirement found in Standard Conditions Part I.

https://revisor.mo.gov/main/OneSection.aspx?section=260.500&bid=13989&hl=

Any other spills, overflows, or unauthorized discharges reaching waters of the state must be reported to the regional office during normal business hours, or after normal business hours, to the Department's 24 hour Environmental Emergency Response spill line at 573-634-2436.

Certain industrial facilities are subject to the self-implementing regulations for Oil Pollution Prevention in 40 CFR 112, and are required to initiate and follow Spill Prevention, Control, and Countermeasure (SPCC) Plans. This permit, as issued, is not intended to be a replacement for any SPCC plan, nor can this permit's conditions be automatically relaxed based on the SPCC plan if the permit is more stringent than the plan.

SLUDGE - INDUSTRIAL:

Industrial sludge is solid, semi-solid, or liquid residue generated during the treatment of industrial process or non-process wastewater in a treatment works; including but not limited to, scum or solids removed in primary, secondary, or advanced wastewater treatment process; scum and solids filtered from water supplies and backwashed; and any material derived from industrial sludge. Industrial sludge could also be derived from lagoon dredging or other similar maintenance activities. Certain oil sludges, like those from oil water separators, are subject to self-implementing federal regulations under 40 CFR 279 for used oils.

 \checkmark Not applicable; industrial sludge is not generated at this facility.

STANDARD CONDITIONS:

The standard conditions Part I attached to this permit incorporate all sections of 10 CSR 20-6.010(8) and 40 CFR 122.41(a) through (n) by reference as required by law. These conditions, in addition to the conditions enumerated within the standard conditions should be reviewed by the facility to ascertain compliance with this permit, state regulations, state statues, federal regulations, and the Clean Water Act. Standard Conditions Part III, if attached to this permit, incorporate requirements dealing with domestic wastewater, domestic sludge, and land application of domestic wastes.

STORMWATER PERMITTING: LIMITATIONS AND BENCHMARKS:

Because of the fleeting nature of stormwater discharges, the Department, under the direction of EPA guidance, has determined monthly averages are capricious measures of stormwater-only discharges. The *Technical Support Document for Water Quality Based Toxics Control* (EPA/505/2-90-001; 1991) §3.1 indicates most procedures within the document apply only to water quality based approaches, not end-of-pipe technology-based controls. Hence, stormwater-only outfalls will generally only contain a maximum daily limit (MDL), a benchmark, or a monitoring requirement as dictated by site specific conditions, the BMPs in place, the BMPs proposed, past performance of the facility, and the receiving water's current quality.

Sufficient rainfall to cause a discharge for one hour or more from a facility would not necessarily cause significant flow in a receiving stream. Acute Water Quality Standards (WQSs) are based on one hour of exposure, and must be protected at all times. Therefore, industrial stormwater facilities with toxic contaminants present in the stormwater may have the potential to cause a violation of acute WQSs if toxic contaminants occur in sufficient amounts. In this instance, the permit writer may apply daily maximum limitations.

Conversely, it is unlikely for rainfall to cause a discharge for four continuous days from a facility; if this does occur however, the receiving stream will also likely sustain a significant amount of flow providing dilution. Most chronic WQSs are based on a four-day exposure with some exceptions. Under this scenario, most industrial stormwater facilities have limited potential to cause a violation of chronic water quality standards in the receiving stream.

A standard mass-balance equation cannot be calculated for stormwater because stormwater flow and flow in the receiving stream cannot be determined for conditions on any given day or storm event without real-time ad-hoc monitoring. The amount of stormwater discharged from the facility will vary based on current and previous rainfall, soil saturation, humidity, detention time, BMPs, surface permeability, etc. Flow in the receiving stream will vary based on climatic conditions, size of watershed, area of surfaces with reduced permeability (houses, parking lots, and the like) in the watershed, hydrogeology, topography, etc. Decreased permeability may increase the stream flow dramatically over a short period of time (flash).

Numeric benchmark values are based on site specific requirements taking in to account a number of factors but cannot be applied to any process water discharges. First, the technology in place at the site to control pollutant discharges in stormwater is evaluated. The permit writer also evaluates other similar permits for similar activities. A review of the guidance forming the basis of Environmental Protection Agency's (EPA's) *Multi-Sector General Permit for Stormwater Discharges Associated with Industrial Activity* (MSGP) may also occur. Because precipitation events are sudden and momentary, benchmarks based on state or federal standards or recommendations use the Criteria Maximum Concentration (CMC) value, or acute standard may also be used. The CMC is the estimate of the highest concentration of a material in surface water to which an aquatic community can be exposed briefly without resulting in an unacceptable effect. The CMC for aquatic life is intended to be protective of the vast majority of the aquatic communities in the United States. If a facility has not disclosed BMPs applicable to the pollutants for the site, the facility may not be eligible for benchmarks.

40 CFR 122.44(b)(1) requires the permit implement the most stringent limitations for each discharge, including industrially exposed stormwater; and 40 CFR 122.44(d)(1)(i) and (iii) requires the permit to include water-quality based effluent limitations where reasonable potential has been found. However, because of the non-continuous nature of stormwater discharges, staff are unable to perform statistical Reasonable Potential Analysis (RPA) under most stormwater discharge scenarios. Reasonable potential determinations (RPDs; see REASONABLE POTENTIAL above) using best professional judgment are performed.

Benchmarks require the facility to monitor, and if necessary, replace and update stormwater control measures. Benchmark concentrations are not effluent limitations. A benchmark exceedance, therefore, is not a permit violation; however, failure to take corrective action is a violation of the permit. Benchmark monitoring data is used to determine the overall effectiveness of control measures and to assist the facility in knowing when additional corrective actions may be necessary to comply with the conditions of the permit.

BMP inspections typically occur more frequently than sampling. Sampling frequencies are based on the facility's ability to comply with the benchmarks and the requirements of the permit. Inspections should occur after large rain events and any other time an issue is noted; sampling after a benchmark exceedance may need to occur to show the corrective active taken was meaningful.

When a permitted feature or outfall consists of only stormwater, a benchmark may be implemented at the discretion of the permit writer, if there is no RP for water quality excursions.

✓ Applicable, this facility has stormwater-only outfalls where benchmarks or limitations were deemed appropriate contaminant measures.

STORMWATER POLLUTION PREVENTION PLAN (SWPPP):

Pursuant to 40 CFR 122.44(k), Best Management Practices (BMPs) must be used to control or abate the discharge of pollutants when: 1) Authorized under §304(e) of the Clean Water Act (CWA) for the control of toxic pollutants and hazardous substances from ancillary industrial activities; 2) Authorized under §402(p) of the CWA for the control of stormwater discharges; 3) Numeric effluent limitations are infeasible; or 4) the practices are reasonably necessary to achieve effluent limitations and standards or to carry out the purposes and intent of the CWA. A BMP may take the form of a numeric benchmark. In accordance with the EPA's *Developing Your Stormwater Pollution Prevention Plan, A Guide for Industrial Operators*, (EPA 833-B-09-002) published by the EPA in 2015 and again in 2021 https://www.epa.gov/sites/default/files/2021-03/documents/swppp_guide_industrial_2021_030121.pdf BMPs are measures or practices used to reduce the amount of pollution entering waters of the state from a permitted facility. BMPs may take the form of a process, activity, or physical structure. Additionally in accordance with the Stormwater Management, a SWPPP is a series of steps and activities to 1) identify sources of pollution or contamination, and 2) select and carry out actions which prevent or control the pollution of storm water discharges. Additional information can be found in *Stormwater Management for Industrial Activities: Developing Pollution Prevention Plans and Best Management Practices* (EPA 832-R-92-006; September 1992).

Developing a SWPPP provides opportunities to employ appropriate BMPs to minimize the risk of pollutants being discharged during storm events. The following paragraph outlines the general steps the facility should take to determine which BMPs will work to achieve the benchmark values or limits in the permit. This section is not intended to be all encompassing or restrict the use of any physical BMP or operational and maintenance procedure assisting in pollution control. Additional steps or revisions to the SWPPP may be required to meet the requirements of the permit.

Areas which should be included in the SWPPP are identified in 40 CFR 122.26(b)(14). Once the potential sources of stormwater pollution have been identified, a plan should be formulated to best control the amount of pollutant being released and discharged by each activity or source. This should include, but is not limited to, minimizing exposure to stormwater, good housekeeping measures, proper facility and equipment maintenance, spill prevention and response, vehicle traffic control, and proper materials handling. Once a plan has been developed the facility will employ the control measures determined to be adequate to achieve the benchmark values discussed above. The facility will conduct monitoring and inspections of the BMPs to ensure they are working properly and re-evaluate any BMP not achieving compliance with permitting requirements. For example, if sample results from an outfall show values of TSS above the benchmark value, the BMP being employed is deficient in controlling stormwater pollution. Corrective action should be taken to repair, improve, or replace the failing BMP. This internal evaluation is required at least once per month but should be continued more frequently if BMPs continue to fail. If failures do occur, continue this trial and error process until appropriate BMPs have been established.

For new, altered, or expanded stormwater discharges, the SWPPP shall identify reasonable and effective BMPs while accounting for environmental impacts of varying control methods. The antidegradation analysis must document why no discharge or no exposure options are not feasible. The selection and documentation of appropriate control measures shall serve as an alternative analysis of technology and fulfill the requirements of antidegradation [10 CSR 20-7.031(3)]. For further guidance, consult the antidegradation implementation procedure (https://dnr.mo.gov/document-search/antidegradation-implementation-procedure).

Alternative Analysis (AA) evaluation of the BMPs is a structured evaluation of BMPs which are reasonable and cost effective. The AA evaluation should include practices designed to be: 1) non-degrading; 2) less degrading; or 3) degrading water quality. The glossary of AIP defines these three terms. The chosen BMP will be the most reasonable and effective management strategy while ensuring the highest statutory and regulatory requirements are achieved and the highest quality water attainable for the facility is discharged. The AA evaluation must demonstrate why "no discharge" or "no exposure" is not a feasible alternative at the facility. This structured analysis of BMPs serves as the antidegradation review, fulfilling the requirements of 10 CSR 20-7.031(3) Water Quality Standards and *Antidegradation Implementation Procedure* (AIP), §II.B.

If parameter-specific numeric benchmark exceedances continue to occur and the facility feels there are no practicable or cost-effective BMPs which will sufficiently reduce a pollutant concentration in the discharge to the benchmark values established in the permit, the facility can submit a request to re-evaluate the benchmark values. This request needs to include 1) a detailed explanation of why the facility is unable to comply with the permit conditions and unable to establish BMPs to achieve the benchmark values; 2) financial data of the company and documentation of cost associated with BMPs for review and 3) the SWPPP, which should contain adequate documentation of BMPs employed, failed BMPs, corrective actions, and all other required information. This will allow the Department to conduct a cost analysis on control measures and actions taken by the facility to determine cost-effectiveness of BMPs. The request shall be submitted in the form of an operating permit modification, which includes an appropriate fee; the application is found at: https://dnr.mo.gov/water/business-industry-other-entities/permits-certification-engineering-fees/wastewater

Applicable; a SWPPP shall be developed and implemented for this facility; see specific requirements in the SPECIAL CONDITIONS section of the permit.

SUFFICIENTLY SENSITIVE ANALYTICAL METHODS:

Please review Standard Conditions Part 1, §A, No. 4. The analytical and sampling methods used shall conform to the reference methods listed in 10 CSR 20-7.015 and/or 40 CFR 136 unless alternates are approved by the Department and incorporated within this permit. The facility shall use sufficiently sensitive analytical methods for detecting, identifying, and measuring the concentrations of pollutants. The facility shall ensure the selected methods are able to quantify the presence of pollutants in any given discharge at concentrations low enough to determine compliance with Water Quality Standards in 10 CSR 20-7.031 or effluent limitations unless provisions in the permit allow for other alternatives. The reporting limits established by the chosen laboratory must be below the lowest effluent limits established for the specified parameter (including any parameter's future limit after an SOC) in the permit unless the permit provides for an ML or if the facility provides a written rationale to the Department. It is the permittee's responsibility to ensure the laboratory has adequate equipment and controls in place to quantify the pollutant. Inflated reporting limits will not be accepted by the Department if the reporting limit is above the parameter value stipulated in the permit. A method is "sufficiently sensitive" when; 1) the method quantifies the pollutant below the level of the applicable water quality criterion or; 2) the method minimum level is above the applicable water quality criterion, but the amount of pollutant in a facility's discharge is high enough the method detects and quantifies the level of pollutant in the discharge, or 3) the method has the lowest minimum level of the analytical methods approved under 10 CSR 20-7.015 and or 40 CFR 136. These methods are also required for parameters listed as monitoring only, as the data collected may be used to determine if numeric limitations need to be established. A facility is responsible for working with their contractors to ensure the analysis performed is sufficiently sensitive.

UNDERGROUND INJECTION CONTROL (UIC):

The UIC program for all classes of wells in the State of Missouri is administered by the Missouri Department of Natural Resources and approved by EPA pursuant to §§1422 and 1425 of the Safe Drinking Water Act (SDWA) and 40 CFR 147 Subpart AA. Injection wells are classified based on the liquids which are being injected. Class I wells are hazardous waste wells which are banned by 577.155 RSMo; Class II wells are established for oil and natural gas production; Class III wells are used to inject fluids to extract minerals; Class IV wells are also banned by Missouri in 577.155 RSMo; Class V wells are shallow injection wells; some examples are heat pump wells and groundwater remediation wells. Domestic wastewater being disposed of sub-surface is also considered a Class V well. In accordance with 40 CFR 144.82, construction, operation, maintenance, conversion, plugging, or closure of injection wells shall not cause movement of fluids containing any contaminant into Underground Sources of Drinking Water (USDW) if the presence of any contaminant may cause a violation of drinking water standards or groundwater standards under 10 CSR 20-7.031, or other health based standards, or may otherwise adversely affect human health. If the director finds the injection activity may endanger USDWs, the Department may require closure of the injection wells, or other actions listed in 40 CFR 144.12(c), (d), or (e). In accordance with 40 CFR 144.26, the facility shall submit a Class V Well Inventory Form for each active or new underground injection well drilled, or when the status of a well changes, to the Missouri Department of Natural Resources, Geological Survey Program, P.O. Box 250, Rolla, Missouri 65402. The Class V Well Inventory Form can be requested from the Geological Survey Program or can be found at the following web address: https://dnr.mo.gov/document-search/class-v-well-inventory-form-mo-780-1774 Single family residential septic systems and non-residential septic systems used solely for sanitary waste and having the capacity to serve fewer than 20 persons a day are excluded from the UIC requirements (40 CFR 144.81(9)).

✓ Not applicable; the facility has not submitted materials indicating the facility will be performing UIC at this site.

VARIANCE:

Per the Missouri Clean Water Law §644.061.4, variances shall be granted for such period of time and under such terms and conditions as specified by the commission in its order. The variance may be extended by affirmative action of the commission. In no event shall the variance be granted for a period of time greater than is reasonably necessary for complying with the Missouri Clean Water Law §§644.006 to 644.141 or any standard, rule or regulation promulgated pursuant to Missouri Clean Water Law §§644.006 to 644.141. Thermal variances are regulated separately and are found under 644.

✓ Not applicable; this permit is not drafted under premise of a petition for variance.

WASTELOAD ALLOCATIONS (WLA) FOR LIMITS:

As per [10 CSR 20-2.010; definitions], the WLA is the maximum amount of pollutant each discharger is allowed to discharge into the receiving stream without endangering water quality. Only streams with available load allocations can be granted discharge allowances. Outfalls afforded mixing allocations provide higher limits as the receiving stream is able to accept more pollutant loading without causing adverse impacts to the environment or aquatic life.

✓ Not applicable, this is a stormwater only permit therefore WLAs were not calculated. See section on stormwater permitting as applying WLAs to stormwater is not normally applicable per TSD §3.1.

WASTELOAD ALLOCATION (WLA) MODELING:

Facilities may submit site specific studies to better determine the site specific wasteload allocations applied in permits.

✓ Not applicable; a WLA study was either not submitted or determined not applicable by Department staff.

WATER QUALITY STANDARD REVISION:

In accordance with 644.058 RSMo, the Department is required to utilize an evaluation of the environmental and economic impacts of modifications to water quality standards of twenty-five percent or more when making individual site-specific permit decisions.

✓ This operating permit does not contain requirements for a water quality standard changing twenty-five percent or more since the previous operating permit.

PART IV. EFFLUENT LIMIT DETERMINATIONS

OUTFALL #001, #002, #005, #006 - STORMWATER OUTFALLS

EFFLUENT LIMITATIONS TABLE:

PARAMETERS	Unit	Daily Maximum Limit	Bench- Mark	PREVIOUS PERMIT LIMITS	Minimum Sampling Frequency	Reporting Frequency	SAMPLE TYPE		
Physical									
FLOW	MGD	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	24 HR. ESTIMATE		
PRECIPITATION	REMOVED								
CONVENTIONAL									
BOD ₅	REMOVED								
COD	mg/L	**	120	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB		
OIL & GREASE	mg/L	**	10	15	ONCE/QUARTER	ONCE/QUARTER	GRAB		
PH [†]	SU	6.5-9.0	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB		
SETTLEABLE SOLIDS	mL/L/hr	**	1.5	1.5	ONCE/QUARTER	ONCE/QUARTER	GRAB		
TOTAL DISSOLVED SOLIDS	mg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB		
TSS	mg/L	**	100	80	ONCE/QUARTER	ONCE/QUARTER	GRAB		
METALS									
Aluminum, TR	μg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB		
ARSENIC, TR	μg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB		
CHROMIUM (III), TR	μg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB		
CHROMIUM (IV), TR	μg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB		
COPPER, TR	μg/L	24	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB		
IRON, TR	μg/L	4000	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB		
LEAD, TR	μg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB		
MANGANESE, TR	μg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB		
SELENIUM, TR	μg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB		
ZINC, TR	μg/L	191	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB		
NUTRIENTS									
Ammonia as N	μg/L	14.4	-	*	ONCE/QUARTER	ONCE/QUARTER	GRAB		
Other									
BENZENE	μg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB		
Chloride	mg/L	**	860	860	ONCE/QUARTER	ONCE/QUARTER	GRAB		
CHLORIDE+SULFATE	mg/L	**	1000	1000	ONCE/QUARTER	ONCE/QUARTER	GRAB		
ETHYLBENZENE		REMOVED							
Fluoride	mg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB		
NAPTHALENE	REMOVED								
PHENOL	μg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB		
SULFATE	mg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB		

monitoring and reporting requirement only *

**

monitoring with associated benchmark report the minimum and maximum pH values; pH is not to be averaged parameter not established in previous state operating permit †

new

total recoverable TR

DERIVATION AND DISCUSSION OF LIMITS:

PHYSICAL:

Flow

In accordance with [40 CFR Part 122.44(i)(1)(ii)] the volume of effluent discharged from each outfall is needed to ensure compliance with permitted effluent limitations. If the facility is unable to obtain effluent flow, then it is the responsibility of the facility to inform the Department, which may require the submittal of an operating permit modification. The facility will report the total flow in millions of gallons per day (MGD), quarterly monitoring continued from previous permit.

CONVENTIONAL:

Biochemical Oxygen Demand (BOD5)

This parameter was removed. The facility already monitors for chemical oxygen demand, which is an indicator parameter, the same as BOD.

Chemical Oxygen Demand (COD)

Monitoring with 120 mg/L daily maximum benchmark is continued from the previous permit using the permit writer's best professional judgment. There is no numeric water quality standard for COD; however, increased oxygen demand may impact instream water quality. COD is also a valuable indicator parameter. COD monitoring allows the facility to identify increases in COD may indicate materials/chemicals coming into contact with stormwater causing an increase in oxygen demand. Increases in COD may indicate a need for maintenance or improvement of BMPs. The facility reported from 21.8 to 212 mg/L in the last permit term. The benchmark value falls within the range of values implemented in other permits having similar industrial activities and is achievable through proper BMP controls.

Oil & Grease

Monitoring with a daily maximum benchmark of 10 mg/L; per permit writer's best professional judgment. The facility reported from 0 to 6 mg/L in the last permit. Oil and grease is considered a conventional pollutant. Oil and grease is a comprehensive test which measures for gasoline, diesel, crude oil, creosote, kerosene, heating oils, heavy fuel oils, lubricating oils, waxes, and some asphalt and pitch. The test can also detect some volatile organics such as benzene, toluene, ethylbenzene, or xylene, but these constituents are often lost during testing due to their boiling points. It is recommended to perform separate testing for these constituents if they are a known pollutant of concern at the site, i.e. aquatic life toxicity or human health is a concern. Results do not allow for separation of specific pollutants within the test, they are reported, totaled, as "oil and grease". Per 10 CSR 20-7.031 Table A1: *Criteria for Designated Uses*; 10 mg/L is the standard for protection of aquatic life. This standard will also be used to protect the general criteria found at 10 CSR 20-7.031(4). Ten mg/L is the level at which sheen is expected to form on receiving waters. Oils and greases of different densities will possibly form sheen or unsightly bottom deposits at levels which vary from 10 mg/L. To protect the general criteria, it is the responsibility of the facility to visually observe the discharge and receiving waters for sheen or bottom deposits. The benchmark is achievable through proper operational and maintenance of BMPs and falls within the range of values implemented in other permits having similar industrial activities. The benchmark this permit applies does not allow the facility to visual general criteria applies does not allow the facility to visual general criteria the provided are below the benchmark.

<u>рН</u>

6.5 to 9.0 SU – instantaneous grab sample. Water quality limits [10 CSR 20-7.031(5)(E)] are applicable to this outfall. pH is a fundamental water quality indicator. Additionally, metals leachability and ammonia availability in wastewater is dependent on pH. Limitations in this permit will protect against aquatic organism toxicity, downstream water quality issues, human health hazard contact, and negative physical changes in accordance with the general criteria at 10 CSR 20-7.031(4) and the Clean Water Act's (CWA) goal of 100% fishable and swimmable rivers and streams.

Settleable Solids (SS)

Monitoring with a daily maximum benchmark of 1.5 mL/L/hour. There is no numeric water quality standard for SS; however, sediment discharges can negatively impact aquatic life habitat. Settleable solids are also a valuable indicator parameter. Solids monitoring allows the facility to identify increases in sediment and solids may indicate uncontrolled materials leaving the site. The benchmark value falls within the range of values implemented in other permits having similar industrial activities.

Total Dissolved Solids

Monitoring only, continued from the previous permit. There are no water quality standards for this parameter; however, it is an indicator for leachate in stormwater discharges. High TDS can be caused by the alkalinity of leachate dissolving metal fractions in the waste stored in landfills. Similar to TSS, high concentrations of TDS may also reduce water clarity, contribute to a decrease in photosynthesis, combine with toxic compounds and heavy metals, and lead to an increase in water temperature.

Total Suspended Solids (TSS)

Monitoring with a daily maximum benchmark of 100 mg/L. There is no numeric water quality standard for TSS; however, sediment discharges can negatively impact aquatic life habitat. TSS is also a valuable indicator parameter. TSS monitoring allows the facility to identify increases in TSS indicating uncontrolled materials leaving the site. Increased suspended solids in runoff can lead to decreased available oxygen for aquatic life and an increase of surface water temperatures in a receiving stream. Suspended solids can also be carriers of toxins, which can adsorb to the suspended particles; therefore, total suspended solids are a valuable indicator parameter for other pollution. The facility reported from 6 to 357 mg/L in the last permit term. The benchmark is achievable through proper operational and maintenance of BMPs and falls within the range of values implemented in other permits having similar industrial activities.

METALS:

Aluminum, Total Recoverable

Monitoring only, continued from previous permit. Aluminum is a non-ferrous metal widely used in industrial applications. It is used to manufacture beverage cans, foil, other packaging, construction materials, and other products too numerous to list. It is a common constituent of both sanitary and industrial solid waste and is a common pollutant of concern at landfills. Aluminum is a frequent pollutant of concern for the landfill industry, and is included in other similar landfill permits.

Aluminum, Total Recoverable

Monitoring only, continued from previous permit. Arsenic has been used to treat wood products, and has been used in numerous agricultural insecticides and poisons and is a pollutant of concern for active landfills. No exceedances of the acute water quality standard occurred in the previous permitting cycle.

Chromium III, Total Recoverable

Monitoring only, continued from previous permit. Chromium is used in chrome plating, dyes and pigments, and other industrial applications. No exceedances of the acute water quality standard occurred in the previous permitting cycle. Monitoring is continued as chromium III is a pollutant of concern at landfills.

Chromium VI, Total Recoverable

Monitoring only, continued from previous permit. Chromium VI has several industrial uses, including chrome plating, the manufacture of dye and pigments, leather and wood preservation, and as an alloy with other metals. It was also used as "chromic acid" for a glass cleaner in industrial settings. There is potential for wastes from these uses to be found at a solid waste disposal site.

Copper, Total Recoverable

Daily maximum limit of $24 \mu g/L$ continued from the previous permit. Copper has numerous industrial uses, from alloys and antimicrobial applications, to wires, cables and paints. It is used as a stabilizing agent in chemical products. Permit writer used best professional judgement and conducted a reasonable potential determination to assume reasonable potential to cause or contribute to exceedances of water quality standards in the receiving stream. There were exceedances of these limits at outfalls 001, 002, and 003 in the previous permit cycle. DMRs show values ranging from 5 $\mu g/L$ to 34.8 $\mu g/L$.

Iron, Total Recoverable

Daily maximum limit of 4000 μ g/L, continued from previous permit. Iron has numerous industrial uses, being the most widely used of all metals. There is also a high potential for iron to be found in wastes at a landfill. Permit writer used best professional judgement and conducted a reasonable potential determination to assume reasonable potential to cause or contribute to exceedances of water quality standards in the receiving stream. DMRs show values ranging from 370 μ g/L to 50200 μ g/L.

Lead, Total Recoverable

Monitoring only, continued from previous permit. There were no exceedances of water quality standards during the previous permit cycle for this parameter. Lead has numerous industrial uses, including batteries, as an alloy, solder, a coolant, in electronics, and others. Lead is a known pollutant of concern at sanitary waste disposal sites; therefore monitoring will continue for this pollutant.

Manganese, Total Recoverable

Monitoring only, continued from previous permit. Manganese can be toxic to aquatic organisms in large amounts; however, levels of 800-3800 μ g/L have been shown to be non-toxic to sensitive organisms in a water hardness of 25-300 mg/L, with non-toxic levels increasing as hardness increases. DMRs show values ranging from 32.5 to 7690 μ g/L. There are no water quality standards applicable to the receiving stream at this site; however, the concentrations reported on the DMRs indicate this parameter is a pollutant of concern at this site, therefore monitoring will be continued.

Selenium, Total Recoverable

Monitoring only, continued from previous permit. Selenium is primarily used in the production of glass and electronics. It can also be found as an alloy with other metals. Review of the DMR data shows non-detects reported at 40μ g/L. The chronic criteria for protection of aquatic life for this parameter is 5μ g/L. It is important the permittee use sufficiently sensitive analytical methods in the future permit cycle (see part VI-Sufficiently Sensitive Analytical Methods for more information) to determine whether the amount of selenium in the effluent is compliant with water quality standards.

Zinc, Total Recoverable

Daily maximum limit of 191 μ g/L continued from the previous permit. Zinc has numerous industrial applications, the most prevalent of which are batteries and anti-corrosion agents. It is also commonly used as an alloy and in industrial chemical compounds such as flame retardants and wood preservatives. Permit writer used best professional judgement and conducted a reasonable potential determination to assume reasonable potential to cause or contribute to exceedances of water quality standards in the receiving stream. There were exceedances of these limits at outfalls 005 in the previous permit cycle. DMRs show values ranging from 0 μ g/L to 475 μ g/L.

NUTRIENTS:

Ammonia, Total as Nitrogen

Daily maximum limit of $14.4 \mu g/L$. Previous permit required monitoring only. There were four exceedances of the acute water quality standard at outfall 003 during the previous permit cycle. Ammonia is a pollutant of concern at landfills as identified in the ELG for the industry found at 40 CFR 445.

OTHER:

Benzene

Monitoring only, continued from previous permit. Benzene is a volatile organic compound and a common component of gasoline. It is used as an intermediate in the production of numerous other chemicals, especially phenols and acetones. Benzene is a reliable indicator parameter for hydrocarbon pollutants in the volatile fraction, such as ethylbenzene, toluene, and xylene. Continuing monitoring for this pollutant will aid in indication of any hydrocarbon control issues at the site. Benzene will serve as an indicator parameter for other hydrocarbons not sampled at this site.

Chloride

Monitoring only with a daily maximum benchmark of 860 mg/L. The previous permit required a daily maximum limit of 860 mg/L. See ANTI BACKSLIDING section. The facility reported between 14.3 mg/L and 143 mg/L for this parameter. Chloride is a known pollutant of concern at landfills.

Chloride Plus Sulfate

Monitoring with a daily maximum benchmark of 1000 mg/L. The previous permit required a daily maximum limit of 1000 mg/L. See ANTI BACKSLIDING section. The facility reported between 55.4 mg/L and 449 mg/L for this parameter. The benchmark of 1000 mg/L has been found to be achievable in other similar landfill permits.

<u>Fluoride</u>

Monitoring only continued from previous permit. DMRs from the last permit cycle do not show any analytical values with reasonable potential to exceed Missouri water quality standards.

Phenol

Monitoring only continued from previous permit. Phenol is a pollutant of concern at solid waste sites as identified in the ELG 40 CFR 445. Phenol is produced industrially to synthesize plastics, and is found in numerous commercially available products found in landfill wastes.

<u>Sulfate</u>

Monitoring required to determine chloride plus sulfate above. The facility shall sample and independently report the analytical value of sulfate.

OUTFALL #007 & #008 - STORMWATER OUTFALLS

EFFLUENT LIMITATIONS TABLE:

PARAMETERS	Unit	Daily Maximum Limit	Bench- Mark	PREVIOUS PERMIT LIMITS	Minimum Sampling Frequency	Reporting Frequency	SAMPLE TYPE			
Physical		-								
FLOW	MGD	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	24 hr. estimate			
PRECIPITATION	inches	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	24 hr. tot			
CONVENTIONAL										
BOD ₅		REMOVED								
COD	mg/L	**	120	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB			
OIL & GREASE	mg/L	**	10	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB			
PH [†]	SU	6.5-9.0	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB			
SETTLEABLE SOLIDS	mL/L/hr	**	1.5	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB			
TOTAL DISSOLVED SOLIDS	mg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB			
TSS	mg/L	**	100	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB			
METALS										
ALUMINUM, TR	μg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB			
ARSENIC, TR	μg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB			
CHROMIUM (III), TR	μg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB			
CHROMIUM (IV), TR	μg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB			
COPPER, TR	μg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB			
IRON, TR	μg/L	**	4000	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB			
LEAD, TR	μg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB			
MANGANESE, TR	μg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB			
SELENIUM, TR	μg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB			
ZINC, TR	μg/L	**	210	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB			
NUTRIENTS										
Ammonia as N		*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB			
Other										
BENZENE	μg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB			
Chloride	µg/L	**	860	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB			
Chloride+Sulfate	µg/L	**	1000	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB			
Ethylbenzene		REMOVED								
Fluoride	µg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB			
NAPTHALENE		REMOVED								
PHENOL	µg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB			
SULFATE	μg/L	*	-	NEW	ONCE/QUARTER	ONCE/QUARTER	GRAB			

*

**

monitoring and reporting requirement only monitoring with associated benchmark report the minimum and maximum pH values; pH is not to be averaged †

TR total recoverable

DERIVATION AND DISCUSSION OF LIMITS:

PHYSICAL:

Flow

In accordance with [40 CFR Part 122.44(i)(1)(ii)] the volume of effluent discharged from each outfall is needed to assure compliance with permitted effluent limitations. If the permittee is unable to obtain effluent flow, then it is the responsibility of the permittee to inform the department, which may require the submittal of an operating permit modification. The facility will report the total flow in millions of gallons per day (MGD).

CONVENTIONAL:

Biochemical Oxygen Demand (BOD5)

Monitoring with a daily maximum benchmark of 60 mg/L. 60 mg/L is typical in landfill permits, and has been met at other outfalls at this site. Since the established benchmark is being met at other outfalls at this site that shows their technology is capable of meeting the benchmark.

Chemical Oxygen Demand (COD)

Monitoring with a daily maximum benchmark of 120 mg/L. There is no water quality standard for COD; however, increased oxygen demand may impact instream water quality. COD is a valuable indicator parameter. COD monitoring allows the permittee to identify increases in COD that may indicate materials/chemicals coming into contact with stormwater that cause an increase in oxygen demand. COD is a pollutant of concern at this site, as evidenced by DMR data, and must be monitored under 40 CFR 122.48(b). Increases in COD may indicate a need for maintenance or improvement of BMPs. The benchmark value falls within the range of values implemented in other permits that have similar industrial activities and is achievable through proper BMP controls.

Oil & Grease

Monitoring with a daily maximum benchmark of 10 mg/L. Oil and grease is considered a conventional pollutant. Oil and grease is a comprehensive test which measures for gasoline, diesel, crude oil, creosote, kerosene, heating oils, heavy fuel oils, lubricating oils, waxes, and some asphalt and pitch. The test can also detect some volatile organics such as benzene, toluene, ethylbenzene, or toluene, but these constituents are often lost during testing due to their boiling points. It is recommended to perform separate testing for these constituents if they are a known pollutant of concern at the site, i.e. aquatic life toxicity or human health is a concern. Results do not allow for separation of specific pollutants within the test, they are reported, totaled, as "Oil and grease". Per 10 CSR 20-7.031 Table A: *Criteria for Designated Uses*; 10 mg/L is the standard for the protection of aquatic life. This standard will be used to protect the general criteria found at 10 CSR 20-7.031 (4) per the best professional judgment of the permit writer. Additionally, 10 mg/L is the level at which sheen is expected to form on receiving waters. Oils and greases of different densities will possibly form sheen or unsightly bottom deposits at levels which vary from 10 mg/L. To protect the general criteria, it is the responsibility of the permittee to visually observe the discharge and receiving waters for sheen or bottom deposits. The daily maximum was calculated using the *Technical Support Document for Water Quality-Based Toxics Control* (EPA/505/2-90-001). Section 5.4.2 indicates the waste load allocation can be set to the chronic standard. When the chronic standard is multiplied by 1.5, the daily maximum can be calculated. Hence, 10 * 1.5 = 15 mg/L for the daily maximum.

<u>рН</u>

6.5 to 9.0 SU. The Water Quality Standard found at 10 CSR 20-7.031(5)(E) states water contaminants shall not cause pH to be outside the range of 6.5 to 9.0 standard pH units. The permittee can meet the limit at issuance and does not require a schedule of compliance.

Settleable Solids (SS)

Monitoring with a daily maximum benchmark of 1.5 mL/L/hr. There is no water quality standard for SS; however, sediment discharges can negatively impact aquatic life habitat. Settleable solids are also a valuable indicator parameter. Solids are the primary pollutant of concern associated with landfill stormwater. Solids monitoring allows the permittee to identify increases in sediment and solids that may indicate uncontrolled materials leaving the site. The benchmark value falls within the range of values implemented in other permits that have similar industrial activity.

Total Dissolved Solids

Monitoring only. There are no water quality standards for this parameter; however, it is in an indicator for leachate in stormwater discharges. High TDS can be caused by the alkalinity of leachate dissolving metal fractions in the waste stored in landfills. Similar to TSS, high concentrations of TDS may also reduce water clarity, contribute to a decrease in photosynthesis, combine with toxic compounds and heavy metals, and lead to an increase in water temperature.

Total Suspended Solids (TSS)

Monitoring with a daily maximum benchmark of 100 mg/L. There is no water quality standard for TSS; however, sediment discharges can negatively impact aquatic life habitat. TSS is also a valuable indicator parameter in stormwater, and is a primary pollutant of concern at landfill and land disturbance sites. TSS monitoring allows the permittee to identify increases in TSS that may indicate uncontrolled materials leaving the site. Increased suspended solids in runoff can lead to decreased available oxygen for aquatic life and an increase of surface water temperatures in a receiving stream. Suspended solids can also be carriers of toxins, which can adsorb to the suspended particles; therefore, total suspended solids are a valuable indicator parameter for other pollution. The benchmark is achievable through proper operational and maintenance of BMPs and falls within the range of values implemented in other permits having similar industrial activities.

METALS:

Aluminum, Total Recoverable

Monitoring only. Aluminum is a non-ferrous metal widely used in industrial applications. It is used to manufacture beverage cans, foil, other packaging, construction materials, and other products too numerous to list. It is a common constituent of both sanitary and industrial solid waste and is a common pollutant of concern at landfills. Aluminum is a frequent pollutant of concern for the landfill industry, and is included in other similar landfill permits.

Arsenic, Total Recoverable

Monitoring only. Arsenic has been used to treat wood products, and has been used in numerous agricultural insecticides and poisons and is a pollutant of concern for active landfills. There is a potential for wastes from these uses to be found at an active waste disposal site.

Chromium (III), Total Recoverable

Monitoring only. Chromium III is used in chrome plating, dyes and pigments, leather and wood preservation, and as an alloy with other metals. There is a potential for wastes from these uses to be found at a solid waste disposal site.

Chromium (VI), Dissolved

Monitoring only. Chromium VI has several industrial uses, including chrome plating, the manufacture of dye and pigments, leather and wood preservation, and as an alloy with other metals. It was also used as "chromic acid' for a glass cleaner in industrial settings. There is a potential for wastes from these uses to be found at a solid waste disposal site.

Copper, Total Recoverable

Monitoring only. Copper has numerous industrial uses, from alloys and antimicrobial applications, to wires, cable and paints. It is used as a stabilizing agent in chemical products. Copper is a pollutant of concern for sanitary landfills.

Iron, Total Recoverable

Monitoring with a daily maximum benchmark of 4000 μ g/L. This benchmark was used to ensure BMPs are effectively removing metals. Iron is a pollutant of concern at landfills due to the varied materials accepted for disposal.

Lead, Total Recoverable

Monitoring only. Lead has numerous industrial uses, including batteries, as an alloy, solder, a coolant, in electronics, and others. Lead is a known common pollutant of concern at sanitary waste disposal sites.

Manganese, Total Recoverable

Monitoring only. Manganese can be toxic to aquatic organisms in large amounts. There are no water quality standards applicable to the receiving streams at this site; however, the concentrations reported on the DMRs at other outfalls indicate this parameter is a pollutant of concern at this site, therefore monitoring will be continued.

Selenium, Total Recoverable

Monitoring only. Selenium is found in glass products, pigments, and electronics. There is a potential for wastes from these uses to be found at a solid waste disposal site.

Zinc, Total Recoverable

Monitoring with a daily maximum benchmark of 210 ug/L. This benchmark was used to ensure BMPs are effectively removing metals. Zinc has numerous industrial applications, the most prevalent of which are batteries and anti-corrosion agents. It is also commonly used as an alloy an in industrial chemical compounds such as flame retardants and wood preservatives. Zinc is a pollutant of concern for active landfills as identified in the federal ELG for the industry found at 40 CFR 445.

NUTRIENTS:

Ammonia, Total as Nitrogen

Monitoring only. Ammonia is a primary component of leachate, and is in the landfill ELG found at 40 CFR 445.

OTHER:

<u>Benzene</u>

Monitoring only. Benzene is a volatile organic compound and a common component of gasoline. It is used as an intermediate in the production of numerous other chemicals, especially phenols and acetones. Benzene is a reliable indicator pollutant for hydrocarbon pollutants in the volatile fraction, such as ethylbenzene, toluene, and xylene. Monitoring for this pollutant will aid in indication of any hydrocarbon control issues at the site. Benzene will serve as an indicator parameter for other hydrocarbons not sampled at this site.

Chloride

Monitoring with a daily maximum benchmark of 860 mg/L. Chloride is a pollutant of concern at landfills and at this site in particular, as evidenced by DMR records. The benchmark value falls within the range of values implemented in other permits that have similar industrial activities and is achievable through proper BMP controls.

Chloride + Sulfate

Monitoring with a daily maximum benchmark of 1000 mg/L. There were several exceedances of this benchmark in the previous permit cycle. The benchmark value falls within the range of values implemented in other permits that have similar industrial activities and is achievable through proper BMP controls. If the permittee is struggling to achieve benchmark compliance, they may contact the Kansas City Regional Office and request a compliance assistance visit. The purpose of a compliance assistance visit is to assist the permittee in finding appropriate operational or structural BMPs to meet the requirements of the permit and provide further direction in compliance as necessary.

<u>Fluoride</u>

Monitoring only. Active landfills are one of the only industrial sources of fluoride, therefore fluoride will be monitored.

Phenol

Monitoring only. Phenol is a pollutant of concern at solid waste sites as identified in the ELG at 40 CFR 445. Phenol is produced industrially to synthesize plastics, and is found in numerous commercially available products found in landfill wastes.

OUTFALL #004- DOWNSTREAM MONITORING

Effluent limitations derived and established in the below effluent limitations table are based on current operations of the facility. Effluent means both process water and stormwater. Any flow through the outfall is considered a discharge and must be sampled and reported as provided below. Future permit action due to facility modification may contain new operating permit terms and conditions that supersede the terms and conditions, including effluent limitations, of this operating permit. Monitoring at outfall #004 is continued to give information to the Department regarding instream effects of discharges from the landfill.

PARAMETERS Outfall #004	Unit	Daily Maximum Limit	Bench- Mark	PREVIOUS PERMIT LIMITS	Minimum Sampling Frequency	Minimum Reporting Frequency	SAMPLE TYPE	
Physical								
FLOW	MGD	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	MEASURED	
PRECIPITATION	REMOVED							
CONVENTIONAL								
COD	MG/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB	
pH †	SU	6.5 то 9.0	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB	
TDS	MG/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB	
TSS	MG/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB	
METALS								
TOTAL HARDNESS AS CACO3	MG/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB	
Aluminum, TR	μg/L	*	-	NEW	ONCE/QUARTER	ONCE/QUARTER	GRAB	
COPPER, TR	μg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB	
IRON, TR	μg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB	
ZINC, TR.	μg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB	
NUTRIENTS								
Ammonia, as N	mg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB	
Hydrocarbons								
Benzene	μg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB	
OTHER								
Chloride	mg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB	
CHLORIDE + SULFATE	mg/L	*	-	SAME	ONCE/QUARTER	ONCE/QUARTER	GRAB	

* monitoring and reporting requirement only

report the minimum and maximum pH values; pH is not to be averaged

TR total recoverable

DERIVATION AND DISCUSSION OF LIMITS:

Instream monitoring at this facility does not account for outfalls #001 and #002. Downstream monitoring is continued at this facility as the instream monitoring point was established in past permit cycles. DMR data suggests the receiving stream is largely effluent dominated. Many parameters are removed from instream monitoring at this time per the permit writer's best professional judgment. Parameters which are removed from this permit show no water quality issues in stream and add little information to the permitting process at this site. It is in the permit writer's best professional judgment that pollutants of concern are adequately represented in the new sampling regime.

PHYSICAL:

Flow

Instream monitoring continued. Flow is a necessary physical parameter for site specific characterization. The facility will report the total flow in millions of gallons per day (MGD).

CONVENTIONAL:

Chemical Oxygen Demand (COD)

Monitoring continued to inform on instream oxygen demand.

<u>рН</u>

Monitoring continued. pH is an important water quality parameter and will inform on the conditions instream.

Total Dissolved Solids

Monitoring continued. There are no water quality standards for this parameter; however, it is in an indicator for leachate in stormwater discharges. High TDS can be caused by the alkalinity of leachate dissolving metal fractions in the waste stored in landfills. Similar to TSS, high concentrations of TDS may also reduce water clarity, contribute to a decrease in photosynthesis, combine with toxic compounds and heavy metals, and lead to an increase in water temperature.

Total Suspended Solids (TSS)

Monitoring continued. TSS is a parameter of concern at this site; instream monitoring will help ascertain this facility's effect on the solids composition of the receiving stream. Elevated levels of TSS were detected in the last permit cycle at this instream monitoring point.

METALS:

Total Hardness as CaCO3

Monitoring continued. Instream hardness will be used to calculate site specific hardness for this facility.

Aluminum, Total Recoverable

Monitoring added. Aluminum is a pollutant of concern at landfill sites. Monitoring is added to determine facility's instream impact for this parameter. Data is not available for this parameter from the previous permit cycles. concern for this pollutant.

Copper, Total Recoverable

Monitoring is continued. Copper was exceeded numerous times at the outfalls, and shows elevated levels instream.

Iron, Total Recoverable

Monitoring is continued. Iron was exceeded numerous times at the outfalls, and shows elevated levels instream.

Zinc, Total Recoverable

Monitoring is continued. DMRs show zinc at elevated levels instream in the last permit cycle. There are numerous exceedances of this parameter end of pipe at this facility.

NUTRIENTS:

Ammonia, Total as Nitrogen

Instream monitoring is continued. Ammonia is a pollutant of concern at landfills as identified in the ELG for the industry found at 40 CFR 445.

OTHER:

Benzene

Instream monitoring is continued. Benzene is a reliable indicator pollutant for hydrocarbon pollution

Chloride

Monitoring is continued. Review of DMR data shows Chloride is a pollutant of concern at this site.

Chloride + Sulfate

Monitoring is continued. Review of DMR data shows chloride + Sulfate is a pollutant of concern at this site.

PART V. Administrative Requirements

On the basis of preliminary staff review and the application of applicable standards and regulations, the Department, as administrative agent for the Missouri Clean Water Commission, proposes to issue a permit(s) subject to certain effluent limitations, schedules, and special conditions contained herein and within the operating permit. The proposed determinations are tentative pending public comment.

PUBLIC NOTICE:

The Department shall give public notice a draft permit has been prepared and its issuance is pending. Additionally, public notice will be issued if a public hearing is to be held because of a significant degree of interest in or with concerns related to a draft permit. No public notice is required when a request for a permit modification or termination is denied; however, the requester and facility must be notified of the denial in writing. <u>https://dnr.mo.gov/water/what-were-doing/public-notices</u> The Department must issue public notice of a pending operating permit. The public comment period is the length of time not less than 30 days following the date of the public notice which interested persons may submit written comments about the proposed permit.

For persons wishing to submit comments regarding this proposed operating permit, please refer to the Public Notice page located at the front of this draft operating permit. The Public Notice page gives direction on how and where to submit appropriate comments. All comments must be in written form.

✓ The Public Notice period for this operating permit started April 8, 2022 and ended May 9, 2022. No comments were received.

DATE OF FACT SHEET: MARCH 7, 2022 COMPLETED BY: KYLE O'ROURKE, ENVIRONMENTAL PROGRAM SPECIALIST MISSOURI DEPARTMENT OF NATURAL RESOURCES WATER PROTECTION PROGRAM OPERATING PERMITS SECTION - INDUSTRIAL UNIT (573) 526-1289 Kyle.O'Rourke@dnr.mo.gov

STANDARD CONDITIONS FOR NPDES PERMITS ISSUED BY THE MISSOURI DEPARTMENT OF NATURAL RESOURCES MISSOURI CLEAN WATER COMMISSION REVISED AUGUST 1, 2014

These Standard Conditions incorporate permit conditions as required by 40 CFR 122.41 or other applicable state statutes or regulations. These minimum conditions apply unless superseded by requirements specified in the permit.

Part I – General Conditions

Section A - Sampling, Monitoring, and Recording

1. Sampling Requirements.

- a. Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity.
- b. All samples shall be taken at the outfall(s) or Missouri Department of Natural Resources (Department) approved sampling location(s), and unless specified, before the effluent joins or is diluted by any other body of water or substance.

2. Monitoring Requirements.

a.

- Records of monitoring information shall include:
- i. The date, exact place, and time of sampling or measurements;
- ii. The individual(s) who performed the sampling or measurements;
- iii. The date(s) analyses were performed;
- iv. The individual(s) who performed the analyses;
- v. The analytical techniques or methods used; and
- vi. The results of such analyses.
- b. If the permittee monitors any pollutant more frequently than required by the permit at the location specified in the permit using test procedures approved under 40 CFR Part 136, or another method required for an industry-specific waste stream under 40 CFR subchapters N or O, the results of such monitoring shall be included in the calculation and reported to the Department with the discharge monitoring report data (DMR) submitted to the Department pursuant to Section B, paragraph 7.
- 3. **Sample and Monitoring Calculations.** Calculations for all sample and monitoring results which require averaging of measurements shall utilize an arithmetic mean unless otherwise specified in the permit.
- Test Procedures. The analytical and sampling methods used shall conform 4. to the reference methods listed in 10 CSR 20-7.015 unless alternates are approved by the Department. The facility shall use sufficiently sensitive analytical methods for detecting, identifying, and measuring the concentrations of pollutants. The facility shall ensure that the selected methods are able to quantify the presence of pollutants in a given discharge at concentrations that are low enough to determine compliance with Water Quality Standards in 10 CSR 20-7.031 or effluent limitations unless provisions in the permit allow for other alternatives. A method is "sufficiently sensitive" when; 1) the method minimum level is at or below the level of the applicable water quality criterion for the pollutant or, 2) the method minimum level is above the applicable water quality criterion, but the amount of pollutant in a facility's discharge is high enough that the method detects and quantifies the level of pollutant in the discharge, or 3) the method has the lowest minimum level of the analytical methods approved under 10 CSR 20-7.015. These methods are also required for parameters that are listed as monitoring only, as the data collected may be used to determine if limitations need to be established. A permittee is responsible for working with their contractors to ensure that the analysis performed is sufficiently sensitive.
- 5. Record Retention. Except for records of monitoring information required by the permit related to the permittee's sewage sludge use and disposal activities, which shall be retained for a period of at least five (5) years (or longer as required by 40 CFR part 503), the permittee shall retain records of all monitoring information, including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation, copies of all reports required by the permit, and records of all data used to complete the application for the permit, for a period of at least three (3) years from the date of the sample, measurement, report or application. This period may be extended by request of the Department at any time.

6. Illegal Activities.

- a. The Federal Clean Water Act provides that any person who falsifies, tampers with, or knowingly renders inaccurate any monitoring device or method required to be maintained under the permit shall, upon conviction, be punished by a fine of not more than \$10,000, or by imprisonment for not more than two (2) years, or both. If a conviction of a person is for a violation committed after a first conviction of such person under this paragraph, punishment is a fine of not more than \$20,000 per day of violation, or by imprisonment of not more than (4) years, or both.
- b. The Missouri Clean Water Law provides that any person or who falsifies, tampers with, or knowingly renders inaccurate any monitoring device or method required to be maintained pursuant to sections 644.006 to 644.141 shall, upon conviction, be punished by a fine of not more than \$10,000, or by imprisonment for not more than six (6) months, or by both. Second and successive convictions for violation under this paragraph by any person shall be punished by a fine of not more than \$50,000 per day of violation, or by imprisonment for not more than two (2) years, or both.

Section B - Reporting Requirements

1. Planned Changes.

- The permittee shall give notice to the Department as soon as possible of any planned physical alterations or additions to the permitted facility when:
 - i. The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in 40 CFR 122.29(b); or
 - ii. The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants which are subject neither to effluent limitations in the permit, nor to notification requirements under 40 CFR 122.42;
 - iii. The alteration or addition results in a significant change in the permittee's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan;
 - iv. Any facility expansions, production increases, or process modifications which will result in a new or substantially different discharge or sludge characteristics must be reported to the Department 60 days before the facility or process modification begins. Notification may be accomplished by application for a new permit. If the discharge does not violate effluent limitations specified in the permit, the facility is to submit a notice to the Department of the changed discharge at least 30 days before such changes. The Department may require a construction permit and/or permit modification as a result of the proposed changes at the facility.

2. Non-compliance Reporting.

a. The permittee shall report any noncompliance which may endanger health or the environment. Relevant information shall be provided orally or via the current electronic method approved by the Department, within 24 hours from the time the permittee becomes aware of the circumstances, and shall be reported to the appropriate Regional Office during normal business hours or the Environmental Emergency Response hotline at 573-634-2436 outside of normal business hours. A written submission shall also be provided within five (5) business days of the time the permittee becomes aware of the circumstances. The written submission shall contain a description of the noncompliance and its cause; the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance.

STANDARD CONDITIONS FOR NPDES PERMITS ISSUED BY THE MISSOURI DEPARTMENT OF NATURAL RESOURCES MISSOURI CLEAN WATER COMMISSION REVISED AUGUST 1, 2014

- b. The following shall be included as information which must be reported within 24 hours under this paragraph.
 - i. Any unanticipated bypass which exceeds any effluent limitation in the permit.
 - ii. Any upset which exceeds any effluent limitation in the permit.
 - Violation of a maximum daily discharge limitation for any of the pollutants listed by the Department in the permit required to be reported within 24 hours.
- c. The Department may waive the written report on a case-by-case basis for reports under paragraph 2. b. of this section if the oral report has been received within 24 hours.
- 3. Anticipated Noncompliance. The permittee shall give advance notice to the Department of any planned changes in the permitted facility or activity which may result in noncompliance with permit requirements. The notice shall be submitted to the Department 60 days prior to such changes or activity.
- 4. Compliance Schedules. Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of the permit shall be submitted no later than 14 days following each schedule date. The report shall provide an explanation for the instance of noncompliance and a proposed schedule or anticipated date, for achieving compliance with the compliance schedule requirement.
- 5. **Other Noncompliance.** The permittee shall report all instances of noncompliance not reported under paragraphs 2, 3, and 6 of this section, at the time monitoring reports are submitted. The reports shall contain the information listed in paragraph 2. a. of this section.
- 6. **Other Information**. Where the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in a permit application or in any report to the Department, it shall promptly submit such facts or information.

7. Discharge Monitoring Reports.

- a. Monitoring results shall be reported at the intervals specified in the permit.
- b. Monitoring results must be reported to the Department via the current method approved by the Department, unless the permittee has been granted a waiver from using the method. If the permittee has been granted a waiver, the permittee must use forms provided by the Department.
- c. Monitoring results shall be reported to the Department no later than the 28^{th} day of the month following the end of the reporting period.

Section C - Bypass/Upset Requirements

1. Definitions.

- a. *Bypass*: the intentional diversion of waste streams from any portion of a treatment facility, except in the case of blending.
- b. Severe Property Damage: substantial physical damage to property, damage to the treatment facilities which causes them to become inoperable, or substantial and permanent loss of natural resources which can reasonably be expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in production.
- c. *Upset:* an exceptional incident in which there is unintentional and temporary noncompliance with technology based permit effluent limitations because of factors beyond the reasonable control of the permittee. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation.

2. Bypass Requirements.

a. Bypass not exceeding limitations. The permittee may allow any bypass to occur which does not cause effluent limitations to be exceeded, but only if it also is for essential maintenance to assure efficient operation. These bypasses are not subject to the provisions of paragraphs 2. b. and 2. c. of this section.

- b. Notice.
 - i. Anticipated bypass. If the permittee knows in advance of the need for a bypass, it shall submit prior notice, if possible at least 10 days before the date of the bypass.
 - Unanticipated bypass. The permittee shall submit notice of an unanticipated bypass as required in Section B – Reporting Requirements, paragraph 5 (24-hour notice).
- c. Prohibition of bypass.
 - i. Bypass is prohibited, and the Department may take enforcement action against a permittee for bypass, unless:
 - 1. Bypass was unavoidable to prevent loss of life, personal injury, or severe property damage;
 - 2. There were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate back-up equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass which occurred during normal periods of equipment downtime or preventive maintenance; and
 - 3. The permittee submitted notices as required under paragraph 2. b. of this section.
 - ii. The Department may approve an anticipated bypass, after considering its adverse effects, if the Department determines that it will meet the three (3) conditions listed above in paragraph 2. c. i. of this section.

3. Upset Requirements.

- a. Effect of an upset. An upset constitutes an affirmative defense to an action brought for noncompliance with such technology based permit effluent limitations if the requirements of paragraph 3. b. of this section are met. No determination made during administrative review of claims that noncompliance was caused by upset, and before an action for noncompliance, is final administrative action subject to judicial review.
- b. Conditions necessary for a demonstration of upset. A permittee who wishes to establish the affirmative defense of upset shall demonstrate, through properly signed, contemporaneous operating logs, or other relevant evidence that:
 - i. An upset occurred and that the permittee can identify the cause(s) of the upset;
 - ii. The permitted facility was at the time being properly operated; and
 - iii. The permittee submitted notice of the upset as required in Section B

 Reporting Requirements, paragraph 2. b. ii. (24-hour notice).
 iv. The permittee complied with any remedial measures required under
 - iv. The permittee complied with any remedial measures required under Section D – Administrative Requirements, paragraph 4.
- c. Burden of proof. In any enforcement proceeding, the permittee seeking to establish the occurrence of an upset has the burden of proof.

Section D - Administrative Requirements

- 1. **Duty to Comply.** The permittee must comply with all conditions of this permit. Any permit noncompliance constitutes a violation of the Missouri Clean Water Law and Federal Clean Water Act and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or denial of a permit renewal application.
 - a. The permittee shall comply with effluent standards or prohibitions established under section 307(a) of the Federal Clean Water Act for toxic pollutants and with standards for sewage sludge use or disposal established under section 405(d) of the CWA within the time provided in the regulations that establish these standards or prohibitions or standards for sewage sludge use or disposal, even if the permit has not yet been modified to incorporate the requirement.
 - b. The Federal Clean Water Act provides that any person who violates section 301, 302, 306, 307, 308, 318 or 405 of the Act, or any permit condition or limitation implementing any such sections in a permit issued under section 402, or any requirement imposed in a pretreatment program approved under sections 402(a)(3) or 402(b)(8) of the Act, is subject to a civil penalty not to exceed \$25,000 per day for each violation. The Federal Clean Water Act provides that any person who negligently violates sections 301, 302, 306, 307, 308, 318, or 405 of the Act, or any condition or limitation implementing any of such sections in a permit issued under section 402 of the Act, or any requirement

STANDARD CONDITIONS FOR NPDES PERMITS ISSUED BY THE MISSOURI DEPARTMENT OF NATURAL RESOURCES MISSOURI CLEAN WATER COMMISSION REVISED AUGUST 1, 2014

imposed in a pretreatment program approved under section 402(a)(3) or 402(b)(8) of the Act, is subject to criminal penalties of \$2,500 to \$25,000 per day of violation, or imprisonment of not more than one (1) year, or both. In the case of a second or subsequent conviction for a negligent violation, a person shall be subject to criminal penalties of not more than \$50,000 per day of violation, or by imprisonment of not more than two (2) years, or both. Any person who knowingly violates such sections, or such conditions or limitations is subject to criminal penalties of \$5,000 to \$50,000 per day of violation, or imprisonment for not more than three (3) years, or both. In the case of a second or subsequent conviction for a knowing violation, a person shall be subject to criminal penalties of not more than \$100,000 per day of violation, or imprisonment of not more than six (6) years, or both. Any person who knowingly violates section 301, 302, 303, 306, 307, 308, 318 or 405 of the Act, or any permit condition or limitation implementing any of such sections in a permit issued under section 402 of the Act, and who knows at that time that he thereby places another person in imminent danger of death or serious bodily injury, shall, upon conviction, be subject to a fine of not more than \$250,000 or imprisonment of not more than 15 years, or both. In the case of a second or subsequent conviction for a knowing endangerment violation, a person shall be subject to a fine of not more than \$500,000 or by imprisonment of not more than 30 years, or both. An organization, as defined in section 309(c)(3)(B)(iii) of the CWA, shall, upon conviction of violating the imminent danger provision, be subject to a fine of not more than \$1,000,000 and can be fined up to \$2,000,000 for second or subsequent convictions.

- c. Any person may be assessed an administrative penalty by the EPA Director for violating section 301, 302, 306, 307, 308, 318 or 405 of this Act, or any permit condition or limitation implementing any of such sections in a permit issued under section 402 of this Act. Administrative penalties for Class I violations are not to exceed \$10,000 per violation, with the maximum amount of any Class I penalty assessed not to exceed \$25,000. Penalties for Class II violations are not to exceed \$10,000 per day for each day during which the violation continues, with the maximum amount of any Class II penalty not to exceed \$125,000.
- It is unlawful for any person to cause or permit any discharge of water d. contaminants from any water contaminant or point source located in Missouri in violation of sections 644.006 to 644.141 of the Missouri Clean Water Law, or any standard, rule or regulation promulgated by the commission. In the event the commission or the director determines that any provision of sections 644.006 to 644.141 of the Missouri Clean Water Law or standard, rules, limitations or regulations promulgated pursuant thereto, or permits issued by, or any final abatement order, other order, or determination made by the commission or the director, or any filing requirement pursuant to sections 644.006 to 644.141 of the Missouri Clean Water Law or any other provision which this state is required to enforce pursuant to any federal water pollution control act, is being, was, or is in imminent danger of being violated, the commission or director may cause to have instituted a civil action in any court of competent jurisdiction for the injunctive relief to prevent any such violation or further violation or for the assessment of a penalty not to exceed \$10,000 per day for each day, or part thereof, the violation occurred and continues to occur, or both, as the court deems proper. Any person who willfully or negligently commits any violation in this paragraph shall, upon conviction, be punished by a fine of not less than \$2,500 nor more than \$25,000 per day of violation, or by imprisonment for not more than one year, or both. Second and successive convictions for violation of the same provision of this paragraph by any person shall be punished by a fine of not more than \$50,000 per day of violation, or by imprisonment for not more than two (2) years, or both.

2. Duty to Reapply.

- a. If the permittee wishes to continue an activity regulated by this permit after the expiration date of this permit, the permittee must apply for and obtain a new permit.
- b. A permittee with a currently effective site-specific permit shall submit an application for renewal at least 180 days before the expiration date of the existing permit, unless permission for a later date has been granted by the Department. (The Department shall not grant permission

for applications to be submitted later than the expiration date of the existing permit.)

- c. A permittees with currently effective general permit shall submit an application for renewal at least 30 days before the existing permit expires, unless the permittee has been notified by the Department that an earlier application must be made. The Department may grant permission for a later submission date. (The Department shall not grant permission for applications to be submitted later than the expiration date of the existing permit.)
- 3. **Need to Halt or Reduce Activity Not a Defense.** It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.
- 4. **Duty to Mitigate.** The permittee shall take all reasonable steps to minimize or prevent any discharge or sludge use or disposal in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment.
- 5. Proper Operation and Maintenance. The permittee shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the permittee to achieve compliance with the conditions of this permit. Proper operation and maintenance also includes adequate laboratory controls and appropriate quality assurance procedures. This provision requires the operation of back-up or auxiliary facilities or similar systems which are installed by a permittee only when the operation is necessary to achieve compliance with the conditions of the permit.

6. Permit Actions.

- a. Subject to compliance with statutory requirements of the Law and Regulations and applicable Court Order, this permit may be modified, suspended, or revoked in whole or in part during its term for cause including, but not limited to, the following:
 - i. Violations of any terms or conditions of this permit or the law;ii. Having obtained this permit by misrepresentation or failure to
 - disclose fully any relevant facts; iii. A change in any circumstances or conditions that requires either a
 - temporary or permanent reduction or elimination of the authorized discharge; or
 - iv. Any reason set forth in the Law or Regulations.
- b. The filing of a request by the permittee for a permit modification, revocation and reissuance, or termination, or a notification of planned changes or anticipated noncompliance does not stay any permit condition.

7. Permit Transfer.

- a. Subject to 10 CSR 20-6.010, an operating permit may be transferred upon submission to the Department of an application to transfer signed by the existing owner and the new owner, unless prohibited by the terms of the permit. Until such time the permit is officially transferred, the original permittee remains responsible for complying with the terms and conditions of the existing permit.
- b. The Department may require modification or revocation and reissuance of the permit to change the name of the permittee and incorporate such other requirements as may be necessary under the Missouri Clean Water Law or the Federal Clean Water Act.
- c. The Department, within 30 days of receipt of the application, shall notify the new permittee of its intent to revoke or reissue or transfer the permit.
- 8. **Toxic Pollutants.** The permittee shall comply with effluent standards or prohibitions established under section 307(a) of the Federal Clean Water Act for toxic pollutants and with standards for sewage sludge use or disposal established under section 405(d) of the Federal Clean Water Act within the time provided in the regulations that establish these standards or prohibitions or standards for sewage sludge use or disposal, even if the permit has not yet been modified to incorporate the requirement.
- 9. **Property Rights.** This permit does not convey any property rights of any sort, or any exclusive privilege.

STANDARD CONDITIONS FOR NPDES PERMITS ISSUED BY THE MISSOURI DEPARTMENT OF NATURAL RESOURCES MISSOURI CLEAN WATER COMMISSION REVISED AUGUST 1, 2014

- 10. **Duty to Provide Information.** The permittee shall furnish to the Department, within a reasonable time, any information which the Department may request to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit or to determine compliance with this permit. The permittee shall also furnish to the Department upon request, copies of records required to be kept by this permit.
- 11. **Inspection and Entry.** The permittee shall allow the Department, or an authorized representative (including an authorized contractor acting as a representative of the Department), upon presentation of credentials and other documents as may be required by law, to:
 - Enter upon the permittee's premises where a regulated facility or activity is located or conducted, or where records must be kept under the conditions of the permit;
 - b. Have access to and copy, at reasonable times, any records that must be kept under the conditions of this permit;
 - c. Inspect at reasonable times any facilities, equipment (including monitoring and control equipment), practices, or operations regulated or required under this permit; and
 - d. Sample or monitor at reasonable times, for the purposes of assuring permit compliance or as otherwise authorized by the Federal Clean Water Act or Missouri Clean Water Law, any substances or parameters at any location.

12. Closure of Treatment Facilities.

- a. Persons who cease operation or plan to cease operation of waste, wastewater, and sludge handling and treatment facilities shall close the facilities in accordance with a closure plan approved by the Department.
- b. Operating Permits under 10 CSR 20-6.010 or under 10 CSR 20-6.015 are required until all waste, wastewater, and sludges have been disposed of in accordance with the closure plan approved by the Department and any disturbed areas have been properly stabilized. Disturbed areas will be considered stabilized when perennial vegetation, pavement, or structures using permanent materials cover all areas that have been disturbed. Vegetative cover, if used, shall be at least 70% plant density over 100% of the disturbed area.

13. Signatory Requirement.

- a. All permit applications, reports required by the permit, or information requested by the Department shall be signed and certified. (See 40 CFR 122.22 and 10 CSR 20-6.010)
- b. The Federal Clean Water Act provides that any person who knowingly makes any false statement, representation, or certification in any record or other document submitted or required to be maintained under this permit, including monitoring reports or reports of compliance or noncompliance shall, upon conviction, be punished by a fine of not more than \$10,000 per violation, or by imprisonment for not more than six (6) months per violation, or by both.
- c. The Missouri Clean Water Law provides that any person who knowingly makes any false statement, representation or certification in any application, record, report, plan, or other document filed or required to be maintained pursuant to sections 644.006 to 644.141 shall, upon conviction, be punished by a fine of not more than ten thousand dollars, or by imprisonment for not more than six months, or by both.
- 14. **Severability.** The provisions of the permit are severable, and if any provision of the permit, or the application of any provision of the permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of the permit, shall not be affected thereby.

SCS ENGINEERS

December 30, 2019 File No. 27215056.33

Mr. Chris Wieberg Missouri Department of Natural Resources Water Protection Program 1101 Riverside Drive P.O. Box 176 Jefferson City, MO 65101

Submitted via email to: cleanwaterpermits@dnr.mo.gov

Subject: Missouri State Operating Permit Renewal Application St. Joseph Sanitary Landfill MSOP No.: M0-0109878

Dear Mr. Wieberg:

The City of St. Joseph, Missouri (City) retained SCS Engineers (SCS) to prepare and submit this permit renewal application for the Missouri State Operating Permit (MSOP) for the St. Joseph Sanitary Landfill (Facility).

Enclosed for this permit renewal application is the following:

- 1. Form A, along with:
 - a. Supplemental Information
 - b. Figure A1 Site Location
- 2. Form C, along with:
 - a. Supplemental Information
 - b. Figure C1 Line Diagram
 - c. Figure C2 Outfall Watersheds
- 3. Form D

Application Notes:

Forms C&D

- Forms C and D were completed using available sampling data from second quarter 2017 through third quarter 2019.
- Long term averages were calculated using sampling data referenced above. For parameters reported as non-detected, the method detection limits were used.
- Daily values where a non-detect is the maximum are indicated with the less than sign (<).

Mr. Chris Wieberg December 30, 2019 Page 2

- The indication "believed present" and "believed absent" is based on industrial facility operations and does not consider naturally occurring constituents in soils.
 - Parameters were marked "believed absent" if (1) testing was not required by the prior permit or (2) the facility reported only non-detect values for a specific parameter within the date range listed above.
 - Parameters were marked "believed present" if (1) testing was required by the permit and data was not available within the date range or (2) testing yielded a detect within the date range.
- For several parameters within the date range listed above, there are instances where the detection limit changed. Instances where the method detection limit increased above previously detected concentrations are shown with an indication of both the maximum detected value and the highest method detection limit. This is why in some instances the maximum concentration is less than the average concentration.

Proposed Outfall Changes

Outfalls 001, 003, 007, and 008:

In 2018, the facility began excavation activities for the next landfill cell and construction of a sedimentation basin (associated with future Outfalls 007 and 008). As discussed in the October 2018 Request for Permit Modification and incorporated into the MSOP, the new storm water pond will also receive storm water discharge from Outfall 001. Furthermore, construction of the new landfill cell has completely eliminated Outfall 003. The construction of the sedimentation basin with Outfalls 007 and 008 is nearing completion, but is not yet complete at the time of this application. It is requested the new permit eliminate Outfalls 001 and 003 from the permit immediately upon the completion of Outfalls 007 and 008.

Outfall 004:

Outfall 004 is an in-stream sampling point. However, it is not representative of the landfill's overall impact to the receiving water as it is only downstream of Outfalls 005 and 006. Many landfill permits no longer include in-stream sampling and it is requested to remove this outfall from the permit.

Mr. Chris Wieberg December 30, 2019 Page 3

We appreciate your review of this application. If you have any questions or require additional information, please contact Ms. Renee Trenshaw at 913-749-0707.

Sincerely,

0

Renee D. Trenshaw, P.E. Staff Professional SCS Engineers

stasia Welch

Anastasia J. Welch, P.E. Project Director / Vice President SCS Engineers

RT/ AW

cc: Rod McQuerrey, City of St. Joseph Sanitary Landfill

Enclosures: NPDES Permit Renewal Application

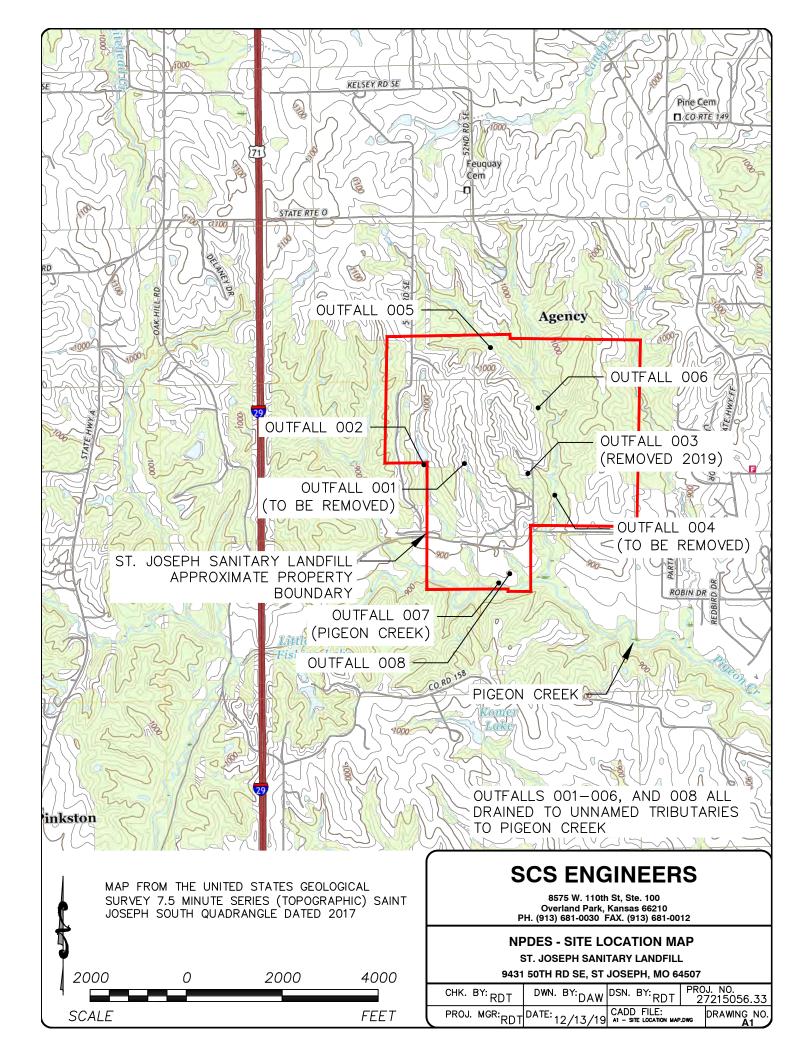
G	***
2	

MISSOURI DEPARTMENT OF NATURAL RESOURCES WATER PROTECTION PROGRAM FORM A – APPLICATION FOR NONDOMESTIC PERMIT UNDER MISSOURI CLEAN WATER LAW FOR AGENCY USE ONLY

CHECK NUMBER

DATE RECEIVED

FEE SUBMITTED


JET PAY CONFIRMATION NUMBER

PLEASE READ ALL THE ACCOMPANYING IN SUBMITTAL OF AN INCOMPLETE APPLICAT			ED.							
IF YOUR FACILITY IS ELIGIBLE FOR A NO E										
Fill out the No Exposure Certification Form (Mo	780-2828): https://dnr.mo.gov/forms/780-2828	<u>B-f.pdf</u>								
1. REASON FOR APPLICATION:										
application for renewal, and there is no	This facility is now in operation under Missouri State Operating Permit (permit) $MO - \frac{0109878}{2}$, is submitting an application for renewal, and there is <u>no</u> proposed increase in design wastewater flow. Annual fees will be paid when invoiced and there is no additional permit fee required for renewal.									
proposed increase in design wastewate	This facility is now in operation under permit MO –, is submitting an application for renewal, and there is a proposed increase in design wastewater flow. Antidegradation Review may be required. Annual fees will be paid when invoiced and there is no additional permit fee required for renewal.									
 c. This is a facility submitting an application permit fee is required. 	on for a new permit (for a new facility). Antideg	radation Review	may be required. New							
	Missouri State Operating Permit (permit) MO – ation Review may be required. Modification fee		d is requesting a							
2. FACILITY										
NAME St. Joseph Sanitary Landfill		816-253-11								
ADDRESS (PHYSICAL) 9431 50th Rd. SE	CITY St. Joseph	STATE MO	ZIP CODE 64507							
3. OWNER										
NAME City of St. Joseph		TELEPHONE N 816-271-46	UMBER WITH AREA CODE							
EMAIL ADDRESS		I								
ADDRESS (MAILING) 1100 Fredrick Ave.	CITY St. Joseph	STATE MO	ZIP CODE 64501							
4. CONTINUING AUTHORITY										
NAME City of St. Joseph		TELEPHONE N 816-271-46	NUMBER WITH AREA CODE							
EMAIL ADDRESS										
rmcquerrey@stjoemo.org ADDRESS (MAILING)	CITY	STATE	ZIP CODE							
1100 Fredrick Ave.	St. Joseph	MO	64501							
5. OPERATOR CERTIFICATION										
NAME City of St. Joseph	CERTIFICATE NUMBER 1968 (CSWT)	TELEPHONE N 816-253-11	UMBER WITH AREA CODE							
ADDRESS (MAILING) 9431 50th Rd. SE	CITY St. Joseph	STATE MO	ZIP CODE 64507							
6. FACILITY CONTACT										
NAME	TITLE		E NUMBER WITH AREA CODE							
Rod McQuerrey	Landfill Superintendent	816-253-	1122							
e-MAIL ADDRESS rmcquerrery@stjoemo.org										
7. DOWNSTREAM LANDOWNER(S) Attach ac	dditional sheets as necessary.									
7. See attached sheet										
ADDRESS 7. See allached sheet	CITY	S	TATE ZIP CODE							
MO 780-1479 (02-19)			<u> </u>							

8. ADDITIONAL F	ACILITY INFORMATION					1.0	
	escription of Outfalls. (Atta				L	.1 See attac	ched sheet
001 UTM Coo 002	rsal Transverse Mercator (UTM), 1/4 $1/41/4$ $1/4$	Sec1	North referenced to T Northing (Y): T	North American	R	(NAD83) Co	ounty
003 UTM Coo 004 UTM Coo	$\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \end{array} \end{array} \begin{array}{c} & \begin{array}{c} & \end{array} \end{array} \end{array} \begin{array}{c} & \begin{array}{c} & \end{array} \end{array} \end{array} \begin{array}{c} & \begin{array}{c} & \end{array} \end{array} \end{array} \\ \begin{array}{c} & \begin{array}{c} & \end{array} \end{array} \end{array} \begin{array}{c} & \begin{array}{c} & \end{array} \end{array} \end{array} \begin{array}{c} & \begin{array}{c} & \end{array} $	Sec	Northing (Y): T Northing (Y): T	F	२ २	Co	ounty
Primary S			somey reorary and		il Glassificati	on System (NA 8.2 See att	ICS) Codes.
	and NAICS			SIC	an		
A. Is this per	ORMS AND MAPS NECESS	SARY TO CO	MPLETE THIS A	PPLICATION			
If yes, com	mit for a manufacturing, com nplete Form C.	merciai, minii	ng, solid/hazardo	us waste, or si	lviculture fac	ility? YES 🗸	NO
B. Is the facil If yes, com	ity considered a "Primary Inc aplete Forms C and D.	lustry" under	EPA guidelines (40 CFR Part 1	22, Appendix	(A): YES 🗸	
C. Is wastewa If yes, con	ater land applied? nplete Form I.					YES 🗌	NO 🗸
D. Are sludge If yes, com	e, biosolids, ash, or residuals plete Form R.	generated, tr	eated, stored, or	land applied?		YES 🗌	NO 🗹
	received or applied for any pental regulatory authority? ase include a list of all permit						NO 🗌
F. Do you use If yes, pleas	e cooling water in your opera se indicate the source of the	tions at this fa water:	acility?	an levil o pese en crist acort	netic neld the Netic neld the	YES 🗌	NO
G. Attach a ma	ap showing all outfalls and th	ne receiving s	tream at 1" = 2,0	00' scale.	See attac	ched Figure	A1
10. ELECTRONIC D	DISCHARGE MONITORING	REPORT (or	MP) SI IDMICO	ONEVETER	L		
and monitoring shall consistent set of data visit <u>http://dnr.mo.go</u>	7 National Pollutant Discharg be submitted by the permitte a. One of the following mu <u>v/env/wpp/edmr.htm</u> to acce leted and submitted with this pusly submitted the required of	e Elimination ee via an elec ist be checke ss the Facility permit applic	System (NPDE) stronic system to ad in order for t Participation Pa cation the require	 Electronic R ensure timely, his application ckage. d documentation 	complete, ac n to be cons on to particip	ccurate, and na	tionally ate. Please
	tted a written request for a w	aiver from ele	ectronic reporting	. See instructi	ions for furth	er information r	egarding
11. FEES							
Permit fees may be p to access JetPay and	paid by attaching a check, or I make an online payment: <u>h</u>	online by cre	dit card or eChe	k through the	JetPay syste	m. Use the UR	L provided
12. CERTIFICATION			<u>eneotorociduoris</u>	com/magic-ui/	payments/m	o-natural-resou	rces/
nquiry of the person on nformation submitted penalties for submittir	v of law that this document and ed to assure that qualified per or persons who manage the l is, to the best of my knowled ing false information, including YPE OR PRINT)	system, or th dge and belie g the possibili	ose persons dire if, true, accurate, ity of fine and im	ctly responsible and complete.	ormation sub e for gatherir I am aware knowing viol	omitted. Based on g the information that there are s ations.	on my on, the ignificant
BOD M = OUCTO	Y SUPT. OF SOLD	WASTERO	A RECYCLING	2	TELEPHONE 816 - 2 S DATE SIGNE	NUMBER WITH AREA	A CODE
0 780-1479 (02-19)		3			12-30		

-

김 가 있는 것이 같다.

MISSOURI DEPARTMENT OF NATURAL RESOURCES WATER PROTECTION PROGRAM, WATER POLLUTION CONTROL BRANCH FORM C – APPLICATION FOR DISCHARGE PERMIT – MANUFACTURING, COMMERCIAL, MINING, SILVICULTURE OPERATIONS, AND STORMWATER

GENERAL INFORMATION (PLEASE SEE INSTRUCTIONS)

1.0 NAME OF FACILITY

City of St. Joseph Landfill

1.1 THIS FACILITY IS OPERATING UNDER MISSOURI STATE OPERATING PERMIT (MSOP) NUMBER:

MO-0109878

1.2 IS THIS A NEW FACILITY? PROVIDE CONSTRUCTION PERMIT (CP) NUMBER IF APPLICABLE.

not applicable

1.3 Describe the nature of the business, in detail. Identify the goods and services provided by the business. Include descriptions of all raw, intermediate, final products, byproducts, or waste products used in the production or manufacturing process, stored outdoors, loaded or transferred and any other pertinent information for potential sources of wastewater or stormwater discharges. This facility provides waste disposal by landfilling. Facility also includes sedimentation basins (also referred to as siltation basins), scale and scale house, composting, tire storage, and white goods crushing areas.

FLOWS, TYPE, AND FREQUENCY

2.0 Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment units labeled to correspond to the more detailed descriptions in item B. Construct a water balance on the line drawing by showing average and maximum flows between intakes, operations, treatment units, evaporation, public sewers, and outfalls. If a water balance cannot by determined (e.g., for See attached Figure C1 pictorial description of the nature and amount of any sources of water and any collection or

2.1 For each outfall (1) below, provide: (2) a description of all operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling water, stormwater runoff, and any other process or non-process wastewater, (3) the average flow and maximum flow (put max in parentheses) contributed by each operation and the sum of those operations, (4) the treatment received by the wastewater, and (5) the treatment type code. Continue on additional sheets if necessary.

()	·····,···,···,···,···,····,···			, ,
1. OUTFALL NO.	2. OPERATION(S) CONTRIBUTING FLOW; INCLUDE ALL PROCESSES AND SUB PROCESSES AT EACH OUTFALL	3. AVERAGE FLOW AND (MAXIMUM FLOW), INCLUDE UNITS.	4. TREATMENT DESCRIPTION	5. TREATMENT CODES FROM TABLE A
001*	Active landfill, sedimentation (sed.) basin	Varies (storm water)	Sedimentation Basin***	1-U
002	Active landfill, sed. basin	Varies (storm water)	Sedimentation Basin	1-U
003**	N/A: No longer present			
004*	Downstream #005 + 006, in creek sampling point	Varies (storm water)	Open Channel	n/a
005	Active landfill, composting, tire storage,	Varies (storm water)	Sedimentation Basin	1-U
005	White goods, sed. basin	Varies (storm water)	Sedimentation Basin	1-U
006	Active landfill, sed. basin	Varies (storm water)	Sedimentation Basin	1-U
007	Active landfill, borrow area, sed. basin	Varies (storm water)	Sedimentation Basin	1-U
800	Active landfill, borrow area, sed. basin	Varies (storm water)	Sedimentation Basin	1-U
	Attach addit	ional pages if necessa	ary.	

* Proposed to be removed from permit following completion of Outfalls 007 and 008 per 2018 permit modification request incorporated into the MSOP June 1, 2019. ** No longer physically present due to construction activities

*** Sedimentation Basin and Siltation Basin are used interchangeably within this permit application

1. OUTFALL NUMBER	Yes (complete the			No <i>(go to s</i>	section 2.3)					
OUTFALL	2. OPERATION(S) CON	TRIBUTING FLOW	3. FRE							
OUTFALL	2. OPERATION(S) CON	TRIBUTING FLOW		QUENCY		4.	FLOW	ELOW B. TOTAL VOLUME		
	2. 012(4110)(0) 000				A. FLOW RA	ATE (in mgd)	B. TOTAL (specify v		C. DURATION	
			A. DAYS PER WEEK (specify average)	B. MONTHS PER YEAR (specify average)	1. MAXIMUM DAILY	2. LONG TERM AVERAGE	4. LONG TERM DAILY	3. MAXIMUM AVERAGE	(in days)	
2.3 PRO	DUCTION									
A. Does ;	an effluent limitation	guideline (ELG) j	oromulgate	d by EPA u	Inder sectior	n 304 of the	e Clean Water	r Act apply to	o your	
facility? In	ndicate the part and s	ubparts applicab	le.	-					-	
۲ 🔽	Yes 40 CFR_445	Subpart(s) _B	_ □	No (go to se	ection 2.5)				
B Are th	e limitations in the eff	fluent quideline(s		d in terms (of production	or other	measure of or	peration)? D	escribe in C	
below.		ident galdeline(c								
	Yes (complete C.)	V No	(go to sec	tion 2.5)						
	answered "yes" to B, d in the terms and un								tion,	
A. OUTFALL(-	-				IATERIAL, ETC. (
	DVEMENTS									
2.4 11/11 1/(0	JVEIMENTS									
up	e you required by any ograding, or operation	of wastewater to	reatment eo	quipment or	r practices o	r any other	environment	al programs	which may	
	fect the discharges de enforcement orders,									
	s (complete the follow	vina table)	Г] No <i>(go t</i> o	2 6)					
	ICATION OF CONDITION,	2. AFFECTED						4. FINAL CO	MPLIANCE DATE	
	REEMENT, ETC.	OUTFALLS		3. BRIEF	DESCRIPTION OI	F PROJECT		A. REQUIRED	B. PROJECTED	
Abatemen	t Order on Consent	Landfill	signed 11/	12/2019; co	onstruction a	ind site imp	provements	varies	varies	
			to address	storm wate	er quality cor	ncerns				
pro	otional: provide below ojects which may affe anned schedules for o	ect discharges. Ir	ndicate whe	ther each p	program is u	nderway o	r planned, and			

2.5 SLUDGE MANAGEMENT

Describe the removal of any industrial or domestic biosolids or sludges generated at your facility. Include names and contact information for any haulers used. Note the frequency, volume, and methods (incineration, landfilling, composting, etc) used. See Form A for additional forms which may need to be completed.

Not applicable

DATA COLLECTION AND REPORTING REQUIREMENTS FOR APPLICANTS

3.0 EFFLUENT (AND INTAKE) CHARACTERISTICS (SEE INSTRUCTIONS)

A. & B. See instructions before continuing – complete one Table 1 for **each outfall** (and intake) – annotate the outfall (intake) number or designation in the space provided. The facility is not required to complete intake data unless required by the department or rule.

C. Use the space below to list any pollutants listed in the instructions section 3.0 C. Table B which you know or have reason to believe is discharged or may be discharged from any outfall not listed in parts 3.0 A or B on Table 1. For every pollutant listed, briefly describe the reasons you believe it to be present and report any analytical data in your possession.

1. POLLUTANT	2. SOURCE	3. OUTFALL(S)	4. ANALYTICAL RESULTS (INCLUDE UNITS)
None known to be present			
	8	been performed	on the facility discharges (or on receiving
any results of toxicity identification	s, including test duration (chronic or acuation evaluations (TIE) or toxicity reduction ding any pollutants identified as causing	on evaluations (

3.2 CONTRACT ANALYSIS INFORMATION

Were any of the analyses reported herein, above, or on Table 1 performed by a contract laboratory or consulting firm? \checkmark Yes (list the name, address, telephone number, and pollutants analyzed by each laboratory or firm.) \Box No (go to 4.0)

A. LAB NAME	B. ADDRESS	C. TELEPHONE (area code and number)	D. POLLUTANTS ANALYZED (list or group)
Test America	500 Wilson Pike Circle, Suite 100, Brentwood TN	615-726-0177	2017 NPDES required parameters
Teklab, Inc.	8421 Nieman Road, Lenexa, KS 66214	913-541-1998	2018 & 2019 NPDES required parameters

4.0 STORMWATER

4.1

Do you have industrial stormwater discharges from the site? If so, attach a site map outlining drainage areas served by each outfall. Indicate the following attributes within each drainage area: pavement or other impervious surfaces; buildings; outdoor storage areas; material loading and unloading areas; outdoor industrial activities; structural stormwater control measures; hazardous waste treatment, storage, and disposal units; and wells or springs in the area.

OUTFALL NUMBER	TOTAL AREA DRAINED (PROVIDE UNITS)	TYPES OF SURFACES (VEGETATED, STONE , PAVED, ETC)	BEST MANAGEMENT PRACTICES EMPLOYED; INCLUDE STRUCTURAL BMPS AND TREATMENT DESIGN FLOW FOR BMPS DESCRIBE HOW FLOW IS MEASURED
	Se	ee attached sheet	
rovide th	RMWATER FLOV ne date of sampli	VS ng with the flows, and how the flows wer	e estimated.
GNAT	ORY REQUIRE	EMENTS	

5.0 CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

NAME AND OFFICIAL TITLE (TYPE OR PRINT)	TELEPHONE NUMBER WITH AREA CODE
ROD MEQUEIREY SUPT. of Sol: DWASTE and RECYLLINGS	816-253-1122
Renny	DATE SIGNED
	12:30-19

You may report some or all of this information on separate sheet (use similar format) instead of completing these pages.

EFFLUENT (AND INTAK	KE) CHAF	RACTERI	STICS	THIS OUTFA	LL IS: Storm wa	ater dischar	ge				OUTFALL NO. 00	1
3.0 PART A – You must	provide t	he results	s of at least one ar	alysis for every	pollutant in Part	A. Complet	te one t	table for each ou	Itfall or proposed	outfall. See	instructions.	
					2. VALUES						3. UNITS (sp	ecify if blank)
1. POLLUTANT		A. MAXIMU	M DAILY VALUE	В. М	MAXIMUM 30 DAY VALU	JES		C. LONG TERM AVER	AGE VALUES	D. NO. OF	A CONCEN-	
	(1) CONC	ENTRATION	(2) MASS	(1) CONCENT	RATION (2)	MASS	(1) C	ONCENTRATION	(2) MASS	ANALYSES	3. UNITS (spec	B. MASS
A. Biochemical Oxygen Demand, 5-day (BOD ₅)	43						21.75	;		4		
B. Chemical Oxygen Demand (COD)	212						123.5			4		
C. Total Organic Carbon (TOC)												
D. Total Suspended Solids (TSS)	657						231.5	;		4		
E. Ammonia as N	7.56						2.64			4		
F. Flow	VALUE			VALUE				VALUE			MILLIONS OF GALLONS PER DAY (MGD)	
G. Temperature (winter)	VALUE			VALUE	VALUE			VALUE			°F	
H. Temperature (summer)	VALUE			VALUE	VALUE			VALUE			°F	-
I. pH	MINIMUM -	7.23		MAXIMUM 7.9	7.97 AVERAGE 7.59			^{GE} 7.59	4		STANDARD UNITS (SU)	
3.0 PART B – Mark "X" i Column 2A for any pollu parameters not listed he	tant, you	must prov	ach pollutant you k vide the results for	now or have rear at least one an	ason to believe is alysis for the pol	s present. N lutant. Com	lark "X' plete o	in column 2B fo ine table for each	or each pollutant n outfall (intake).	you believe Provide resi	to be absent. ults for additio	lf you mark nal
1. POLLUTANT	2. MA	RK "X"				3. VALUES					4. UN	NTS
AND CAS NUMBER (if available)	A. BELIEVED	B. BELIEVED	A. MAXIMUM D	AILY VALUE	B. MAXIMUM	30 DAY VALUES	S	C. LONG TERM A	VERAGE VALUES	D. NO. OF	A. CONCEN-	B. MASS
(II available)	PRESENT	ABSENT	CONCENTRATION	MASS	CONCENTRATION	MASS	5	CONCENTRATION	MASS	ANALYSES	TRATION	B. MASS
Subpart 1 – Conventiona	al and No	n-Conver	ntional Pollutants									
A. Alkalinity (CaCO ₃)		х	MINIMUM		MINIMUM			MINIMUM		0		
B. Bromide (24959-67-9)		Х								0		
C. Chloride (16887-00-6)	х		107					50.50		4	mg/L	
D. Chlorine, Total Residual		Х								0		
E. Color		Х								0		
F. Conductivity		Х								0		
F. Cyanide, Amenable to Chlorination		Х								0		

	2. MA	RK "X"				3. VALUES				4. UN	IITS
1. POLLUTANT AND CAS NUMBER		в.	A. MAXIMUM	DAILY VALUE	B. MAXIMUM 3	30 DAY VALUE	C. LONG TERM A	VERAGE VALUE	D. NO. OF	A. CONCEN-	
(if available)	A. BELIEVED PRESENT	BELIEVED ABSENT	CONCENTRATION	MASS	CONCENTRATION	MASS	CONCENTRATION	MASS	ANALYSES	TRATION	B. MASS
Subpart 1 – Conventiona	al and No	n-Conver	ntional Pollutants	(Continued)							
G. E. coli		Х							0		
H. Fluoride (16984-48-8)	х		0.58				0.35		4	mg/L	
I. Nitrate plus Nitrate (as N)		Х							0		
J. Kjeldahl, Total (as N)		Х							0		
K. Nitrogen, Total Organic (as N)		х							0		
L. Oil and Grease	Х		8				5.75		4	mg/L	
M. Phenols, Total	Х		19				12.5		4	ug/L	
N. Phosphorus <i>(as P),</i> Total (7723-14-0)		х							0		
O. Sulfate <i>(as SO⁴)</i> (14808-79-8)	х		210				108.5		4	mg/L	
P. Sulfide <i>(as S)</i>		х							0		
Q. Sulfite (as SO ³) (14265-45-3)		х							0		
R. Surfactants		Х							0		
S. Trihalomethanes, Total		Х							0		
Subpart 2 – Metals		,					-				
1M. Aluminum, Total Recoverable (7429-90-5)	Х		21000				8375		4	ug/l	
2M. Antimony, Total Recoverable (7440-36-9)		Х							0		
3M. Arsenic, Total Recoverable (7440-38-2)		х	<25				<25		4	ug/L	
4M. Barium, Total Recoverable (7440-39-3)		х							0		
5M. Beryllium, Total Recoverable (7440-41-7)		х							0		
6M. Boron, Total Recoverable (7440-42-8)		х							0		
7M. Cadmium, Total Recoverable (7440-43-9)		Х							0		
8M. Chromium III Total Recoverable (16065-83-1)	х		40.5				16.9		4	ug/L	
9M. Chromium VI, Dissolved (18540-29-9)		х	<25				<25		4	ug/L	
10M. Cobalt, Total Recoverable (7440-48-4)		х							0		

	2. MARK "X"		3. VALUES								4. UNITS	
1. POLLUTANT AND CAS NUMBER	A. BELIEVED	В.	A. MAXIMUM D	AILY VALUE	B. MAXIMUM 3	0 DAY VALUE	C. LONG TERM AV	ERAGE VALUE	D. NO. OF	A. CONCEN-		
(if available)	PRESENT	BELIEVED ABSENT	CONCENTRATION	MASS	CONCENTRATION	MASS	CONCENTRATION	MASS	ANALYSES	TRATION	B. MASS	
Subpart 2 – Metals (Con	tinued)											
11M. Copper, Total Recoverable (7440-50-8)	х		28.5				13.15		4	ug/L		
12M. Iron, Total Recoverable (7439-89-6)	Х		40200				15335		4	ug/L		
13M. Lead, Total Recoverable (7439-92-1)		х	21				<15		4	ug/L		
14M. Magnesium, Total Recoverable (7439-95-4)		Х							0			
15M. Manganese, Total Recoverable (7439-96-5)	х		937				490.5		4	ug/L		
16M. Mercury, Total Recoverable (7439-97-6)		Х							0			
17M. Methylmercury (22967926)		х							0			
18M. Molybdenum, Total Recoverable (7439-98-7)		х							0			
19M. Nickel, Total Recoverable (7440-02-0)		х							0			
20M. Selenium, Total Recoverable (7782-49-2)		х	<40				<40		4	ug/L		
21M. Silver, Total Recoverable (7440-22-4)		х							0			
22M. Thallium, Total Recoverable (7440-28-0)		х							0			
23M. Tin, Total Recoverable (7440-31-5)		Х							0			
24M. Titanium, Total Recoverable (7440-32-6)		Х							0			
25M. Zinc, Total Recoverable (7440-66-6)	х		116				61.08		4	ug/L		
Subpart 3 – Radioactivit	ý								,	•		
1R. Alpha Total		Х							0			
2R. Beta Total		Х							0			
3R. Radium Total		Х							0			
4R. Radium 226 plus 228 Total		х							0			

You may report some or all of this information on separate sheet (use similar format) instead of completing these pages.

EFFLUENT (AND INTA	KE) CHAR	RACTERI	STICS	THIS OUTFA	LL IS: Storm wa	ter dischar	ge				OUTFALL NO. 00	2
3.0 PART A – You must	provide t	he results	s of at least one ar	nalysis for every	pollutant in Part	A. Complet	e one t	table for each ou	Itfall or proposed	outfall. See	e instructions.	
					2. VALUE	S					3. UNITS (sp	ecify if blank)
1. POLLUTANT		A. MAXIMU	M DAILY VALUE	B. 1	MAXIMUM 30 DAY VALU	IES		C. LONG TERM AVER	AGE VALUES	D. NO. OF	A. CONCEN-	
	(1) CONC	ENTRATION	(2) MASS	(1) CONCENT	RATION (2)	MASS	(1) Co	ONCENTRATION	(2) MASS	ANALYSES	TRATION	B. MASS
A. Biochemical Oxygen Demand, 5-day (BOD₅)	11						5.36			7	mg/L	
B. Chemical Oxygen Demand (COD)	112						64.87	,		7	mg/L	
C. Total Organic Carbon (TOC)												
D. Total Suspended Solids (TSS)	364						132.1	7		7	mg/L	
E. Ammonia as N	2.14						0.64			7	mg/L	
F. Flow	VALUE	· · · · · · · · · · · · · · · · · · ·		VALUE			VALUE				MILLIONS OF GA (MG	
G. Temperature (winter)	VALUE			VALUE			VALUE				٩	-
H. Temperature (summer)	VALUE			VALUE			VALUE				٩	-
I. pH	MINIMUM -	7.2		MAXIMUM 8.1			AVERAG	^{BE} 7.77		7	STANDARD	UNITS (SU)
3.0 PART B – Mark "X" i Column 2A for any pollu parameters not listed he	tant, you	must prov										
1. POLLUTANT	2. MA	RK "X"				3. VALUES					4. UI	ITS
AND CAS NUMBER (if available)	A. BELIEVED	B.	A. MAXIMUM D	AILY VALUE	B. MAXIMUM	30 DAY VALUES	6	C. LONG TERM A	VERAGE VALUES	D. NO. OF	A. CONCEN-	D M400
(ir available)	PRESENT	BELIEVED ABSENT	CONCENTRATION	MASS	CONCENTRATION	MASS		CONCENTRATION	MASS	ANALYSES	TRATION	B. MASS
Subpart 1 – Conventiona	al and No	n-Conver	ntional Pollutants									
A. Alkalinity (CaCO ₃)		Х	MINIMUM		MINIMUM			MINIMUM		0		
B. Bromide (24959-67-9)		х								0		
C. Chloride (16887-00-6)	х		81					39.49		7	mg/L	
D. Chlorine, Total Residual		Х								0		
E. Color		Х								0		
F. Conductivity		Х								0		
F. Cyanide, Amenable to Chlorination		х								0		

	2. MA	RK "X"				3. VALUES				4. UN	итѕ
1. POLLUTANT AND CAS NUMBER	A. BELIEVED	В.	A. MAXIMUM	DAILY VALUE	B. MAXIMUM 3	0 DAY VALUE	C. LONG TERM A	VERAGE VALUE	D. NO. OF	A. CONCEN-	
(if available)	PRESENT	BELIEVED ABSENT	CONCENTRATION	MASS	CONCENTRATION	MASS	CONCENTRATION	MASS	ANALYSES	TRATION	B. MASS
Subpart 1 – Conventiona	al and No	n-Convei	ntional Pollutants	(Continued)							
G. <i>E. coli</i>		Х							0		
H. Fluoride (16984-48-8)	х		0.43				0.32		7	mg/L	
I. Nitrate plus Nitrate (as N)		Х							0		
J. Kjeldahl, Total (as N)		Х							0		
K. Nitrogen, Total Organic (as N)		х							0		
L. Oil and Grease		Х	<6				<6		7	mg/L	
M. Phenols, Total	Х		17, <50				19.57		7	ug/L	
N. Phosphorus <i>(as P),</i> Total (7723-14-0)		х							0		
O. Sulfate <i>(as SO⁴)</i> (14808-79-8)	х		384.9				136.23		7	mg/L	
P. Sulfide <i>(as S)</i>		Х							0		
Q. Sulfite (as SO ³) (14265-45-3)		х							0		
R. Surfactants		Х							0		
S. Trihalomethanes, Total		Х							0		
Subpart 2 – Metals	;		•		•		•				
1M. Aluminum, Total Recoverable (7429-90-5)	х		17800				7912.86		7	ug/L	
2M. Antimony, Total Recoverable (7440-36-9)		Х							0		
3M. Arsenic, Total Recoverable (7440-38-2)	Х		13.3, <25				21.19		7	ug/L	
4M. Barium, Total Recoverable (7440-39-3)		х							0		
5M. Beryllium, Total Recoverable (7440-41-7)		х							0		
6M. Boron, Total Recoverable (7440-42-8)		х							0		
7M. Cadmium, Total Recoverable (7440-43-9)		Х							0		
8M. Chromium III Total Recoverable (16065-83-1)	х		29.6				14.24		7	ug/L	
9M. Chromium VI, Dissolved (18540-29-9)		х	<25				<25		7	ug/L	
10M. Cobalt, Total Recoverable (7440-48-4)		Х							0		L

	2. MA	RK "X"				3. VALUES				4. UN	IITS
1. POLLUTANT AND CAS NUMBER (if available)	A. BELIEVED	В.	A. MAXIMUM D	AILY VALUE	B. MAXIMUM 3	0 DAY VALUE	C. LONG TERM AVE	ERAGE VALUE	D. NO. OF	A. CONCEN-	
(ii avaliable)	PRESENT	BELIEVED ABSENT	CONCENTRATION	MASS	CONCENTRATION	MASS	CONCENTRATION	MASS	ANALYSES	TRATION	B. MASS
Subpart 2 – Metals (Con	tinued)										
11M. Copper, Total Recoverable (7440-50-8)	х		25.7				14.89		7	ug/L	
12M. Iron, Total Recoverable (7439-89-6)	х		32,000				14,197.4		7	ug/L	
13M. Lead, Total Recoverable (7439-92-1)	х		20.3				14.47		7	ug/L	
14M. Magnesium, Total Recoverable (7439-95-4)		Х							0		
15M. Manganese, Total Recoverable (7439-96-5)	х		940				344.89		7	ug/L	
16M. Mercury, Total Recoverable (7439-97-6)		х							0		
17M. Methylmercury (22967926)		х							0		
18M. Molybdenum, Total Recoverable (7439-98-7)		Х							0		
19M. Nickel, Total Recoverable (7440-02-0)		х							0		
20M. Selenium, Total Recoverable (7782-49-2)	х		<40				<40		7	ug/L	
21M. Silver, Total Recoverable (7440-22-4)		х							0		
22M. Thallium, Total Recoverable (7440-28-0)		х							0		
23M. Tin, Total Recoverable (7440-31-5)		Х							0		
24M. Titanium, Total Recoverable (7440-32-6)		Х							0		
25M. Zinc, Total Recoverable (7440-66-6)	х		104				60.11		7	ug/L	
Subpart 3 – Radioactivit	y	,	•							*	
1R. Alpha Total		Х							0		
2R. Beta Total		Х							0		
3R. Radium Total		Х							0		
4R. Radium 226 plus 228 Total	Ċ.	х							0		

You may report some or all of this information on separate sheet (use similar format) instead of completing these pages.

EFFLUENT (AND INTA	KE) CHAR	RACTERI	ISTICS	THIS OUTFA	LL IS: In-Creek	Sampling F	Point				OUTFALL NO. 00	4
3.0 PART A – You must	provide t	he results	s of at least one a	nalysis for every	pollutant in Part	A. Complet	te one t	able for each ou	tfall or proposed	outfall. See	e instructions.	
					2. VALUE	S					3. UNITS (sp	ecify if blank)
1. POLLUTANT		A. MAXIMU	IM DAILY VALUE	B. 1	MAXIMUM 30 DAY VALU	ES		C. LONG TERM AVER	AGE VALUES	D. NO. OF	A. CONCEN-	
	(1) CONC	ENTRATION	(2) MASS	(1) CONCENT	RATION (2)	MASS	(1) CC	ONCENTRATION	(2) MASS	ANALYSES	TRATION	B. MASS
A. Biochemical Oxygen Demand, 5-day (BOD ₅)										0		
B. Chemical Oxygen Demand (COD)	110						67.89			7	mg/L	
C. Total Organic Carbon (TOC)										0		
D. Total Suspended Solids (TSS)	323						96.43			7	mg/L	
E. Ammonia as N	0.63			VALUE			0.24			6	mg/L	
F. Flow	VALUE			VALUE							MILLIONS OF GA (MC	
G. Temperature (winter)	VALUE									اہ	=	
H. Temperature (summer)	VALUE			VALUE			VALUE				اہ	=
I. pH	MINIMUM -	7.43		MAXIMUM 8.0	2		AVERAG	^E 7.80		7	STANDARD	UNITS (SU)
3.0 PART B – Mark "X" i Column 2A for any pollu parameters not listed he	tant, you	must prov	ach pollutant you l vide the results fo	know or have rea r at least one an	ason to believe is alysis for the poll	present. N utant. Com	lark "X" plete o	' in column 2B fc ne table for each	r each pollutant outfall (intake).	you believe Provide res	to be absent. ults for additic	lf you mark nal
1. POLLUTANT	2. MA	RK "X"				3. VALUES					4. UI	NITS
AND CAS NUMBER (if available)	A. BELIEVED	B. BELIEVED	A. MAXIMUM E	OAILY VALUE	B. MAXIMUM 3	0 DAY VALUES	5	C. LONG TERM A	VERAGE VALUES	D. NO. OF	A. CONCEN-	B. MASS
	PRESENT	ABSENT	CONCENTRATION	MASS	CONCENTRATION	MASS	5	CONCENTRATION	MASS	ANALYSES	TRATION	D. MASS
Subpart 1 – Conventiona	al and No	n-Conver	ntional Pollutants									
A. Alkalinity (CaCO ₃)		Х	Мілімим		MINIMUM		I	Minimum		0		
B. Bromide (24959-67-9)		х								0		
C. Chloride (16887-00-6)	х		51					34.41		7	mg/L	
D. Chlorine, Total Residual		х								0		
E. Color		Х								0		
F. Conductivity		Х								0		
F. Cyanide, Amenable to Chlorination		х								0		

	2. MA	RK "X"				3. VALUES				4. UN	IITS
1. POLLUTANT AND CAS NUMBER		в.	A. MAXIMUM	DAILY VALUE	B. MAXIMUM	0 DAY VALUE	C. LONG TERM A	VERAGE VALUE	D. NO. OF	A. CONCEN-	
(if available)	A. BELIEVED PRESENT	BELIEVED ABSENT	CONCENTRATION	MASS	CONCENTRATION	MASS	CONCENTRATION	MASS	ANALYSES	TRATION	B. MASS
Subpart 1 – Conventiona	al and No	n-Conver	ntional Pollutants	(Continued)							
G. E. coli		Х							0		
H. Fluoride (16984-48-8)		х							0		
I. Nitrate plus Nitrate (as N)		Х							0		
J. Kjeldahl, Total (as N)		Х							0		
K. Nitrogen, Total Organic <i>(as N)</i>		х							0		
L. Oil and Grease		Х							0		
M. Phenols, Total		Х							0		
N. Phosphorus <i>(as P),</i> Total (7723-14-0)		х							0		
O. Sulfate <i>(as SO⁴)</i> (14808-79-8)	х		3,500				541.10		7	mg/L	
P. Sulfide (as S)		Х							0		
Q. Sulfite (as SO ³) (14265-45-3)		х							0		
R. Surfactants		Х							0		
S. Trihalomethanes, Total		Х							0		
Subpart 2 – Metals	,	;	•						!	•	
1M. Aluminum, Total Recoverable (7429-90-5)	х		15,800				7,720		6	ug/L	
2M. Antimony, Total Recoverable (7440-36-9)		х							0		
3M. Arsenic, Total Recoverable (7440-38-2)		х							0		
4M. Barium, Total Recoverable (7440-39-3)		х							0		
5M. Beryllium, Total Recoverable (7440-41-7)		х							0		
6M. Boron, Total Recoverable (7440-42-8)		х							0		
7M. Cadmium, Total Recoverable (7440-43-9)		Х							0		
8M. Chromium III Total Recoverable (16065-83-1)		Х							0		
9M. Chromium VI, Dissolved (18540-29-9)		х	<10						1	ug/L	
10M. Cobalt, Total Recoverable (7440-48-4)		х							0		

MO 780-1514 (02-19)

1. POLLUTANT	2. MA	RK "X"				3. VALUES				4. UN	IITS
1. POLLUTANT AND CAS NUMBER (if available)	A. BELIEVED	В.	A. MAXIMUM D	AILY VALUE	B. MAXIMUM 3	0 DAY VALUE	C. LONG TERM AVE	ERAGE VALUE	D. NO. OF	A. CONCEN-	
(ii avaiiabie)	PRESENT	BELIEVED ABSENT	CONCENTRATION	MASS	CONCENTRATION	MASS	CONCENTRATION	MASS	ANALYSES	TRATION	B. MASS
Subpart 2 – Metals (Con	tinued)										
11M. Copper, Total Recoverable (7440-50-8)	Х		19.1				12.53		7	ug/L	
12M. Iron, Total Recoverable (7439-89-6)	х		25,000				12,652.86		7	ug/L	
13M. Lead, Total Recoverable (7439-92-1)		х							0		
14M. Magnesium, Total Recoverable (7439-95-4)		Х							0		
15M. Manganese, Total Recoverable (7439-96-5)		х							0		
16M. Mercury, Total Recoverable (7439-97-6)		Х							0		
17M. Methylmercury (22967926)		Х							0		
18M. Molybdenum, Total Recoverable (7439-98-7)		Х							0		
19M. Nickel, Total Recoverable (7440-02-0)		х							0		
20M. Selenium, Total Recoverable (7782-49-2)		х							0		
21M. Silver, Total Recoverable (7440-22-4)		х							0		
22M. Thallium, Total Recoverable (7440-28-0)		Х							0		
23M. Tin, Total Recoverable (7440-31-5)		Х							0		
24M. Titanium, Total Recoverable (7440-32-6)		Х							0		
25M. Zinc, Total Recoverable (7440-66-6)	х		79				50.83		7	ug/L	
Subpart 3 – Radioactivit	у	,			•					•	
1R. Alpha Total		Х							0		
2R. Beta Total		Х							0		
3R. Radium Total		Х							0		
4R. Radium 226 plus 228 Total		Х							0		

You may report some or all of this information on separate sheet (use similar format) instead of completing these pages.

EFFLUENT (AND INTA	KE) CHAF	RACTERI	STICS	THIS OUTFA	LL IS: Storm w	ater dischar	ge				OUTFALL NO. 00	5
3.0 PART A – You must	provide t	he results	of at least one ar	alysis for every	pollutant in Part	A. Complet	te one t	able for each ou	utfall or proposed	outfall. See	e instructions.	
					2. VALU	ES					3. UNITS (sp	ecify if blank)
1. POLLUTANT		A. MAXIMU	M DAILY VALUE	В. М	MAXIMUM 30 DAY VAL	JES		C. LONG TERM AVE	RAGE VALUES	D. NO. OF	A. CONCEN-	
	(1) CONC	ENTRATION	(2) MASS	(1) CONCENT	RATION (2	MASS	(1) CC	DNCENTRATION	(2) MASS	ANALYSES	TRATION	B. MASS
A. Biochemical Oxygen Demand, 5-day (BOD₅)	42						13.16			7	mg/L	
B. Chemical Oxygen Demand (COD)	157						90.80			7	mg/L	
C. Total Organic Carbon (TOC)												
D. Total Suspended Solids (TSS)	216						87.10			7	mg/L	
E. Ammonia as N	2.82						0.98			7	mg/L	
F. Flow	VALUE			VALUE			VALUE				MILLIONS OF GA (MG	
G. Temperature (winter)	VALUE			VALUE			VALUE				°I	-
H. Temperature (summer)	VALUE			VALUE			VALUE				٩	-
I. pH	MINIMUM -	7.4		MAXIMUM 8.0	3		AVERAG	^E 7.72		7	STANDARD	UNITS (SU)
3.0 PART B – Mark "X" i Column 2A for any pollu parameters not listed he	tant, you	must prov										
1. POLLUTANT	2. MA	RK "X"				3. VALUES					4. UI	ITS
AND CAS NUMBER (if available)	A. BELIEVED	B.	A. MAXIMUM D	AILY VALUE	B. MAXIMUM	30 DAY VALUES	6	C. LONG TERM A	VERAGE VALUES	D. NO. OF	A. CONCEN-	B. MASS
	PRESENT	BELIEVED ABSENT	CONCENTRATION	MASS	CONCENTRATION	MASS	;	CONCENTRATION	MASS	ANALYSES	TRATION	B. MASS
Subpart 1 – Conventiona	al and No	n-Conver	ntional Pollutants									
A. Alkalinity (CaCO ₃)		х	MINIMUM		Minimum		ſ	MINIMUM		0		
B. Bromide (24959-67-9)		х								0		
C. Chloride (16887-00-6)	х		142					63.36		7	mg/L	
D. Chlorine, Total Residual		х								0		
E. Color		Х								0		
F. Conductivity		Х								0		
F. Cyanide, Amenable to Chlorination		х								0		

	2. MA	RK "X"				3. VALUES				4. UN	итѕ
1. POLLUTANT AND CAS NUMBER	A. BELIEVED	в.	A. MAXIMUM	DAILY VALUE	B. MAXIMUM 3	0 DAY VALUE	C. LONG TERM A	VERAGE VALUE	D. NO. OF	A. CONCEN-	
(if available)	PRESENT	BELIEVED ABSENT	CONCENTRATION	MASS	CONCENTRATION	MASS	CONCENTRATION	MASS	ANALYSES	TRATION	B. MASS
Subpart 1 – Conventiona	al and No	n-Conver	ntional Pollutants	(Continued)							
G. E. coli		Х							0		
H. Fluoride (16984-48-8)	х		0.534				0.37		7	mg/L	
I. Nitrate plus Nitrate (as N)		Х							0		
J. Kjeldahl, Total (as N)		Х							0		
K. Nitrogen, Total Organic (as N)		х							0		
L. Oil and Grease		Х	<6				<6		7	mg/L	
M. Phenols, Total	Х		124, <250				60.29		7	ug/L	
N. Phosphorus <i>(as P),</i> Total (7723-14-0)		х							0		
O. Sulfate <i>(as SO⁴)</i> (14808-79-8)	х		194				80.03		7	mg/L	
P. Sulfide <i>(as S)</i>		х							0		
Q. Sulfite (as SO ³) (14265-45-3)		х							0		
R. Surfactants		х							0		
S. Trihalomethanes, Total		Х							0		
Subpart 2 – Metals											
1M. Aluminum, Total Recoverable (7429-90-5)	Х		22500				6344.57		7	ug/L	
2M. Antimony, Total Recoverable (7440-36-9)		х							0		
3M. Arsenic, Total Recoverable (7440-38-2)		х	<25				<25		7	ug/L	
4M. Barium, Total Recoverable (7440-39-3)		х							0		
5M. Beryllium, Total Recoverable (7440-41-7)		Х							0		
6M. Boron, Total Recoverable (7440-42-8)		х							0		
7M. Cadmium, Total Recoverable (7440-43-9)		Х							0		
8M. Chromium III Total Recoverable (16065-83-1)	Х		45.6				14.9		7	ug/L	
9M. Chromium VI, Dissolved (18540-29-9)		х	<10				<10		7	ug/L	
10M. Cobalt, Total Recoverable (7440-48-4)		х							0		

	2. MA	RK "X"				3. VALUES				4. UN	IITS
1. POLLUTANT AND CAS NUMBER (if available)	A. BELIEVED	В.	A. MAXIMUM D	AILY VALUE	B. MAXIMUM 3	0 DAY VALUE	C. LONG TERM AV	ERAGE VALUE	D. NO. OF	A. CONCEN-	
(il available)	PRESENT	BELIEVED ABSENT	CONCENTRATION	MASS	CONCENTRATION	MASS	CONCENTRATION	MASS	ANALYSES	TRATION	B. MASS
Subpart 2 – Metals (Con	tinued)										
11M. Copper, Total Recoverable (7440-50-8)	Х		29.5				12.99		7	ug/L	
12M. Iron, Total Recoverable (7439-89-6)	Х		38,300				11,900		7	ug/L	
13M. Lead, Total Recoverable (7439-92-1)	х		26.8				15.36		7	ug/L	
14M. Magnesium, Total Recoverable (7439-95-4)		Х							0		
15M. Manganese, Total Recoverable (7439-96-5)	х		769				356.86		7	ug/L	
16M. Mercury, Total Recoverable (7439-97-6)		Х							0		
17M. Methylmercury (22967926)		х							0		
18M. Molybdenum, Total Recoverable (7439-98-7)		х							0		
19M. Nickel, Total Recoverable (7440-02-0)		х							0		
20M. Selenium, Total Recoverable (7782-49-2)		х	<40				<40		7	ug/L	
21M. Silver, Total Recoverable (7440-22-4)		Х							0		
22M. Thallium, Total Recoverable (7440-28-0)		Х							0		
23M. Tin, Total Recoverable (7440-31-5)		х							0		
24M. Titanium, Total Recoverable (7440-32-6)		х							0		
25M. Zinc, Total Recoverable (7440-66-6)	х		475				132.37		7	ug/L	
Subpart 3 – Radioactivity	у		•		•		- -			•	
1R. Alpha Total		Х							0		
2R. Beta Total		Х							0		
3R. Radium Total		Х							0		
4R. Radium 226 plus 228 Total		х							0		

You may report some or all of this information on separate sheet (use similar format) instead of completing these pages.

EFFLUENT (AND INTA	KE) CHAR	RACTERI	STICS	THIS OUTFA	ALL IS: Storm v	ater dischai	ge				OUTFALL NO. 00	6
3.0 PART A – You must	provide t	he results	s of at least one an	alysis for every	pollutant in Pa	t A. Comple	te one t	table for each ou	Itfall or proposed	outfall. See	e instructions.	
					2. VAL	JES					3. UNITS (sp	ecify if blank)
1. POLLUTANT		A. MAXIMU	M DAILY VALUE	В. Г	MAXIMUM 30 DAY VA	UES		C. LONG TERM AVER	AGE VALUES	D. NO. OF	A. CONCEN-	
	(1) CONC	ENTRATION	(2) MASS	(1) CONCENT	RATION	2) MASS	(1) C	ONCENTRATION	(2) MASS	ANALYSES	TRATION	B. MASS
A. Biochemical Oxygen Demand, 5-day (BOD₅)	20						8.86			6	mg/L	
B. Chemical Oxygen Demand (COD)	114						72.97	,		6	mg/L	
C. Total Organic Carbon (TOC)												
D. Total Suspended Solids (TSS)	77						36.37	,		6	mg/L	
E. Ammonia as N	0.87						0.37			6	mg/L	
F. Flow	VALUE			VALUE	·		VALUE				MILLIONS OF GA (MG	
G. Temperature (winter)	VALUE			VALUE			VALUE				٩	=
H. Temperature (summer)	VALUE			VALUE			VALUE				٩	=
I. pH	MINIMUM -	7.5		MAXIMUM 8			AVERAG	^{6E} 7.71		6	STANDARD	UNITS (SU)
3.0 PART B – Mark "X" i Column 2A for any pollu parameters not listed he	tant, you	must prov	ach pollutant you ki vide the results for	now or have rea at least one an	ason to believe alysis for the po	is present. N Ilutant. Com	/lark "X plete o	in column 2B fc ne table for each	or each pollutant ; n outfall (intake).	you believe Provide resi	to be absent. ults for additio	lf you mark nal
1. POLLUTANT	2. MA	RK "X"				3. VALUES					4. UI	NITS
AND CAS NUMBER (if available)	A. BELIEVED	B.	A. MAXIMUM DA	AILY VALUE	B. MAXIMU	1 30 DAY VALUE	s	C. LONG TERM A	VERAGE VALUES	D. NO. OF	A. CONCEN-	D MASS
	PRESENT	BELIEVED ABSENT	CONCENTRATION	MASS	CONCENTRATION	MASS	6	CONCENTRATION	MASS	ANALYSES	TRATION	B. MASS
Subpart 1 – Conventiona	al and No	n-Conver	ntional Pollutants									
A. Alkalinity (CaCO ₃)		Х	MINIMUM		MINIMUM			MINIMUM		0		
B. Bromide (24959-67-9)		х								0		
C. Chloride (16887-00-6)	х		54					39.72		6	mg/L	
D. Chlorine, Total Residual		Х								0		
E. Color		Х								0		
F. Conductivity		Х								0		
F. Cyanide, Amenable to Chlorination		х								0		

	2. MA	RK "X"				3. VALUES				4. UN	IITS
1. POLLUTANT AND CAS NUMBER	A. BELIEVED	в.	A. MAXIMUM	DAILY VALUE	B. MAXIMUM 3	30 DAY VALUE	C. LONG TERM A	VERAGE VALUE	D. NO. OF	A. CONCEN-	
(if available)	PRESENT	BELIEVED ABSENT	CONCENTRATION	MASS	CONCENTRATION	MASS	CONCENTRATION	MASS	ANALYSES	TRATION	B. MASS
Subpart 1 – Conventiona	al and No	n-Conver	ntional Pollutants	(Continued)							
G. E. coli		Х							0		
H. Fluoride (16984-48-8)	х		0.81				0.41		6	mg/L	
I. Nitrate plus Nitrate (as N)		Х							0		
J. Kjeldahl, Total (as N)		Х							0		
K. Nitrogen, Total Organic (as N)		х							0		
L. Oil and Grease		Х	<6				<6		6	mg/L	
M. Phenols, Total	Х		19, <50				15		6	ug/L	
N. Phosphorus <i>(as P),</i> Total (7723-14-0)		х							0		
O. Sulfate <i>(as SO⁴)</i> (14808-79-8)	х		101				60.67		6	mg/L	
P. Sulfide <i>(as S)</i>		х							0		
Q. Sulfite (as SO ³) (14265-45-3)		х							0		
R. Surfactants		Х							0		
S. Trihalomethanes, Total		Х							0		
Subpart 2 – Metals		,	•	•							
1M. Aluminum, Total Recoverable (7429-90-5)	Х		15,800				6284.7		6	ug/L	
2M. Antimony, Total Recoverable (7440-36-9)		Х							0		
3M. Arsenic, Total Recoverable (7440-38-2)		х	<25				<25		6	ug/L	
4M. Barium, Total Recoverable (7440-39-3)		х							0		
5M. Beryllium, Total Recoverable (7440-41-7)		х							0		
6M. Boron, Total Recoverable (7440-42-8)		х							0		
7M. Cadmium, Total Recoverable (7440-43-9)		Х							0		
8M. Chromium III Total Recoverable (16065-83-1)	Х		23.7				12.68		6	ug/L	
9M. Chromium VI, Dissolved (18540-29-9)		х	<10				<10		5	ug/L	
10M. Cobalt, Total Recoverable (7440-48-4)		х							0		

	2. MA	RK "X"				3. VALUES				4. UN	IITS
1. POLLUTANT AND CAS NUMBER (if available)	A. BELIEVED	В.	A. MAXIMUM D	AILY VALUE	B. MAXIMUM 3	0 DAY VALUE	C. LONG TERM AVE	ERAGE VALUE	D. NO. OF	A. CONCEN-	
(ii available)	PRESENT	BELIEVED ABSENT	CONCENTRATION	MASS	CONCENTRATION	MASS	CONCENTRATION	MASS	ANALYSES	TRATION	B. MASS
Subpart 2 – Metals (Con	tinued)										
11M. Copper, Total Recoverable (7440-50-8)	Х		20.7				11.32		6	ug/L	
12M. Iron, Total Recoverable (7439-89-6)	Х		27,000				10,246.67		6	ug/L	
13M. Lead, Total Recoverable (7439-92-1)	х		16.4				14		6	ug/L	
14M. Magnesium, Total Recoverable (7439-95-4)		Х							0		
15M. Manganese, Total Recoverable (7439-96-5)	х		547				297.68		6	ug/L	
16M. Mercury, Total Recoverable (7439-97-6)		Х							0		
17M. Methylmercury (22967926)		х							0		
18M. Molybdenum, Total Recoverable (7439-98-7)		х							0		
19M. Nickel, Total Recoverable (7440-02-0)		х							0		
20M. Selenium, Total Recoverable (7782-49-2)		х	<40				<40		6	ug/L	
21M. Silver, Total Recoverable (7440-22-4)		х							0		
22M. Thallium, Total Recoverable (7440-28-0)		Х							0		
23M. Tin, Total Recoverable (7440-31-5)		х							0		
24M. Titanium, Total Recoverable (7440-32-6)		х							0		
25M. Zinc, Total Recoverable (7440-66-6)	х		324				104.90		6	ug/L	
Subpart 3 – Radioactivity	у	•							,	,	
1R. Alpha Total		Х							0		
2R. Beta Total		Х							0		
3R. Radium Total		Х							0		
4R. Radium 226 plus 228 Total		х							0		

You may report some or all of this information on separate sheet (use similar format) instead of completing these pages.

FORM C TABLE 1 FOR 3.0 - ITEMS A AND B

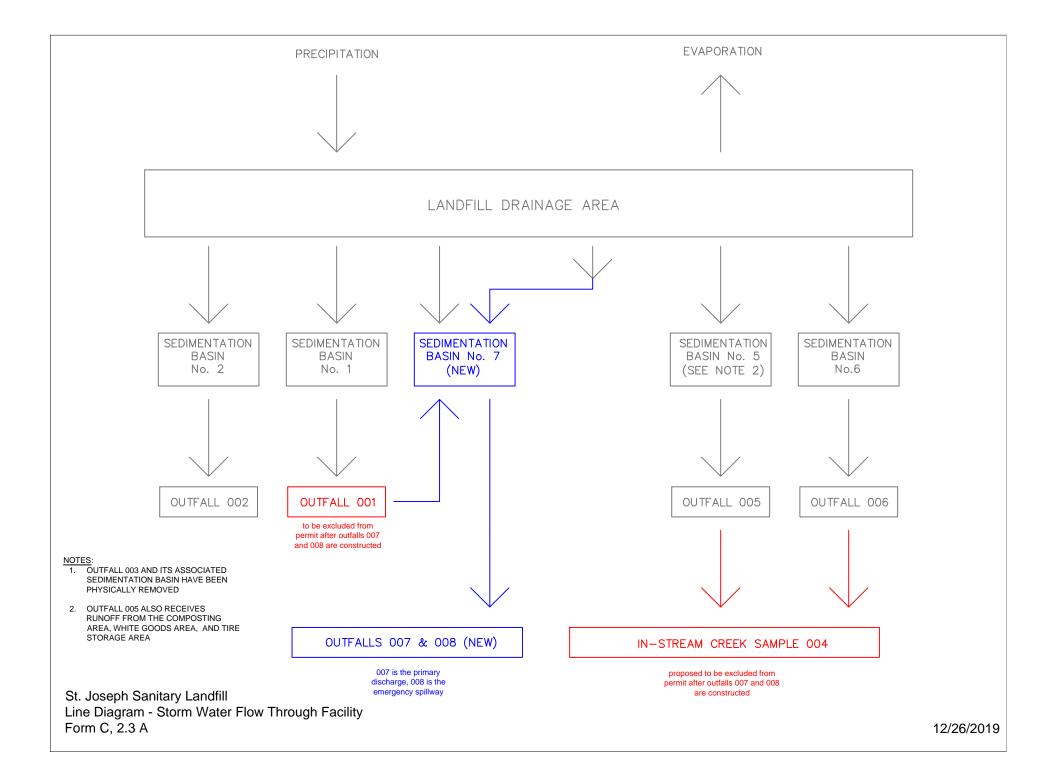
EFFLUENT (AND INTA	KE) CHAR	RACTERI	STICS	THIS OUTFA	LL IS: Storm wa	iter dischar	ge		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F								
3.0 PART A – You must	provide t	he results	s of at least one and	alysis for every	pollutant in Part	A. Complete	e one t	able for each ou	utfall or proposed								
					2. VALUE	S					3. UNITS (sp	ecify if blank)					
1. POLLUTANT		A. MAXIMU	M DAILY VALUE	B. M	B. MAXIMUM 30 DAY VALUES			C. LONG TERM AVE	RAGE VALUES	D NO OF							
	(1) CONC	ENTRATION	(2) MASS	(1) CONCENT	RATION (2)	MASS	(1) CC	DNCENTRATION	(2) MASS			B. MASS					
A. Biochemical Oxygen Demand, 5-day (BOD₅)										0							
B. Chemical Oxygen Demand (COD)										0							
C. Total Organic Carbon (TOC)										0							
D. Total Suspended Solids (TSS)										0							
E. Ammonia as N										0							
F. Flow	VALUE		·	VALUE			VALUE			0							
G. Temperature (winter)	VALUE	ALUE VALUE VALUE 0										°F					
H. Temperature (summer)	VALUE			VALUE	VALUE					0	°F						
I. pH	MINIMUM			MAXIMUM			AVERAGE 0				STANDARD	UNITS (SU)					
3.0 PART B – Mark "X" in column 2A for each pollutant you know or have reason to believe is present. Mark "X" in column 2B for each pollutant you believe to be absent. If you mark Column 2A for any pollutant, you must provide the results for at least one analysis for the pollutant. Complete one table for each outfall (intake). Provide results for additional parameters not listed here in Part 3.0 C.																	
1. POLLUTANT	2. MA	RK "X"				3. VALUES					4. UN	4. UNITS					
AND CAS NUMBER (if available)	A. BELIEVED	D B. BELIEVED ABSENT	A. MAXIMUM DA	ILY VALUE	B. MAXIMUM 3	B. MAXIMUM 30 DAY VALUES		C. LONG TERM	VERAGE VALUES	D. NO. OF	A. CONCEN-	B. MASS					
(ii avaliable)	PRESENT		CONCENTRATION	MASS	CONCENTRATION	MASS		CONCENTRATION	MASS	ANALYSES	TRATION	B. MASS					
Subpart 1 – Conventiona	al and No	n-Conver	ntional Pollutants														
A. Alkalinity (CaCO ₃)		х	MINIMUM		MINIMUM		I	MINIMUM		0							
B. Bromide (24959-67-9)		Х								0							
C. Chloride (16887-00-6)	х									0							
D. Chlorine, Total Residual		Х								0							
E. Color		Х								0							
F. Conductivity		Х								0							
F. Cyanide, Amenable to Chlorination		х								0							

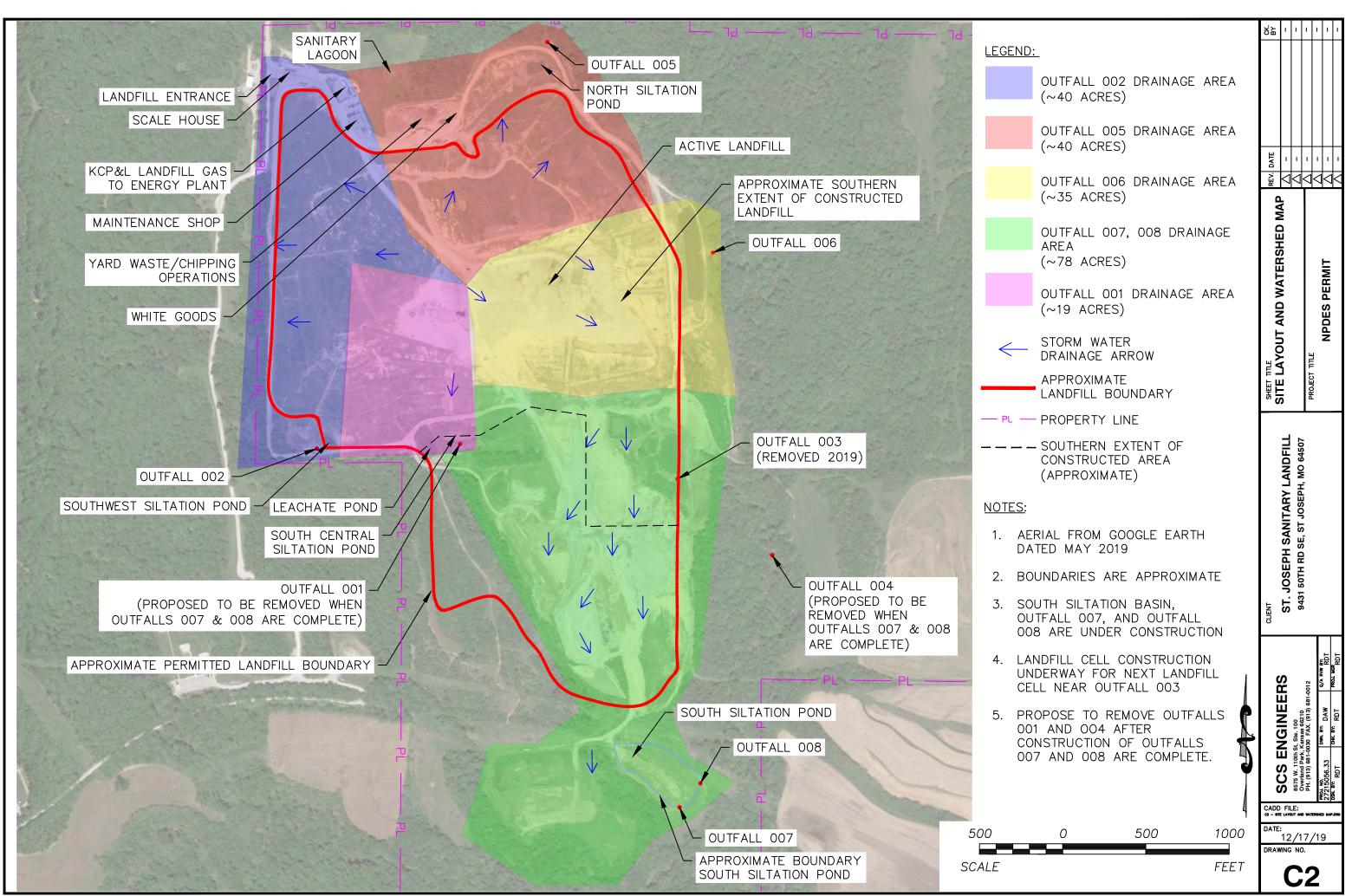
Outfalls currently under construction, no sampling available yet. The "believed present" box was checked if required to be sampled under current MSOP.

MO 780-1514 (02-19)

1. POLLUTANT	2. MA	RK "X"				3. VALUES				4. UN	IITS
AND CAS NUMBER		В.	A. MAXIMUM I	DAILY VALUE	B. MAXIMUM 30	DAY VALUE	C. LONG TERM AVE	RAGE VALUE	D. NO. OF	A. CONCEN-	
(if available)	A. BELIEVED PRESENT	BELIEVED ABSENT	CONCENTRATION	MASS	CONCENTRATION	MASS	CONCENTRATION	MASS	ANALYSES	TRATION	B. MASS
Subpart 1 – Conventiona	al and No	n-Conve	ntional Pollutants	(Continued)							
G. E. coli		Х							0		
H. Fluoride 16984-48-8)	х								0		
Nitrate plus Nitrate (as N)		Х							0		
I. Kjeldahl, Total (as N)		Х							0		
K. Nitrogen, Total Organic ′as N)		х							0		
Oil and Grease	Х								0		
M. Phenols, Total	Х								0		
N. Phosphorus <i>(as P),</i> Total (7723-14-0)		х							0		
O. Sulfate <i>(as SO⁴)</i> (14808-79-8)	х								0		
P. Sulfide <i>(as S)</i>		Х							0		
Q. Sulfite (as SO³) [14265-45-3)		х							0		
R. Surfactants		Х							0		
S. Trihalomethanes, Total		Х							0		
Subpart 2 – Metals											
M. Aluminum, Total Recoverable (7429-90-5)	х								0		
2M. Antimony, Total Recoverable (7440-36-9)		Х							0		
BM. Arsenic, Total Recoverable (7440-38-2)	х								0		
M. Barium, Total Recoverable 7440-39-3)		Х							0		
iM. Beryllium, Total Recoverable (7440-41-7)		х							0		
6M. Boron, Total Recoverable 7440-42-8)		х							0		
7M. Cadmium, Total Recoverable (7440-43-9)		Х							0		
BM. Chromium III Total Recoverable (16065-83-1)	х								0		
9M. Chromium VI, Dissolved 18540-29-9)	х								0		
0M. Cobalt, Total Recoverable (7440-48-4)		х					tion, no samplin		0		
MO 780-1514 (02-19)							sent" box was cl current MSOP.	necked			

	2. MA	RK "X"	(" 3. VALUES										
1. POLLUTANT AND CAS NUMBER	A. BELIEVED	В.	A. MAXIMUM D	AILY VALUE	B. MAXIMUM 3	0 DAY VALUE	C. LONG TERM A	D. NO. OF	A. CONCEN-				
(if available)	PRESENT	BELIEVED ABSENT	CONCENTRATION	MASS	CONCENTRATION	MASS	CONCENTRATION	MASS	ANALYSES	TRATION	B. MASS		
Subpart 2 – Metals (Con	tinued)												
11M. Copper, Total Recoverable (7440-50-8)	Х								0				
12M. Iron, Total Recoverable (7439-89-6)	х								0				
13M. Lead, Total Recoverable (7439-92-1)	Х								0				
14M. Magnesium, Total Recoverable (7439-95-4)		х							0				
15M. Manganese, Total Recoverable (7439-96-5)	Х								0				
16M. Mercury, Total Recoverable (7439-97-6)		х							0				
17M. Methylmercury (22967926)		х							0				
18M. Molybdenum, Total Recoverable (7439-98-7)		х							0				
19M. Nickel, Total Recoverable (7440-02-0)		х							0				
20M. Selenium, Total Recoverable (7782-49-2)	х								0				
21M. Silver, Total Recoverable (7440-22-4)		х							0				
22M. Thallium, Total Recoverable (7440-28-0)		х							0				
23M. Tin, Total Recoverable (7440-31-5)		х							0				
24M. Titanium, Total Recoverable (7440-32-6)		х							0				
25M. Zinc, Total Recoverable (7440-66-6)	х								0				
Subpart 3 – Radioactivity	y								·				
1R. Alpha Total		Х							0				
2R. Beta Total		Х							0				
3R. Radium Total		Х							0				
4R. Radium 226 plus 228 Total		Х							0				


Outfalls currently under construction, no sampling available yet. The "believed present" box was checked if required to be sampled under current MSOP.


Form C – Supplemental Information

4.1 Stormwater Drainage Areas

Outfall Number	Total Area Drained	Types of Surfaces	BMPs
001*	~19 acres	Vegetated, unpaved roads	Vegetation establishment and maintenance, good housekeeping, sed. Basin, terraces/letdowns
002	~40 acres	Vegetated, unpaved roads, paved roads, buildings	Vegetation establishment and maintenance, good housekeeping, sed. Basin, terraces/letdowns
005	~40 acres	Vegetated, unpaved roads, paved roads	Vegetation establishment and maintenance, good housekeeping, sed. Basin, terraces/letdowns
006	~35 acres	Vegetated, unpaved roads	Vegetation establishment and maintenance, good housekeeping, sed. Basin, terraces/letdowns
007 & 008	~78 acres	Vegetated, unpaved roads, borrow area (non-vegetated)	Vegetation establishment and maintenance, good housekeeping, sed. Basin, terraces/letdowns

* Outfall 001 will drain through Outfalls 007 & 008 once construction is complete ** Outfall 004 is an in-creek sampling point and therefore not included in this list

\bigcirc	
\$	

MISSOURI DEPARTMENT OF NATURAL RESOURCES WATER PROTECTION PROGRAM, WATER POLLUTION BRANCH FORM D – APPLICATION FOR DISCHARGE PERMIT – PRIMARY INDUSTRIES

FOR AGENCY USE ONLY

CHECK NO.

DATE RECEIVED FEE SUBMITTED

NOTE: DO NOT ATTEMPT TO COMPLETE THIS FORM BEFORE READING THE ACCOMPANYING INSTRUCTIONS 1.00 NAME OF FACILITY St. Joseph Sanitary Landfill 1.10 THIS FACILITY IS NOW IN OPERATION UNDER MISSOURI OPERATING PERMIT NUMBER **MO -** 0109878 This form is to be filled out in addition to forms A and C "Application for Discharge Permit" for the Industries listed below: INDUSTRY CATEGORY Adhesives and sealants Ore mining Aluminum forming Auto and other laundries Paint and ink formulation Battery manufacturing Pesticides Coal mining Petroleum refining Coil coating Copper forming

Organic chemicals manufacturing Pharmaceutical preparations Photographic equipment and supplies Electric and electronic compounds Plastic and synthetic materials manufacturing Electroplating Plastic processing Explosives manufacturing Porcelain enameling Foundries Printing and publishing Gum and wood chemicals Pulp and paperboard mills Inorganic chemicals manufacturing Rubber processing Iron and steel manufacturing Soap and detergent manufacturing Leather tanning and finishing Steam electric power plants Textile mills Landfill Mechanical products manufacturing Timber products processing Nonferrous metals manufacturing

MO 780-1516 (06-13)

APPLICATION FOR DISCHARGE PERMIT FORM D – PRIMARY INDUSTRIES

TA	BLE II
NPDES # (IF ASSIGNED)	OUTFALL NUMBER
MO-0109878	001

1.30 If you are a primary industry and this outfall contains process wastewater, refer to Table A in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-A for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenols. Mark "X" in column 2-B for each pollutant you know or have reason to believe is present. Mark "X" in column 2-C for each pollutant you believe to be absent. If you mark either columns 2-A or 2-B for any pollutant, you must provide the results of at least one analysis for that pollutant. Note that there are seven pages to this part, please review each carefully. Complete one table (*all seven pages*) for each outfall. See instructions for additional details and requirements.

(If available) Reserve on Concentination (a) MASS (a) MASS (b) MASS <t< th=""><th></th><th>2</th><th>MARK "X"</th><th></th><th></th><th></th><th></th><th>. EFFLUENT</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>		2	MARK "X"					. EFFLUENT								
If available) REGURE ABBERT CONCENTRATION (2) MASS (2) MASS (2) MASS (2) MASS <td></td> <td></td> <td>в</td> <td>c</td> <td>A. MAXIMUM DAIL</td> <td>LY VALUE</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4. U</td> <td></td> <td></td> <td></td> <td>al)</td>			в	c	A. MAXIMUM DAIL	LY VALUE						4. U				al)
Image: Marchar S, AND TOTAL PHENOLS Image: Ma	AND CAS NUMBER (if available)	A. TEST-ING REQUIRED	BELIEVE D	D	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS		(2) MASS	NO. OF	CONCEN-	B. MASS	VALUE		B. NO OF ANALYSES
1M. Animory, Total (7440- 38-9) ✓ ✓ ✓ ✓ 0 ✓ ✓ 2M. Arsenic, Total (7440-32-9) ✓ <25					CONCENTRATION		CONCENTION		CONCENTION		ANALIGEO			(1) CONCENTRATION	(2) MASS	
38-9) I <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td>					•											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	36-9)			<u> </u>							0					
A11-7) I <td></td> <td></td> <td></td> <td><u> </u></td> <td><25</td> <td></td> <td></td> <td></td> <td><25</td> <td></td> <td>4</td> <td>ug/L</td> <td></td> <td></td> <td></td> <td></td>				<u> </u>	<25				<25		4	ug/L				
(7440-43-9) I <td< td=""><td>41-7)</td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td></td<>	41-7)			<u> </u>							0					
(16065-83-1) I V I 40.5 16.9 4 Ug/L Image: Constraint of the state of the				<u>√</u>							0					
(18540-29-9) I <t< td=""><td></td><td></td><td>V</td><td></td><td>40.5</td><td></td><td></td><td></td><td>16.9</td><td></td><td>4</td><td>ug/L</td><td></td><td></td><td></td><td></td></t<>			V		40.5				16.9		4	ug/L				
(7440-50-8) I V I 20.5 IS. IS 4 Ug/L IS. IS IS IS IS				<u> </u>	<25				<25		4	ug/L				
(7439-92-1) I <td< td=""><td></td><td></td><td>v</td><td></td><td>28.5</td><td></td><td></td><td></td><td>13.15</td><td></td><td>4</td><td>ug/L</td><td></td><td></td><td></td><td></td></td<>			v		28.5				13.15		4	ug/L				
(7439-95-4) I <td< td=""><td></td><td></td><td></td><td><u> </u></td><td><15</td><td></td><td></td><td></td><td><15</td><td></td><td>4</td><td>ug/L</td><td></td><td></td><td></td><td></td></td<>				<u> </u>	<15				<15		4	ug/L				
(7439-97-6) Image: Constraint of the c	9M. Magnesium Total (7439-95-4)			<u> </u>							0					
(7439-98-7) Image: Constraint of the c	(7439-97-6)	—									0					
(7440-02-0) - <td< td=""><td>11M. Molybdenum Total (7439-98-7)</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td></td<>	11M. Molybdenum Total (7439-98-7)	_									0					
(7782-49-2) - <td< td=""><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td></td<>		_									0					
(7440-22-4) Image: Constraint of the second sec		_		1	<40				<40		4	ug/L				
28-0) - - - 0 - - 16M. Tin Total (7440-31-5) - - - 0 0		—									0					
(7440-31-5) 0				1							0					
		_		~							0					
17M. Titanium Total (7440-32-6) — 0	17M. Titanium Total (7440-32-6)	_		~							0					
18M. Zinc, Total (7440-66-6) ▲ 116 61.08 4 ug/L MO 780-1516 (06-13) PAGE 2	18M. Zinc, Total (7440-66-6)		∠		116				61.08		4	ug/L				

CONTINUED FROM PAGE 3

CONTINUED FROM PAG	E 3														· · · · · · ·
19M. Cyanide, Amenable to Chlorination			7							0					
20M. Phenols, Total		/		19				12.5		4	ug/L				
DIOXIN															
2,3,7,8 – Tetra – chlorodibenzo-P-Dioxin (1764-01-6)			_	DESCRIBE RE	SULTS										
1. POLLUTANT		2. MARK "X'	,	A. MAXIMUM DAI	LY VALUE	3. B. MAXIMUM 30 DA (if available		C. LONG TERM AV			4. U	NITS	5. INT <i>i</i>	KE (optio	nal)
AND CAS NUMBER (if available)	A. TES- ING RE- QUIRED	B. BELIEVED PRESENT	C. BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM A VALUE		B. NO OF ANALYSES
GC/MS FRACTION - VOL	ATILE CO	OMPOUNI	DS	CONCLANATION									(1) CONCENTRATION	(2) MASS	
1V. Acrolein		1	r												
(107-02-8)			1							0					
2V. Acrylonitrile (107-13-1)			/							0					
3V. Benzene (71-43-2)			V	<0.5				<0.5		4	ug/L				
4V. Bis (<i>Chloromethyl</i>) Ether (542-88-1)			1							0					
5V. Bromoform (75-25-2)			V							0					
6V. Carbon Tetrachloride (56-23-5)			_							0					
7V. Chlorobenzene (108-90-7)			1							0					
8V. Chlorodibromomethane (124-48-1)			v							0					
9V. Chloroethane (75-00-3)			7							0					
10V. 2-Chloroethylvinyl Ether (110-75-8)										0					
11V. Chloroform (67-66-3)										0					
12V. Dichlorobromomethane (75-27-4)			V							0					
13V. Dichloro- difluoromethane (75-71-8)										0					
14V. 1,1 – Dichloroethane (75-34-3)										0					
15V. 1,2 – Dichloroethane (107-06-2)			7							0					
16V. 1,1 – Dichloroethylene (75-35-4)										0					
17V. 1,3 – Dichloropropane (78-87-5)										0					
18V. 1,2 –Dichloropropylene (542-75-6)			~							0					
19V. Ethylbenzene (100-41-4)				<2.0				<2.0		4	ug/L				
20V. Methyl Bromide (74-83-9)										0					
21V. Methyl Chloride (74-87-3)			V							0					
MO 780-1516 (06-13)		•				-	PAGE 3		•	•	•	•	CONT	INUE ON	PAGE 4

CONTINUED FROM TH				NF		ASSIGNED) -0109878		ALL NUMBER 001							
1. POLLUTANT	:	2. MARK "X" B.	C.	A. MAXIMUM DAI	LY VALUE	3. B. MAXIMUM 30 D (if availab		C. LONG TERN VALUE (if availab			4. U	NITS	5. INT	AKE (option	nal)
AND CAS NUMBER (if available)	A. TESTING RE-QUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM A VALUE		B. NO OF ANALYSES
													(1) CONCENTRATION	(2) MASS	
GC.MS FRACTION - V	OLATILE C	OMPOUN	IDS (contin	nued)											
22V. Methylene Chloride (75-09-2)			<u> </u>							0					
23V. 1,1,2,2 – Tetra- chloroethane (79-34-5)			<u> </u>							0					
24V. Tetrachloroethylene (127-18-4)			V							0					
25V. Toluene (108-88-3)			<u>v</u>							0					
26V. 1,2 – Trans Dichloroethylene (156-60-5)			<u>v</u>							0					
27V. 1,1,1 – Tri – chloroethane (71-55-6)										0					
28V. 1,1,2 – Tri- chloroethane (79-00-5)			V							0					
29V. Trichloro – ethylene (79-01-6)			V							0					
30V. Trichloro – fluoromethane (75-69-4)			V							0					
31V. Vinyl Chloride (75-01-4)			_							0					
GC/MS FRACTION - A		OUNDS	•				•		•		•	•		•	
1A. 2 – Chlorophenol (95-57-8)			<u> </u>							0					
2A. 2,4 – Dichloro – phenol (120-83-2)			<u> </u>							0					
3A. 2,4 – Dimethyl – phenol (105-67-9)			_							0					
4A. 4,6 – Dinitro - O- Cresol (534-52-1)			_							0					
5A. 2,4 – Dinitro – phenol (51-28-5)			_							0					
6A. 2-Nitrophenol (88-75-5)			_							0					
7A. 4-Nitrophenol (100-02-7)			<u> </u>							0					
8A. P – Chloro – M Cresol (59-50-7)			<u> </u>							0					
9A. Pentachloro – phenol (87-86-5)			<u> </u>							0					
10A. Phenol (108-952)			<u> </u>							0					
11A. 2,4,6 – Trichloro- phenol (88-06-2)			<u> </u>							0					
12A. 2 - methyl – 4,6 dinitrophenol (534-52-1)			7							0					

CONTINUED FROM T															
1. POLLUTANT		2. MARK "X"		A. MAXIMUM DAII		3. B. MAXIMUM 30 D (if availab)		C. LONG TERM VALUE (if availab			4. U	NITS	5. INT/	AKE (optior	ial)
AND CAS NUMBER (if available)	A. TESTING REQUIRED	B. BELIEVED PRESENT	C. BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM AV VALUE	/RG.	B. NO OF ANALYSES
				CONCENTRATION		CONCENTRATION		CONCENTRATION					(1) CONCENTRATION	(2) MASS	
GC/MS FRACTION – BAS	E/NEUTRAL	COMPOUN	IDS												
1B. Acenaphthene (83-32-9)			V							0					
2B. Acenaphtylene (208-96-8)			V							0					
3B. Anthracene (120-12-7)										0					
4B. Benzidine (92-87-5)			V							0					
5B. Benzo (a) Anthracene (56-55-3)										0					
6B. Benzo (a) Pyrene (50-32-8)			V							0					
7B. 3,4 – Benzofluoranthene (205-99-2)			<u>_</u>							0					
8B. Benzo (ghi) Perylene (191-24-2)			1							0					
9B. Benzo (k) Fluoranthene (207-08-9)										0					
10B. Bis (2-Chloroethoxy) Methane (111-91-1)										0					
11B. Bis (2-Chloroethyl) Ether (111-44-4)		Г	V							0					
12B. Bis (2- Chloroisopropyl) Ether (39638-32-9)										0					
13B. Bis (2-Ethylhexyl) Phthalate (117-81-7)			_							0					
14B. 4-Bromophenyl Phenyl Ether (101-55-3)			1							0					
15B. Butyl Benzyl Phthalate (85-68-7)			V							0					
16B. 2- Chloronaphthalene (91-58-7)										0					
17B. 4-Chlorophenyl Phenyl Ether (7005-72-3)			V							0					
18B. Chrysene (218-01-9)			V							0					
19B. Dibenzo (a.h) Anthracene (53-70-3)			V							0					
20B. 1,2 – Dichlorobenzene (95-50-1)										0					
21B. 1,3 – Dichlorobenzene (541-73-1)										0					

MO 780-1516 (02-12)

CONTINUE ON PAGE 6

CONTINUED FR	OM PAGE 5	;		NPDES # (A MO-0109	IF ASSIGNED 9878))	OUTFALL	NUMBER							
1. POLLUTANT		2. MARK "X" B.	C.	A. MAXIMUM DAIL	LY VALUE	3. B. MAXIMUM 30 D (if availabl	EFFLUENT AY VALUE e)	C. LONG TERM VALUE (if availab			4. U	NITS	5. INT	AKE (optior	al)
AND CAS NUMBER (if available)	A. TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM A VALUE		B. NO OF ANALYSES
				CONCENTRATION		CONCENTRATION		CONCENTRATION					(1) CONCENTRATION	(2) MASS	
GC/MS FRACTION – BAS	E/NEUTRAL	COMPOUN	IDS (continu	ied)											
22B. 1, 4- Dichlorobenzene (106-46-7)										0					
23B. 3, 3'- Dichlorobenzidine (91-94-1)										0					
24B. Diethyl Phthalate (84-66-2)										0					
25B. Dimethyl Phthalate (131-11-3)										0					
26B. Di-N-butyl Phthalate (84-74-2)			<u>v</u>							0					
27B. 2,4-Dinitrotoluene (121-14-2)										0					
28B. 2,6-Dinitrotoluene (606-20-2)			<u>v</u>							0					
29B. Di-N-Octyphthalate (117-84-0)			V							0					
30B. 1,2- Diphenylhydrazine (<i>as Azobenzene</i>) (122-66- 7)			√							0					
31B. Fluoranthene (206-44-0)			_							0					
32B. Fluorene (86-73-7)										0					
33B. Hexachlorobenzene (87-68-3)										0					
34B. Hexachlorobutadiene (87-68-3)										0					
35B. Hexachloro- cyclopentadiene (77-47-4)										0					
36B. Hexachloroethane (67-72-1)			1							0					
37B. Indeno (1,2,3-c-d) Pyrene (193-39-5)	L		_							0					
38B. Isophorone (78-59-1)			_							0					
39B. Naphthalene (91-20-3)										0					
40B. Nitrobenzene (98-95-3)			<u>v</u>							0					
41B. N-Nitro- sodimethylamine (62-75- 9)										0					
MO 780-1516 (06-13)		•	•	•	•	•	PAGE	6	•		•	•			ON PAGE 7

CONTINUED FROM T													1		
		2. MARK "X"				3. B. MAXIMUM 30 D	EFFLUENT	C. LONG TERM				NITS	5. INTA	KE (option	nal)
1. POLLUTANT AND CAS NUMBER		в.	C.	A. MAXIMUM DAI	LY VALUE	(if availab		VALUE (if availab							ŗ
(if available)	A. TES-ING REQUIRED	BELIEVED	C. BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM AV VALUE		B. NO OF ANALYSES
													(1) CONCENTRATION	(2) MASS	
GC/MS FRACTION – BAS	E/NEUTRAL	COMPOUN	NDS (continu	ied)											
42B. N-Nitroso N-Propylamine (621-64-7)										0					
43B. N-Nitro- sodiphenylamine (86-30- 6)			∠							0					
44B. Phenanthrene (85-01-8)			<u>√</u>							0					
45B. Pyrene (129-00-0)			✓							0					
46B. 1,2,4-Tri chlorobenzene (120-82-1)										0					
GC/MS FRACTION - P	ESTICIDES	i													
1P. Aldrin (309-00-2)			<u>_</u>							0					
2P. α-BHC (319-84-6)			<u> </u>							0					
3P. β-BHC (319-84-6)			<u> </u>							0					
4P. γ-BHC (58-89-9)										0					
5P. δ-BHC (319-86-8)			<u>_</u>							0					
6P. Chlordane (57-74-9)			<u>_</u>							0					
7P. 4,4'-DDT (50-29-3)			<u>_</u>							0					
8P. 4,4'-DDE (72-55-9)			<u>_</u>							0					
9P. 4,4'-DDD (72-54-8)										0					
10P. Dieldrin (60-57-1)										0					
11P. α-Endosulfan (115-29-7)			<u> </u>							0					
12P. β-Endosultan (115-29-7)										0					
13P. Endosulfan Sulfate (1031-07-8)			<u>_</u>							0					
14P. Endrin (72-20-8)			<u>_</u>							0					
15P. Endrin Aldehyde (7421-93-4)			<u>_</u>							0					
16P. Heptachlor (76-44-8)			<u>_</u>				PAGE			0					

CONTINUED ON PAGE 8

CONTINUED F	ROM PAGE 7	7		NPDES # (MO-010	IF ASSIGNED 9878))	OUTFALI	NUMBER							
1. POLLUTANT		2. MARK "X"		A. MAXIMUM DAII		3. B. MAXIMUM 30 D (if availab	EFFLUENT AY VALUE	C. LONG TERM VALUE (if availab			- 4. U	NITS	5. INT/	AKE (optior	nal)
AND CAS NUMBER (if available)	A. TESTING REQUIRED	B. BELIEVED PRESENT	C. BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(If availat	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM AV VALUE		B. NO OF ANALYSES
				CONCENTRATION		CONCENTRATION		CONCENTRATION					(1) CONCENTRATION	(2) MASS	1
GC/MS FRACTION - PE	STICISES (col	ntinued)													
17P. Heptachlor Epoxide (1024-57-3)			_							0					
18P. PCB-1242 (53469-21-9)			_							0					
19P. PBC-1254 (11097-69-1)			7							0					
20P. PCB-1221 (11104-28-2)			_							0					
21P. PCB-1232 (11141-16-5)			_							0					
22P. PCB-1248 (12672-29-6)			1							0					
23P. PCB-1260 (11096-82-5)			1							0					
24P. PCB-1016 (12674-11-2)			_							0					
25P. Toxaphene (8001-35-2)			_							0					
J. RADIOACTIVITY															
(1) Alpha Total			7							0					
(2) Beta Total			1							0					
(3) Radium Total			1							0					
(4) Radium 226 Total			_							0					
															1
															1
MO 780-1516 (06-13)	1	1	1	l	1	PAGE	8	1	1	1	1	1	1	1	<u> </u>

APPLICATION FOR DISCHARGE PERMIT FORM D – PRIMARY INDUSTRIES

TA	BLE II
NPDES # (IF ASSIGNED)	OUTFALL NUMBER
MO-0109878	002

1.30 If you are a primary industry and this outfall contains process wastewater, refer to Table A in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-A for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenols. Mark "X" in column 2-B for each pollutant you know or have reason to believe is present. Mark "X" in column 2-C for each pollutant you believe to be absent. If you mark either columns 2-A or 2-B for any pollutant, you must provide the results of at least one analysis for that pollutant. Note that there are seven pages to this part, please review each carefully. Complete one table (*all seven pages*) for each outfall. See instructions for additional details and requirements.

	2	. MARK "X"					. EFFLUENT								
1. POLLUTANT		в.	c	A. MAXIMUM DAIL	Y VALUE	B. MAXIMUM 30 D (if availab		C. LONG TERM AN (if availal	/RG. VALUE ble)	D.	4. U	NITS		KE (option	al)
AND CAS NUMBER (if available)	A. TEST-ING REQUIRED	BELIEVE D	C. BELIEVE D	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	NO. OF	A. CONCEN- TRATION	B. MASS	A. LONG TERM AV VALUE	VRG.	B. NO OF
		PRESENT	ABSENT	CONCENTRATION	(2) MASS	CONCENTRATION	(2) WASS	CONCENTRATION	(2) WASS	ANALYSES	IRANON		(1) CONCENTRATION	(2) MASS	ANALYSES
METALS, AND TOTAL	PHENOLS	·		•											
1M. Antimony, Total (7440- 36-9)	[<u> </u>							0					
2M. Arsenic, Total (7440-38-2)	[v		13.3, <25				21.19		7	ug/L				
3M. Beryllium, Total (7440- 41-7)			<u> </u>							0					
4M. Cadmium, Total (7440-43-9)			<u> </u>							0					
5M. Chromium III (16065-83-1)	[v		29.6				14.24		7	ug/L				
6M. Chromium VI (18540-29-9)	[<u> </u>	<25				<25		7	ug/L				
7M. Copper, Total (7440-50-8)	[v		25.7				14.89		7	ug/L				
8M. Lead, Total (7439-92-1)	[v		20.3				14.47		7	ug/L				
9M. Magnesium Total (7439-95-4)	[<u> </u>							0					
10M. Mercury, Total (7439-97-6)	—									0					
11M. Molybdenum Total (7439-98-7)										0					
12M. Nickel, Total (7440-02-0)	_									0					
13M. Selenium, Total (7782-49-2)	_			<40				<40		7	ug/L				
14M. Silver, Total (7440-22-4)	_									0					
15M. Thallium, Total (7440- 28-0)										0					
16M. Tin Total (7440-31-5)	_									0					
17M. Titanium Total (7440-32-6)	_									0					
18M. Zinc, Total (7440-66-6)		<u>_</u>		104				60.11		7	ug/L				
MO 780-1516 (06-13)	1	1	1	1	1	1	PAGE 2	1	1	1	1	1	1	1	<u> </u>

CONTINUED FROM PAGE 3

Chornalon I	CONTINUED FROM PAG	E 3													
DOXIN Concentration Concentration <td>19M. Cyanide, Amenable to Chlorination</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td>	19M. Cyanide, Amenable to Chlorination										0				
2.3.7.8 Tetra - chrone- chronodbarco-polacini (1764-01-6) DESCRIBE RESULTS 1. POLLITATE (1784-01-6) AMARY ** DESCRIBE RESULTS 1. POLLITATE (1784-01-6) AMARY ** A MAXIMUM DALLY VALUE B. MAXIMUM DALVY VALUE C. LONG TERM M/RG: VALUE (2 souther) A. MANTES MANTES A. MANTES MANTES A. MANTES	20M. Phenols, Total		/		17, <50				19.57		7	ug/L			
chlorodberzo P-Dioxin TPR-6-16) TPR-7-16) TPR-7-1					•			·							
Product with the part of an arrow of the part of the p	chlorodibenzo-P-Dioxin			/	DESCRIBE RE	SULTS									
All C-A MUMAN All S-A MU-A MAD C-A MUMAN Calculation (d'auxiliable) (d'auxiliable) $(d'auxiliable)$			2. MARK "X"	,								4.1	5 INT		
Concention Concention Concention Concention Concention Part CGMS FRACTION - VOLATILE COMPOUNDS ////////////////////////////////////		A. TES-	в.	c.	A. MAXIMUM DAI	LY VALUE	(if available	e)	(if availal	ble)	D NO OF				B. NO OF
GCMS FRACTION - VOLATLE COMPOUNDS Image: Second		ING RE- QUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS		CONCEN- TRATION	VALUE		ANALYSES
(107-02-8) - - - 0 - - 0 - - 0 1 1 1 1 0 1	GC/MS FRACTION - VOI	ATILE CO	OMPOUN	DS									CONCENTRATION	WA55	
(107-13-1) - I	(107-02-8)			/							0				
(71-43-2) - I V <1.0	(107-13-1)			>							0				
Ether (64-28-1) I V I	(71-43-2)			>	<1.0				<1.0		7	ug/L			
(75-25-2) I	Ether (542-88-1)			1							0				
(66-23-5) I	(75-25-2)			/							0				
(108-90-7) Image: Chlorodhoromethane Image: Chlorodhorodhoromethane Image: Chlorodho	(56-23-5)			/							0				
(124-8-1) Image: Constraint of the second secon	(108-90-7)			/							0				
(75-00-3) I	(124-48-1)			/							0				
Ether (110-75-8) I	(75-00-3)			7							0				
(67-66-3) I	Ether (110-75-8)										0				
(75-27-4) I	(67-66-3)										0				
diffuoromethane (75-71-8) I<	(75-27-4)			1							0				
(75-34-3) Image: Constraint of the state of the st	difluoromethane (75-71-8)			7							0				
(107-06-2) I	(75-34-3)										0				
(75-35-4) Image: Constraint of the second secon	(107-06-2)										0				
(78-87-5) 0	(75-35-4)										0	ļ		<u> </u>	<u> </u>
	(78-87-5)										0	ļ			<u> </u>
	(542-75-6)			1							0	ļ		<u> </u>	<u> </u>
19V. Ethylbenzene (100-41-4) Image: Constraint of the state of	(100-41-4)				<2.0				<2.0		7	ug/L			<u> </u>
20V. Methyl Bromide (74-83-9) 0 0 0	(74-83-9)			7							0				<u> </u>
21V. Methyl Chloride (74-87-3) O <tho< th=""> O</tho<>	(74-87-3)			✓							0				

CONTINUED FROM TH				N		ASSIGNED) -0109878		ALL NUMBER 002			1		1		
1. POLLUTANT		2. MARK "X" B.	C.	A. MAXIMUM DA	LY VALUE	3. B. MAXIMUM 30 D (if availab		C. LONG TERM VALUE (if availab			4. U	NITS	5. INT	AKE (option	nal)
AND CAS NUMBER (if available)	A. TESTING RE-QUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM A VALUE		B. NO OF ANALYSES
						CONCENTRATION		CONCENTRATION					(1) CONCENTRATION	(2) MASS	<u> </u>
GC.MS FRACTION - V	OLATILE (COMPOUN	IDS (contir	nued)											
22V. Methylene Chloride (75-09-2)										0					
23V. 1,1,2,2 – Tetra- chloroethane (79-34-5)			<u> </u>							0					
24V. Tetrachloroethylene (127-18-4)			1							0					
25V. Toluene (108-88-3)			∠							0					
26V. 1,2 – Trans Dichloroethylene (156-60-5)										0					
27V. 1,1,1 – Tri – chloroethane (71-55-6)			<u>/</u>							0					
28V. 1,1,2 – Tri- chloroethane (79-00-5)										0					
29V. Trichloro – ethylene (79-01-6)			<u> </u>							0					
30V. Trichloro – fluoromethane (75-69-4)										0					
31V. Vinyl Chloride (75-01-4)			 Image: A start of the start of							0					
GC/MS FRACTION - A		OUNDS			•		•		•		•	•		•	<u>.</u>
1A. 2 – Chlorophenol (95-57-8)			<u>_</u>							0					
2A. 2,4 – Dichloro – phenol (120-83-2)			_							0					
3A. 2,4 – Dimethyl – phenol (105-67-9)			v							0					
4A. 4,6 – Dinitro - O- Cresol (534-52-1)			_							0					
5A. 2,4 – Dinitro – phenol (51-28-5)			v							0					
6A. 2-Nitrophenol (88-75-5)			_							0					
7A. 4-Nitrophenol (100-02-7)			<u> </u>							0					
8A. P – Chloro – M Cresol (59-50-7)			<u> </u>							0					1
9A. Pentachloro – phenol (87-86-5)			<u> </u>							0					1
10A. Phenol (108-952)			<u>_</u>							0					1
11A. 2,4,6 – Trichloro- phenol (88-06-2)			<u> </u>							0					1
12A. 2 - methyl – 4,6 dinitrophenol (534-52-1)			7							0					1

CONTINUED FROM T															
1. POLLUTANT		2. MARK "X"		A. MAXIMUM DAII		3. B. MAXIMUM 30 D (if availab)		C. LONG TERM VALUE (if availab			4. U	NITS	5. INT/	AKE (optior	ial)
AND CAS NUMBER (if available)	A. TESTING REQUIRED	B. BELIEVED PRESENT	C. BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM AV VALUE	/RG.	B. NO OF ANALYSES
				CONCENTRATION		CONCENTRATION		CONCENTRATION					(1) CONCENTRATION	(2) MASS	
GC/MS FRACTION – BAS	E/NEUTRAL	COMPOUN	IDS												
1B. Acenaphthene (83-32-9)			V							0					
2B. Acenaphtylene (208-96-8)			V							0					
3B. Anthracene (120-12-7)										0					
4B. Benzidine (92-87-5)			V							0					
5B. Benzo (a) Anthracene (56-55-3)										0					
6B. Benzo (a) Pyrene (50-32-8)			V							0					
7B. 3,4 – Benzofluoranthene (205-99-2)			<u>_</u>							0					
8B. Benzo (ghi) Perylene (191-24-2)			1							0					
9B. Benzo (k) Fluoranthene (207-08-9)										0					
10B. Bis (2-Chloroethoxy) Methane (111-91-1)										0					
11B. Bis (2-Chloroethyl) Ether (111-44-4)		Г	V							0					
12B. Bis (2- Chloroisopropyl) Ether (39638-32-9)										0					
13B. Bis (2-Ethylhexyl) Phthalate (117-81-7)			_							0					
14B. 4-Bromophenyl Phenyl Ether (101-55-3)			1							0					
15B. Butyl Benzyl Phthalate (85-68-7)			V							0					
16B. 2- Chloronaphthalene (91-58-7)										0					
17B. 4-Chlorophenyl Phenyl Ether (7005-72-3)			V							0					
18B. Chrysene (218-01-9)			V							0					
19B. Dibenzo (a.h) Anthracene (53-70-3)			V							0					
20B. 1,2 – Dichlorobenzene (95-50-1)										0					
21B. 1,3 – Dichlorobenzene (541-73-1)										0					

MO 780-1516 (02-12)

CONTINUE ON PAGE 6

CONTINUED FR	OM PAGE 5	;		NPDES # (A MO-0109	IF ASSIGNED 1878))	OUTFALL	NUMBER							
1. POLLUTANT		2. MARK "X" B.	C.	A. MAXIMUM DAIL	Y VALUE	3. B. MAXIMUM 30 D (if availabl	EFFLUENT AY VALUE e)	C. LONG TERM VALUE (if availab			4. U	NITS	5. INT	AKE (option	ial)
AND CAS NUMBER (if available)	A. TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM A VALUE		B. NO OF ANALYSES
				CONCENTRATION		CONCENTRATION		CONCENTRATION					(1) CONCENTRATION	(2) MASS	<u> </u>
GC/MS FRACTION – BAS	E/NEUTRAL	COMPOUN	IDS (continu	ied)											
22B. 1, 4- Dichlorobenzene (106-46-7)			7							0					
23B. 3, 3'- Dichlorobenzidine (91-94-1)			v							0					
24B. Diethyl Phthalate (84-66-2)										0					
25B. Dimethyl Phthalate (131-11-3)			V							0					
26B. Di-N-butyl Phthalate (84-74-2)			V							0					
27B. 2,4-Dinitrotoluene (121-14-2)			V							0					
28B. 2,6-Dinitrotoluene (606-20-2)			V							0					
29B. Di-N-Octyphthalate (117-84-0)			V							0					
30B. 1,2- Diphenylhydrazine (<i>as Azobenzene</i>) (122-66- 7)			V							0					
31B. Fluoranthene (206-44-0)			_							0					
32B. Fluorene (86-73-7)			_							0					
33B. Hexachlorobenzene (87-68-3)										0					
34B. Hexachlorobutadiene (87-68-3)										0					
35B. Hexachloro- cyclopentadiene (77-47-4)			7							0					
36B. Hexachloroethane (67-72-1)			_							0					
37B. Indeno (1,2,3-c-d) Pyrene (193-39-5)	L	L	1							0					
38B. Isophorone (78-59-1)			1							0					
39B. Naphthalene (91-20-3)										0					
40B. Nitrobenzene (98-95-3)			V							0					
41B. N-Nitro- sodimethylamine (62-75- 9)			1							0					
MO 780-1516 (06-13)							PAGE	6					(ON PAGE 7

CONTINUED FROM T													1		
		2. MARK "X"				3. B. MAXIMUM 30 D	EFFLUENT	C. LONG TERM				NITS	5. INTA	KE (option	nal)
1. POLLUTANT AND CAS NUMBER		в.	C.	A. MAXIMUM DAI	LY VALUE	(if availab		VALUE (if availab							ŗ
(if available)	A. TES-ING REQUIRED	BELIEVED	C. BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM AV VALUE		B. NO OF ANALYSES
													(1) CONCENTRATION	(2) MASS	
GC/MS FRACTION – BAS	E/NEUTRAL	COMPOUN	NDS (continu	ied)											
42B. N-Nitroso N-Propylamine (621-64-7)			<u> </u>							0					
43B. N-Nitro- sodiphenylamine (86-30- 6)			∠							0					
44B. Phenanthrene (85-01-8)			<u>√</u>							0					
45B. Pyrene (129-00-0)			✓							0					
46B. 1,2,4-Tri chlorobenzene (120-82-1)										0					
GC/MS FRACTION - P	ESTICIDES	i													
1P. Aldrin (309-00-2)			<u>_</u>							0					
2P. α-BHC (319-84-6)			<u> </u>							0					
3P. β-BHC (319-84-6)			<u> </u>							0					
4P. γ-BHC (58-89-9)										0					
5P. δ-BHC (319-86-8)			<u>_</u>							0					
6P. Chlordane (57-74-9)			<u>_</u>							0					
7P. 4,4'-DDT (50-29-3)			<u>_</u>							0					
8P. 4,4'-DDE (72-55-9)			<u>_</u>							0					
9P. 4,4'-DDD (72-54-8)										0					
10P. Dieldrin (60-57-1)										0					
11P. α-Endosulfan (115-29-7)			<u>_</u>							0					
12P. β-Endosultan (115-29-7)										0					
13P. Endosulfan Sulfate (1031-07-8)			<u>_</u>							0					
14P. Endrin (72-20-8)			<u>_</u>							0					
15P. Endrin Aldehyde (7421-93-4)			<u>_</u>							0					
16P. Heptachlor (76-44-8)			<u>_</u>				PAGE			0					

CONTINUED ON PAGE 8

CONTINUED FI	ROM PAGE 7	7		NPDES # (MO-010	IF ASSIGNED))	OUTFALI	NUMBER							
		2. MARK "X"				3.	EFFLUENT	•							
1. POLLUTANT		в.	C	A. MAXIMUM DAII	LY VALUE	B. MAXIMUM 30 D (if availab	AY VALUE /e)	C. LONG TERM VALUE (if availab			4. U	NITS		KE (option	nal)
AND CAS NUMBER (if available)	A. TESTING REQUIRED	BELIEVED PRESENT	C. BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM AV VALUE		B. NO OF ANALYSES
				CONCENTION									(1) CONCENTRATION	(2) MASS	
GC/MS FRACTION – PE	STICISES (coi	ntinued)													
17P. Heptachlor Epoxide (1024-57-3)			_							0					
18P. PCB-1242 (53469-21-9)			_							0					
19P. PBC-1254 (11097-69-1)			_							0					
20P. PCB-1221 (11104-28-2)			7							0					
21P. PCB-1232 (11141-16-5)			_							0					
22P. PCB-1248 (12672-29-6)			_							0					
23P. PCB-1260 (11096-82-5)			_							0					
24P. PCB-1016 (12674-11-2)			_							0					
25P. Toxaphene (8001-35-2)			_							0					
J. RADIOACTIVITY															
(1) Alpha Total			_							0					
(2) Beta Total			7							0					
(3) Radium Total			7							0					
(4) Radium 226 Total			7							0					
MO 780-1516 (06-13)	•	•			•	PAGE	8	•	•	•	•	•	•	•	•

APPLICATION FOR DISCHARGE PERMIT FORM D – PRIMARY INDUSTRIES

TA	BLE II
NPDES # (IF ASSIGNED)	OUTFALL NUMBER
MO-0109878	004

1.30 If you are a primary industry and this outfall contains process wastewater, refer to Table A in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-A for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenols. Mark "X" in column 2-B for each pollutant you know or have reason to believe is present. Mark "X" in column 2-C for each pollutant you believe to be absent. If you mark either columns 2-A or 2-B for any pollutant, you must provide the results of at least one analysis for that pollutant. Note that there are seven pages to this part, please review each carefully. Complete one table (*all seven pages*) for each outfall. See instructions for additional details and requirements.

L	2.	MARK "X"					. EFFLUENT								
1. POLLUTANT		в.	C.	A. MAXIMUM DAIL	LY VALUE	B. MAXIMUM 30 D (if availab		C. LONG TERM AV (if availal		D.	4. U	NITS		KE (option	al)
AND CAS NUMBER (if available)	A. TEST-ING REQUIRED	BELIEVE D PRESENT	BELIEVE D ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM AV VALUE		B. NO OF ANALYSES
													(1) CONCENTRATION	(2) MASS	
METALS, AND TOTAL		r	1	1											
1M. Antimony, Total (7440- 36-9)	-		<u> </u>							0					
2M. Arsenic, Total (7440-38-2)			<u> </u>							0					
3M. Beryllium, Total (7440- 41-7)	.		<u> </u>							0					
4M. Cadmium, Total (7440-43-9)			<u> </u>							0					
5M. Chromium III (16065-83-1)			<u> </u>							0					
6M. Chromium VI (18540-29-9)			<u> </u>	<10				<10		1	ug/L				
7M. Copper, Total (7440-50-8)		v		19.1				12.53		7	ug/L				
8M. Lead, Total (7439-92-1)			<u> </u>							0					
9M. Magnesium Total (7439-95-4)			<u> </u>							0					
10M. Mercury, Total (7439-97-6)	—									0					
11M. Molybdenum Total (7439-98-7)	—									0					
12M. Nickel, Total (7440-02-0)	_									0					
13M. Selenium, Total (7782-49-2)	_									0					
14M. Silver, Total (7440-22-4)	_									0					
15M. Thallium, Total (7440 28-0)										0					
16M. Tin Total (7440-31-5)			_							0					
17M. Titanium Total (7440-32-6)			_							0					
18M. Zinc, Total (7440-66-6)				79				50.83		7	ug/L				
MO 780-1516 (06-13)							PAGE 2								

CONTINUED FROM PAGE 3

CONTINUED FROM PAG	E 3														. <u> </u>
19M. Cyanide, Amenable to Chlorination			7							0					
20M. Phenols, Total			/							0					
DIOXIN															
2,3,7,8 – Tetra – chlorodibenzo-P-Dioxin (1764-01-6)			/	DESCRIBE RE	SULTS										
		2. MARK "X'	9				EFFLUENT					NUTO	5 INT		
1. POLLUTANT	A. TES-	в.	c.	A. MAXIMUM DAI	LY VALUE	B. MAXIMUM 30 DA (if available		C. LONG TERM AV (if availab			4. U A.	NITS B. MASS	A. LONG TERM A	AKE (option	B. NO OF
AND CAS NUMBER (if available)	ING RE- QUIRED	BELIEVED	BELIEVED	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	CONCEN- TRATION	D. 11733	(1) CONCENTRATION	(2) MASS	ANALYSES
GC/MS FRACTION - VOL	ATILE C	OMPOUNI	DS										CONCENTRATION	MASS	
1V. Acrolein (107-02-8)										0					
2V. Acrylonitrile (107-13-1)			_							0					
3V. Benzene (71-43-2)			 Image: A start of the start of	<1.0				<1.0		6	ug/L				
4V. Bis (<i>Chloromethyl</i>) Ether (542-88-1)										0					
5V. Bromoform (75-25-2)			/							0					
6V. Carbon Tetrachloride (56-23-5)			√							0					
7V. Chlorobenzene (108-90-7)										0					
8V. Chlorodibromomethane (124-48-1)			/							0					
9V. Chloroethane (75-00-3)										0					
10V. 2-Chloroethylvinyl Ether (110-75-8) 11V. Chloroform										0					
(67-66-3)										0					
12V. Dichlorobromomethane (75-27-4) 13V. Dichloro-			V							0					
difluoromethane (75-71-8)										0					
14V. 1,1 – Dichloroethane (75-34-3)										0					
15V. 1,2 – Dichloroethane (107-06-2)										0					
16V. 1,1 – Dichloroethylene (75-35-4)			∠							0				ļ	
17V. 1,3 – Dichloropropane (78-87-5)										0					
18V. 1,2 –Dichloropropylene (542-75-6)			√							0					
19V. Ethylbenzene (100-41-4)										0				ļ	
20V. Methyl Bromide (74-83-9) 21V. Methyl Chloride										0					
21 V. Methyl Chloride (74-87-3) MO 780-1516 (06-13)			√				PAGE 3			0					PAGE 4

CONTINUED FROM TH				N		ASSIGNED) -0109878		ALL NUMBER 004			1		1		
1. POLLUTANT		2. MARK "X" B.	C.	A. MAXIMUM DA	LY VALUE	3. B. MAXIMUM 30 D (if availab		C. LONG TERM VALUE (if availab			4. U	NITS	5. INT	AKE (option	nal)
AND CAS NUMBER (if available)	A. TESTING RE-QUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM A VALUE		B. NO OF ANALYSES
						CONCENTRATION		CONCENTRATION					(1) CONCENTRATION	(2) MASS	<u> </u>
GC.MS FRACTION - V	OLATILE (COMPOUN	IDS (contir	nued)											
22V. Methylene Chloride (75-09-2)										0					
23V. 1,1,2,2 – Tetra- chloroethane (79-34-5)			<u> </u>							0					
24V. Tetrachloroethylene (127-18-4)			1							0					
25V. Toluene (108-88-3)			<u>\</u>							0					
26V. 1,2 – Trans Dichloroethylene (156-60-5)										0					
27V. 1,1,1 – Tri – chloroethane (71-55-6)			<u>/</u>							0					
28V. 1,1,2 – Tri- chloroethane (79-00-5)										0					
29V. Trichloro – ethylene (79-01-6)			<u> </u>							0					
30V. Trichloro – fluoromethane (75-69-4)										0					
31V. Vinyl Chloride (75-01-4)			 Image: A start of the start of							0					
GC/MS FRACTION - A		OUNDS			•		•		•		•	•		•	<u>.</u>
1A. 2 – Chlorophenol (95-57-8)			<u>_</u>							0					
2A. 2,4 – Dichloro – phenol (120-83-2)			_							0					
3A. 2,4 – Dimethyl – phenol (105-67-9)			v							0					
4A. 4,6 – Dinitro - O- Cresol (534-52-1)			_							0					
5A. 2,4 – Dinitro – phenol (51-28-5)			v							0					
6A. 2-Nitrophenol (88-75-5)			_							0					
7A. 4-Nitrophenol (100-02-7)			<u> </u>							0					
8A. P – Chloro – M Cresol (59-50-7)			<u> </u>							0					1
9A. Pentachloro – phenol (87-86-5)			<u> </u>							0					1
10A. Phenol (108-952)			<u>_</u>							0					1
11A. 2,4,6 – Trichloro- phenol (88-06-2)			<u> </u>							0					1
12A. 2 - methyl – 4,6 dinitrophenol (534-52-1)			7							0					1

CONTINUED FROM T															
1. POLLUTANT		2. MARK "X"		A. MAXIMUM DAII		3. B. MAXIMUM 30 D (if availab)		C. LONG TERM VALUE (if availab			4. U	NITS	5. INT/	AKE (optior	ial)
AND CAS NUMBER (if available)	A. TESTING REQUIRED	B. BELIEVED PRESENT	C. BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM AV VALUE	/RG.	B. NO OF ANALYSES
				CONCENTRATION		CONCENTRATION		CONCENTRATION					(1) CONCENTRATION	(2) MASS	
GC/MS FRACTION – BAS	E/NEUTRAL	COMPOUN	IDS												
1B. Acenaphthene (83-32-9)			V							0					
2B. Acenaphtylene (208-96-8)			V							0					
3B. Anthracene (120-12-7)										0					
4B. Benzidine (92-87-5)			V							0					
5B. Benzo (a) Anthracene (56-55-3)										0					
6B. Benzo (a) Pyrene (50-32-8)			V							0					
7B. 3,4 – Benzofluoranthene (205-99-2)			<u>_</u>							0					
8B. Benzo (ghi) Perylene (191-24-2)			1							0					
9B. Benzo (k) Fluoranthene (207-08-9)										0					
10B. Bis (2-Chloroethoxy) Methane (111-91-1)										0					
11B. Bis (2-Chloroethyl) Ether (111-44-4)		Г	V							0					
12B. Bis (2- Chloroisopropyl) Ether (39638-32-9)										0					
13B. Bis (2-Ethylhexyl) Phthalate (117-81-7)			_							0					
14B. 4-Bromophenyl Phenyl Ether (101-55-3)			1							0					
15B. Butyl Benzyl Phthalate (85-68-7)			V							0					
16B. 2- Chloronaphthalene (91-58-7)										0					
17B. 4-Chlorophenyl Phenyl Ether (7005-72-3)			V							0					
18B. Chrysene (218-01-9)			V							0					
19B. Dibenzo (a.h) Anthracene (53-70-3)			V							0					
20B. 1,2 – Dichlorobenzene (95-50-1)										0					
21B. 1,3 – Dichlorobenzene (541-73-1)										0					

MO 780-1516 (02-12)

CONTINUE ON PAGE 6

CONTINUED FR	OM PAGE 5	;		NPDES # (A MO-0109	F ASSIGNED 1878))	OUTFALL	NUMBER							
1. POLLUTANT		2. MARK "X" B.	C.	A. MAXIMUM DAIL	Y VALUE	3. B. MAXIMUM 30 D (if availabl	EFFLUENT AY VALUE e)	C. LONG TERM VALUE (if availab			4. U	NITS	5. INT	AKE (option	nal)
AND CAS NUMBER (if available)	A. TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM A VALUE		B. NO OF ANALYSES
				CONCENTRATION		CONCENTRATION		CONCENTRATION					(1) CONCENTRATION	(2) MASS	
GC/MS FRACTION - BAS	E/NEUTRAL	COMPOUN	IDS (continu	ied)											
22B. 1, 4- Dichlorobenzene (106-46-7)										0					
23B. 3, 3'- Dichlorobenzidine (91-94-1)										0					
24B. Diethyl Phthalate (84-66-2)										0					
25B. Dimethyl Phthalate (131-11-3)										0					
26B. Di-N-butyl Phthalate (84-74-2)			<u> </u>							0					
27B. 2,4-Dinitrotoluene (121-14-2)										0					
28B. 2,6-Dinitrotoluene (606-20-2)			<u>v</u>							0					
29B. Di-N-Octyphthalate (117-84-0)			V							0					
30B. 1,2- Diphenylhydrazine (<i>as Azobenzene</i>) (122-66- 7)										0					
31B. Fluoranthene (206-44-0)			_							0					
32B. Fluorene (86-73-7)			_							0					
33B. Hexachlorobenzene (87-68-3)										0					
34B. Hexachlorobutadiene (87-68-3)										0					
35B. Hexachloro- cyclopentadiene (77-47-4)										0					
36B. Hexachloroethane (67-72-1)			_							0					
37B. Indeno (1,2,3-c-d) Pyrene (193-39-5)			_							0					
38B. Isophorone (78-59-1)			_							0					
39B. Naphthalene (91-20-3)										0					
40B. Nitrobenzene (98-95-3)										0					
41B. N-Nitro- sodimethylamine (62-75- 9)			V							0					
MO 780-1516 (06-13)							PAGE	6						CONTINUE	ON PAGE 7

CONTINUED FROM T													1		
		2. MARK "X"				3. B. MAXIMUM 30 D	EFFLUENT	C. LONG TERM				NITS	5. INTA	KE (option	nal)
1. POLLUTANT AND CAS NUMBER		в.	C.	A. MAXIMUM DAI	LY VALUE	(if availab		VALUE (if availab							ŗ
(if available)	A. TES-ING REQUIRED	BELIEVED	C. BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM AV VALUE		B. NO OF ANALYSES
													(1) CONCENTRATION	(2) MASS	
GC/MS FRACTION – BAS	E/NEUTRAL	COMPOUN	NDS (continu	ied)											
42B. N-Nitroso N-Propylamine (621-64-7)			<u> </u>							0					
43B. N-Nitro- sodiphenylamine (86-30- 6)			∠							0					
44B. Phenanthrene (85-01-8)			<u>√</u>							0					
45B. Pyrene (129-00-0)			✓							0					
46B. 1,2,4-Tri chlorobenzene (120-82-1)										0					
GC/MS FRACTION - P	ESTICIDES	i													
1P. Aldrin (309-00-2)			<u>_</u>							0					
2P. α-BHC (319-84-6)			<u> </u>							0					
3P. β-BHC (319-84-6)			<u> </u>							0					
4P. γ-BHC (58-89-9)										0					
5P. δ-BHC (319-86-8)			<u>_</u>							0					
6P. Chlordane (57-74-9)			<u>_</u>							0					
7P. 4,4'-DDT (50-29-3)			<u>_</u>							0					
8P. 4,4'-DDE (72-55-9)			<u>_</u>							0					
9P. 4,4'-DDD (72-54-8)										0					
10P. Dieldrin (60-57-1)										0					
11P. α-Endosulfan (115-29-7)			<u>_</u>							0					
12P. β-Endosultan (115-29-7)										0					
13P. Endosulfan Sulfate (1031-07-8)			<u>_</u>							0					
14P. Endrin (72-20-8)			<u>_</u>							0					
15P. Endrin Aldehyde (7421-93-4)			<u>_</u>							0					
16P. Heptachlor (76-44-8)			<u>_</u>				PAGE			0					

CONTINUED ON PAGE 8

CONTINUED FI	ROM PAGE 7	7		NPDES # (MO-010	IF ASSIGNED 9878))	OUTFALI	NUMBER							
1. POLLUTANT		2. MARK "X"		A. MAXIMUM DAII		3. B. MAXIMUM 30 D (if availab	EFFLUENT AY VALUE	C. LONG TERM VALUE (if availab			- 4. U	NITS	5. INT/	AKE (optior	nal)
AND CAS NUMBER (if available)	A. TESTING REQUIRED	B. BELIEVED PRESENT	C. BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM A VALUE		B. NO OF ANALYSES
				CONCENTRATION		CONCENTRATION		CONCENTRATION					(1) CONCENTRATION	(2) MASS	
GC/MS FRACTION - PE	STICISES (coi	ntinued)													
17P. Heptachlor Epoxide (1024-57-3)			_							0					
18P. PCB-1242 (53469-21-9)			_							0					
19P. PBC-1254 (11097-69-1)			_							0					
20P. PCB-1221 (11104-28-2)			_							0					
21P. PCB-1232 (11141-16-5)			_							0					
22P. PCB-1248 (12672-29-6)			1							0					
23P. PCB-1260 (11096-82-5)			_							0					
24P. PCB-1016 (12674-11-2)			_							0					
25P. Toxaphene (8001-35-2)			_							0					
J. RADIOACTIVITY															
(1) Alpha Total			_							0					
(2) Beta Total			_							0					
(3) Radium Total			_							0					
(4) Radium 226 Total			_							0					
															+
MO 780-1516 (06-13)		L	I	L	L	PAGE	8	1	I	1	L		1	1	J

APPLICATION FOR DISCHARGE PERMIT FORM D – PRIMARY INDUSTRIES

TA	BLE II
NPDES # (IF ASSIGNED)	OUTFALL NUMBER
MO-0109878	005

1.30 If you are a primary industry and this outfall contains process wastewater, refer to Table A in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-A for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenols. Mark "X" in column 2-B for each pollutant you know or have reason to believe is present. Mark "X" in column 2-C for each pollutant you believe to be absent. If you mark either columns 2-A or 2-B for any pollutant, you must provide the results of at least one analysis for that pollutant. Note that there are seven pages to this part, please review each carefully. Complete one table (*all seven pages*) for each outfall. See instructions for additional details and requirements.

1. POLISITIAT A MAXUAU DAL: 9. MAXMON TO DAY VALUE 0. CLONG TERM AVR. VALUE 0. CLONG TERM AVR. VALUE 0. UNIT 5. INTACE (spinon) $max Max Max $	L	2	MARK "X"					. EFFLUENT								
Image:			в	c	A. MAXIMUM DAIL	Y VALUE						4. U				al)
METALS, AND TOTAL PHENOLS Concentitation Addition TM. Antimony, Total (7440- 36-9) V </td <td></td> <td>A. TEST-ING REQUIRED</td> <td>BELIEVE D</td> <td>D</td> <td>(1)</td> <td>(2) MASS</td> <td>(1)</td> <td>(2) MASS</td> <td>(1)</td> <td>(2) MASS</td> <td>NO. OF</td> <td>CONCEN-</td> <td>B. MASS</td> <td></td> <td>/RG.</td> <td>NO OF</td>		A. TEST-ING REQUIRED	BELIEVE D	D	(1)	(2) MASS	(1)	(2) MASS	(1)	(2) MASS	NO. OF	CONCEN-	B. MASS		/RG.	NO OF
IM. Antimory. Total (7440- 38-9) I				ABSENT	CONCENTRATION	(2) 11700	CONCENTRATION	(2) 11733	CONCENTRATION	(2) 11733	ANALYSES	interior		(1) CONCENTRATION	(2) MASS	ANALYSES
38-9) I <td>METALS, AND TOTAL</td> <td>PHENOLS</td> <td></td>	METALS, AND TOTAL	PHENOLS														
(744-038-2) I <td< td=""><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td></td<>				<u> </u>							0					
141.7) 0 0 0 0 0 0 4M. Cadmium, Total (7440-43-9) ✓ 45.6 14.9 7 ug/L 0 0 SM. Chronium III (10065-83-1) ✓ 45.6 14.9 7 ug/L 0 0 (11065-93-1) ✓ 45.6 14.9 7 ug/L 0 0 (1840-22-9) ✓ 29.5 12.99 7 ug/L 0 7M. Copper, Total (7440-56.4) ✓ 26.8 15.36 7 ug/L 0 8M. Lead, Total (743-96-4) ✓ 26.8 15.36 7 ug/L 0 10M. Marcury, Total (743-96-7) ✓ ✓ 0 0 1 1 11M. Molybolenum Total (743-96-7) ✓ ✓ 0 0 1 1 12M. Nickel, Total (744-92-0) ✓ ✓ 0 0 1 1 13M. Selenium, Total (744-92-0) ✓ ✓ 0 0 1 1 13M. Selenium, Total (744-92-4) ✓ 0 0 1 <td></td> <td></td> <td></td> <td><u> </u></td> <td><25</td> <td></td> <td></td> <td></td> <td><25</td> <td></td> <td>7</td> <td>ug/L</td> <td></td> <td></td> <td></td> <td></td>				<u> </u>	<25				<25		7	ug/L				
(7440-63-9) V <td< td=""><td>41-7)</td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td></td<>	41-7)			<u> </u>							0					
(10005-83-1) I V 45.6 14.9 V Ug/L Image: Constraint of the second sec	(7440-43-9)			<u>√</u>							0					
(18540-29-9) I <t< td=""><td>(16065-83-1)</td><td></td><td>v</td><td></td><td>45.6</td><td></td><td></td><td></td><td>14.9</td><td></td><td>7</td><td>ug/L</td><td></td><td></td><td></td><td></td></t<>	(16065-83-1)		v		45.6				14.9		7	ug/L				
(7440-50-8) V 29.5 12.99 7 Ug/L 1 8M. Lead, Total (7439-92-1) V 26.8 15.36 7 Ug/L 1 9M. Magnesium Total (7439-95-4) V 26.8 15.36 7 Ug/L 1 10M. Mercury, Total (7439-95-4) V V 1 0 0 1 1 10M. Mercury, Total (7439-95-4) - V 1 0 0 1 1 11M. Molybdenum Total (7439-98-7) - V 1 0 0 1 1 12M. Nickel, Total (7430-98-7) - V 440 0 0 1 1 12M. Nickel, Total (7440-02-0) - V <440	(18540-29-9)			<u> </u>	<10				<10		7	ug/L				
(7439-92-1) I V I 26.8 15.36 7 Ug/L Image: Constraint of the state of the s	(7440-50-8)				29.5				12.99		7	ug/L				
(7439-95-4) I <td< td=""><td></td><td></td><td></td><td></td><td>26.8</td><td></td><td></td><td></td><td>15.36</td><td></td><td>7</td><td>ug/L</td><td></td><td></td><td></td><td></td></td<>					26.8				15.36		7	ug/L				
(7439-97-6) Image: Constraint of the c	9M. Magnesium Total (7439-95-4)			<u> </u>							0					
(7439-98-7) Image: Constraint of the second sec	(7439-97-6)										0					
(7440-02-0) - <td< td=""><td>(7439-98-7)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td></td<>	(7439-98-7)										0					
(7782-49-2) - <td< td=""><td></td><td>—</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td></td<>		—									0					
(7440-22-4) Image: Constraint of the second sec		_		_	<40				<40		7	ug/L				
28-0) - <td></td> <td>—</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td>		—									0					
(7440-31-5) - Image: Constraint of the second	28-0)										0					
(7440-32-6) 0 18M. Zinc, Total 475		_									0					
		_									0					
(7440-66-6) Image: Page 2	(7440-66-6)				475				132.37		7	ug/L				

CONTINUED FROM PAGE 3

CONTINUED FROM PAG	E 3														
19M. Cyanide, Amenable to Chlorination	\square	\Box	1							0					
20M. Phenols, Total		/		124, <250				60.29		7	ug/L				
DIOXIN															
2,3,7,8 – Tetra – chlorodibenzo-P-Dioxin (1764-01-6)			\	DESCRIBE RE	SULTS										
		2. MARK "X'	1	A. MAXIMUM DAI	Y VALUE	B. MAXIMUM 30 D/	EFFLUENT	C. LONG TERM A	VRG. VALUE		4. U	NITS	5. INTA	KE (optio	nal)
1. POLLUTANT AND CAS NUMBER (if available)	A. TES- ING RE-	B. BELIEVED	C. BELIEVED			(if available		(if availal		D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM A VALUE	VRG.	B. NO OF ANALYSES
(QUIRED	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALIGEO	TRATION		(1) CONCENTRATION	(2) MASS	
GC/MS FRACTION – VOL	ATILE CO	OMPOUNI	DS												
1V. Acrolein (107-02-8)			1							0					
2V. Acrylonitrile (107-13-1)			\							0					
3V. Benzene (71-43-2)			/	<1.0				<1.0		7	ug/L				
4V. Bis (<i>Chloromethyl</i>) Ether (542-88-1)			/							0					
5V. Bromoform (75-25-2)			\							0					
6V. Carbon Tetrachloride (56-23-5)			~							0					
7V. Chlorobenzene (108-90-7)			<							0					
8V. Chlorodibromomethane (124-48-1)			v							0					
9V. Chloroethane (75-00-3)										0					
10V. 2-Chloroethylvinyl Ether (110-75-8)										0					
11V. Chloroform (67-66-3)										0					
12V. Dichlorobromomethane (75-27-4)			v							0					
13V. Dichloro- difluoromethane (75-71-8)										0					
14V. 1,1 – Dichloroethane (75-34-3)										0					
15V. 1,2 – Dichloroethane (107-06-2)										0					
16V. 1,1 – Dichloroethylene (75-35-4)										0					
17V. 1,3 – Dichloropropane (78-87-5)										0					
18V. 1,2 –Dichloropropylene (542-75-6)			v							0					
19V. Ethylbenzene (100-41-4)				<2.0				<2.0		7	ug/L				
20V. Methyl Bromide (74-83-9)										0					
21V. Methyl Chloride (74-87-3)			v							0					
MO 780-1516 (06-13)							PAGE 3						CONT	INUE ON	PAGE 4

			NF		-0109878		ALL NUMBER 005							
:			A. MAXIMUM DAI	LY VALUE	B. MAXIMUM 30 D	AY VALUE	VALUE			4. U	NITS	5. INT	TAKE (option	nal)
A. TESTING RE-QUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS		(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	VALUE		B. NO OF ANALYSES
												(1) CONCENTRATION	(2) MASS	
OLATILE C	OMPOUN	IDS (contir	nued)											
		<u> </u>							0					
									0					
		V							0					
		<u> </u>							0					
									0					
		<u>v</u>							0					
									0					
		<u>v</u>							0					
									0					
		<u> </u>							0					
	OUNDS			•	•	•		•	•	•	•		•	-
		√							0					
		<u> </u>							0					_
		<u> </u>							0					_
		<u> </u>							0					
		<u> </u>							0					_
		v							0					
		<u> </u>							0					_
		<u> </u>							0					
		<u> </u>							0					1
		<u>_</u>							0					1
		<u> </u>							0					1
		7							0					1
		2. MARK "X" A. TESTING RE-QUIRED DELIEVED PRESENT OLATILE COMPOUN	2. MARK "X" A. TESTING RE-QUIRED B. BELIEVED PRESENT C. BELIEVED ABSENT OLATILE COMPOUNDS (contin	E FRONT Image: Construct of the construct of	IE FRONT MO 2. MARK "X" A. MAXIMUM DAILY VALUE BELIEVE DESENT A. MAXIMUM DAILY VALUE DELATILE COMPOUNDS (continued) (2) MASS OLATILE COMPOUNDS (continued) (2) MASS I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	2. MARK "X" 3. A. TESTING RE-QUIRED B. C. BELEVED PRESENT A. MAXIMUM DAILY VALUE B. MAXIMUM 30 (if availab) OLATILE COMPOUNDS (continued) (2) MASS concentration I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	HE FRONT MO-0109878 S. EFFLUENT A. TESTINO RE-QUIRED B. BLEWED BELEVED BELEVED BESENT A. MAXIMUM DAILY VALUE B. MAXIMUD DATY VALUE ((f available)) B. MAXIMUM DATY VALUE B. MAXIMUM DATY VALUE OLATILE COMPOUNDS (continued) (a) MASS concentration (a) MASS concentration (a) MASS OLATILE COMPOUNDS (continued) (a) MASS concentration (a) MASS concentration (a) MASS Image: Construction of the second secon	HE FRONT MO-0109878 005 2.MARK "X" 3.EFLUENT C.LONG TERM A. TSSING RECOMED B. EVEN BELEVEN BESENT A MAXIMUM DAILY VALUE B. MAXIMUM 30 DAY VALUE (If available) C.LONG TERM (If available) C.LONG TERM (If available) C.LONG TERM (If available) OLATILE COMPOUNDS Continued) (2) MASS ConceNTRATION (2) MASS ConceNTRATION (2) MASS ConceNTRATION I <tdi< td=""> I I <td< td=""><td>HE FRONT MO-0109878 OO5 2. MARK 'X' 3. EFFLUENT S. EFFLUENT (1) ANSK (1) ANSK</td><td>HE FRONT MO-0109378 005 • AMAK 'Y' • Concentration • Busing • Concentration • Concentratinon • Concentrati</td><td>$\begin{array}{$</td><td></td><td>Image: constraint of the sector of</td><td>Image: Problem Image: Problem Image:</td></td<></tdi<>	HE FRONT MO-0109878 OO5 2. MARK 'X' 3. EFFLUENT S. EFFLUENT (1) ANSK (1) ANSK	HE FRONT MO-0109378 005 • AMAK 'Y' • Concentration • Busing • Concentration • Concentratinon • Concentrati	$ \begin{array}{ $		Image: constraint of the sector of	Image: Problem Image:

CONTINUED FROM T															
1. POLLUTANT		2. MARK "X"		A. MAXIMUM DAII		3. B. MAXIMUM 30 D (if availab)		C. LONG TERM VALUE (if availab			4. U	NITS	5. INT/	AKE (optior	ial)
AND CAS NUMBER (if available)	A. TESTING REQUIRED	B. BELIEVED PRESENT	C. BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM AV VALUE	/RG.	B. NO OF ANALYSES
				CONCENTRATION		CONCENTRATION		CONCENTRATION					(1) CONCENTRATION	(2) MASS	
GC/MS FRACTION – BAS	E/NEUTRAL	COMPOUN	IDS												
1B. Acenaphthene (83-32-9)			V							0					
2B. Acenaphtylene (208-96-8)			V							0					
3B. Anthracene (120-12-7)										0					
4B. Benzidine (92-87-5)			V							0					
5B. Benzo (a) Anthracene (56-55-3)										0					
6B. Benzo (a) Pyrene (50-32-8)			V							0					
7B. 3,4 – Benzofluoranthene (205-99-2)			<u>_</u>							0					
8B. Benzo (ghi) Perylene (191-24-2)			1							0					
9B. Benzo (k) Fluoranthene (207-08-9)										0					
10B. Bis (2-Chloroethoxy) Methane (111-91-1)										0					
11B. Bis (2-Chloroethyl) Ether (111-44-4)		Г	V							0					
12B. Bis (2- Chloroisopropyl) Ether (39638-32-9)										0					
13B. Bis (2-Ethylhexyl) Phthalate (117-81-7)			_							0					
14B. 4-Bromophenyl Phenyl Ether (101-55-3)			1							0					
15B. Butyl Benzyl Phthalate (85-68-7)			V							0					
16B. 2- Chloronaphthalene (91-58-7)										0					
17B. 4-Chlorophenyl Phenyl Ether (7005-72-3)			V							0					
18B. Chrysene (218-01-9)			V							0					
19B. Dibenzo (a.h) Anthracene (53-70-3)			V							0					
20B. 1,2 – Dichlorobenzene (95-50-1)										0					
21B. 1,3 – Dichlorobenzene (541-73-1)										0					

MO 780-1516 (02-12)

CONTINUE ON PAGE 6

(<i>if available</i>) REQU GC/MS FRACTION – BASE/NEU 22B. 1, 4- Dichlorobenzene (106-46-7) 23B. 3, 3'-	ESTING QUIRED	MARK "X" B. BELIEVED PRESENT	C. BELIEVED ABSENT	A. MAXIMUM DAIL concentration ied)	(2) MASS	3. B. MAXIMUM 30 D (if availabl concentration		C. LONG TERN VALUE (if availab (1) CONCENTRATION	le)	D. NO. OF ANALYSES	4. UI	NITS B. MASS	A. LONG TERM AV	AKE (option	al) B. NO OF
AND CAS NUMBER (<i>if available</i>) GC/MS FRACTION – BASE/NEU 22B. 1, 4- Dichlorobenzene (106-46-7) 23B. 3, 3'- Dichlorobenzidine (91-94-1) 24B. Diethyl Phthalate		BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	_	(if availabl	le)	VALUE (if availab	le)		Α.		A. LONG TERM AV		
(<i>if available</i>) REQU GC/MS FRACTION – BASE/NEU 22B. 1, 4- Dichlorobenzene (106-46-7) 23B. 3, 3'- Dichlorobenzidine (91-94-1) 24B. Diethyl Phthalate		BELIEVED PRESENT	BELIEVED ABSENT		(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(0) 11 405		A.	B. MASS		/RG.	P NO OF
22B. 1, 4- Dichlorobenzene (106-46-7) 23B. 3, 3'- Dichlorobenzidine (91-94-1) 24B. Diethyl Phthalate									(2) MASS		CONCEN- TRATION		VALUE	<u> </u>	ANALYSES
22B. 1, 4-Dichlorobenzene(106-46-7)23B. 3, 3'-Dichlorobenzidine(91-94-1)24B. Diethyl Phthalate				ied)									(1) CONCENTRATION	(2) MASS	L
Dichlorobenzene (106-46-7) 23B. 3, 3'- Dichlorobenzidine (91-94-1) 24B. Diethyl Phthalate															
23B. 3, 3'- Dichlorobenzidine (91-94-1) 24B. Diethyl Phthalate										0					
24B. Diethyl Phthalate			/							0					
			7							0					
25B. Dimethyl Phthalate (131-11-3)			7							0					
(04-74-2)			V							0					
27B. 2,4-Dinitrotoluene (121-14-2)		\square	7							0					
28B. 2,6-Dinitrotoluene (606-20-2)			V							0					
(117-64-0)			7							0					
30B. 1,2- Diphenylhydrazine (as Azobenzene) (122-66- 7)			\checkmark							0					
31B. Fluoranthene (206-44-0)			1							0					
32B. Fluorene (86-73-7)			/							0					
33B. Hexachlorobenzene (87-68-3)	\square		7							0					
34B. Hexachlorobutadiene (87-68-3)		\Box								0					
35B. Hexachloro- cyclopentadiene (77-47-4)			7							0					
(07-72-1) -			\							0					
37B. Indeno (1,2,3-c-d) Pyrene (193-39-5)			>							0					
38B. Isophorone (78-59-1)			>							0					
39B. Naphthalene (91-20-3)			7							0					
(98-95-3)			>							0					
41B. N-Nitro- sodimethylamine (62-75- 9)			>							0					

CONTINUED FROM T													1		
		2. MARK "X"				3. B. MAXIMUM 30 D	EFFLUENT	C. LONG TERM				NITS	5. INTA	KE (option	nal)
1. POLLUTANT AND CAS NUMBER		в.	C.	A. MAXIMUM DAI	LY VALUE	(if availab		VALUE (if availab							ŗ
(if available)	A. TES-ING REQUIRED	BELIEVED	C. BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM AV VALUE		B. NO OF ANALYSES
													(1) CONCENTRATION	(2) MASS	
GC/MS FRACTION – BAS	E/NEUTRAL	COMPOUN	NDS (continu	ied)											
42B. N-Nitroso N-Propylamine (621-64-7)			<u> </u>							0					
43B. N-Nitro- sodiphenylamine (86-30- 6)			∠							0					
44B. Phenanthrene (85-01-8)			<u>√</u>							0					
45B. Pyrene (129-00-0)			✓							0					
46B. 1,2,4-Tri chlorobenzene (120-82-1)										0					
GC/MS FRACTION - P	ESTICIDES	i													
1P. Aldrin (309-00-2)			<u>_</u>							0					
2P. α-BHC (319-84-6)			<u> </u>							0					
3P. β-BHC (319-84-6)			<u> </u>							0					
4P. γ-BHC (58-89-9)										0					
5P. δ-BHC (319-86-8)			<u>_</u>							0					
6P. Chlordane (57-74-9)			<u>_</u>							0					
7P. 4,4'-DDT (50-29-3)			<u>_</u>							0					
8P. 4,4'-DDE (72-55-9)			<u>_</u>							0					
9P. 4,4'-DDD (72-54-8)										0					
10P. Dieldrin (60-57-1)										0					
11P. α-Endosulfan (115-29-7)			<u>_</u>							0					
12P. β-Endosultan (115-29-7)										0					
13P. Endosulfan Sulfate (1031-07-8)			<u>_</u>							0					
14P. Endrin (72-20-8)			<u>_</u>							0					
15P. Endrin Aldehyde (7421-93-4)			<u>_</u>							0					
16P. Heptachlor (76-44-8)			<u>_</u>				PAGE			0					

CONTINUED ON PAGE 8

CONTINUED FI	ROM PAGE 7	7		NPDES # (MO-010	IF ASSIGNED 9878))	OUTFALI	NUMBER							
1. POLLUTANT		2. MARK "X"		A. MAXIMUM DAII	Y VALUE	3. B. MAXIMUM 30 D (if availab	EFFLUENT AY VALUE /e)	C. LONG TERM VALUE (if availab			- 4. U	INITS	5. INT/	AKE (optior	nal)
AND CAS NUMBER (if available)	A. TESTING REQUIRED	B. BELIEVED PRESENT	C. BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM AV VALUE		B. NO OF ANALYSES
				CONCENTRATION		CONCENTRATION	.,	CONCENTRATION	.,				(1) CONCENTRATION	(2) MASS	<u> </u>
GC/MS FRACTION - PE	STICISES (cor	ntinued)													
17P. Heptachlor Epoxide (1024-57-3)			_							0					
18P. PCB-1242 (53469-21-9)			_							0					
19P. PBC-1254 (11097-69-1)			_							0					
20P. PCB-1221 (11104-28-2)			_							0					
21P. PCB-1232 (11141-16-5)			_							0					
22P. PCB-1248 (12672-29-6)			7							0					
23P. PCB-1260 (11096-82-5)			_							0					
24P. PCB-1016 (12674-11-2)			_							0					
25P. Toxaphene (8001-35-2)			_							0					
J. RADIOACTIVITY															
(1) Alpha Total			_							0					
(2) Beta Total			_							0					
(3) Radium Total			7							0					
(4) Radium 226 Total			7							0					
															1
															1
MO 780-1516 (06-13)	1	L	1	L	1	PAGE	8	1	1	1	1	1	1	1	<u> </u>

APPLICATION FOR DISCHARGE PERMIT FORM D – PRIMARY INDUSTRIES

TA	BLE II
NPDES # (IF ASSIGNED)	OUTFALL NUMBER
MO-0109878	006

1.30 If you are a primary industry and this outfall contains process wastewater, refer to Table A in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-A for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenols. Mark "X" in column 2-B for each pollutant you know or have reason to believe is present. Mark "X" in column 2-C for each pollutant you believe to be absent. If you mark either columns 2-A or 2-B for any pollutant, you must provide the results of at least one analysis for that pollutant. Note that there are seven pages to this part, please review each carefully. Complete one table (*all seven pages*) for each outfall. See instructions for additional details and requirements.

	2	. MARK "X"					. EFFLUENT								
1. POLLUTANT		в.	C.	A. MAXIMUM DAIL	LY VALUE	B. MAXIMUM 30 D (if availab		C. LONG TERM AN (if availal		- D.	4. U	NITS		KE (option	al)
AND CAS NUMBER (if available)	A. TEST-ING REQUIRED	BELIEVE D PRESENT	BELIEVE D ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM AV VALUE		B. NO OF ANALYSES
				CONCENTION				CONCENTION		ANALIGEO			(1) CONCENTRATION	(2) MASS	
METALS, AND TOTAL				-											
1M. Antimony, Total (7440- 36-9)			<u>/</u>							0					
2M. Arsenic, Total (7440-38-2)			<u> </u>	<25				<25		6	ug/L				
3M. Beryllium, Total (7440- 41-7)		ļ	<u> </u>							0					
4M. Cadmium, Total (7440-43-9)			<u>√</u>							0					
5M. Chromium III (16065-83-1)		V		23.7				12.68		6	ug/L				
6M. Chromium VI (18540-29-9)		v		<10				<10		5	ug/L				
7M. Copper, Total (7440-50-8)		v		20.7				11.32		6	ug/L				
8M. Lead, Total (7439-92-1)		v		16.4				14		6	ug/L				
9M. Magnesium Total (7439-95-4)			<u> </u>							0					
10M. Mercury, Total (7439-97-6)	—									0					
11M. Molybdenum Total (7439-98-7)	—									0					
12M. Nickel, Total (7440-02-0)	_									0					
13M. Selenium, Total (7782-49-2)	_		1	<40				<40		6	ug/L				
14M. Silver, Total (7440-22-4)	_									0					
15M. Thallium, Total (7440- 28-0)			1							0					
16M. Tin Total (7440-31-5)	_									0					
17M. Titanium Total (7440-32-6)	_									0					
18M. Zinc, Total (7440-66-6)				324				104.9		6	ug/L				
MO 780-1516 (06-13)							PAGE 2								

CONTINUED FROM PAGE 3

CONTINUED FROM PAG	E 3														
19M. Cyanide, Amenable to Chlorination			7							0					
20M. Phenols, Total		\		19, <50				15		6	ug/L				
DIOXIN															
2,3,7,8 – Tetra – chlorodibenzo-P-Dioxin (1764-01-6)			_	DESCRIBE RE	SULTS										
		2. MARK "X'	,	A. MAXIMUM DAI	V VALUE	B. MAXIMUM 30 D/	EFFLUENT	C. LONG TERM A	VRG. VALUE		4. U	NITS	5. INT <i>A</i>	KE (optio	nal)
1. POLLUTANT AND CAS NUMBER (if available)	A. TES- ING RE-	B. BELIEVED	C. BELIEVED			(if available	e)	(if availal	ble)	D. NO. OF	A. CONCEN- TRATION	B. MASS	A. LONG TERM A VALUE	VRG.	B. NO OF ANALYSES
(II available)	QUIRED	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION		(1) CONCENTRATION	(2) MASS	ANALIGLO
GC/MS FRACTION - VOL	ATILE C	OMPOUNI	DS	1											
1V. Acrolein (107-02-8)			/							0					
2V. Acrylonitrile (107-13-1)			>							0					
3V. Benzene (71-43-2)			/	<1.0				<1.0		6	ug/L				
4V. Bis (<i>Chloromethyl</i>) Ether (542-88-1)			/							0					
5V. Bromoform (75-25-2)			/							0					
6V. Carbon Tetrachloride (56-23-5)			1							0					
7V. Chlorobenzene (108-90-7)			<							0					
8V. Chlorodibromomethane (124-48-1)			 Image: A start of the start of							0					
9V. Chloroethane (75-00-3)										0					
10V. 2-Chloroethylvinyl Ether (110-75-8)										0					
11V. Chloroform (67-66-3)										0					
12V. Dichlorobromomethane (75-27-4)			V							0					
13V. Dichloro- difluoromethane (75-71-8)										0					
14V. 1,1 – Dichloroethane (75-34-3)										0					
15V. 1,2 – Dichloroethane (107-06-2)										0					
16V. 1,1 – Dichloroethylene (75-35-4)			∠							0					
17V. 1,3 – Dichloropropane (78-87-5)										0					
18V. 1,2 –Dichloropropylene (542-75-6)			✓							0					
19V. Ethylbenzene (100-41-4)				<2.0				<2.0		6	ug/L				
20V. Methyl Bromide (74-83-9)										0					
21V. Methyl Chloride (74-87-3)			/							0					
MO 780-1516 (06-13)							PAGE 3						CONT	INUE ON	PAGE 4

CONTINUED FROM TH				NF		ASSIGNED) -0109878		ALL NUMBER 006							
1. POLLUTANT		2. MARK "X" B.	C.	A. MAXIMUM DAI	LY VALUE	3. B. MAXIMUM 30 D (if availab		C. LONG TERN VALUE (if availab			4. U	NITS	5. INT	TAKE (option	nal)
AND CAS NUMBER (if available)	A. TESTING RE-QUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM A VALUE		B. NO OF ANALYSES
													(1) CONCENTRATION	(2) MASS	
GC.MS FRACTION - V	OLATILE C	OMPOUN	IDS (contir	nued)											
22V. Methylene Chloride (75-09-2)			<u> </u>							0					
23V. 1,1,2,2 – Tetra- chloroethane (79-34-5)			<u> </u>							0					
24V. Tetrachloroethylene (127-18-4)			V							0					
25V. Toluene (108-88-3)			<u>/</u>							0					
26V. 1,2 – Trans Dichloroethylene (156-60-5)										0					
27V. 1,1,1 – Tri – chloroethane (71-55-6)			<u>v</u>							0					
28V. 1,1,2 – Tri- chloroethane (79-00-5)			V							0					
29V. Trichloro – ethylene (79-01-6)			<u>v</u>							0					
30V. Trichloro – fluoromethane (75-69-4)			1							0					
31V. Vinyl Chloride (75-01-4)			v							0					
GC/MS FRACTION - A		OUNDS	•		•		•				•	•			
1A. 2 – Chlorophenol (95-57-8)			√							0					
2A. 2,4 – Dichloro – phenol (120-83-2)			<u> </u>							0					
3A. 2,4 – Dimethyl – phenol (105-67-9)			_							0					
4A. 4,6 – Dinitro - O- Cresol (534-52-1)			_							0					
5A. 2,4 – Dinitro – phenol (51-28-5)			v							0					
6A. 2-Nitrophenol (88-75-5)			v							0					
7A. 4-Nitrophenol (100-02-7)			v							0					
8A. P – Chloro – M Cresol (59-50-7)			_							0					
9A. Pentachloro – phenol (87-86-5)			_							0					
10A. Phenol (108-952)			<u>_</u>							0					
11A. 2,4,6 – Trichloro- phenol (88-06-2)			<u> </u>							0					
12A. 2 - methyl – 4,6 dinitrophenol (534-52-1)			V							0					

CONTINUED FROM T															
1. POLLUTANT		2. MARK "X"		A. MAXIMUM DAII		3. B. MAXIMUM 30 D (if availab)		C. LONG TERM VALUE (if availab			4. U	NITS	5. INT/	AKE (optior	ial)
AND CAS NUMBER (if available)	A. TESTING REQUIRED	B. BELIEVED PRESENT	C. BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM AV VALUE	/RG.	B. NO OF ANALYSES
				CONCENTRATION		CONCENTRATION		CONCENTRATION					(1) CONCENTRATION	(2) MASS	
GC/MS FRACTION – BAS	E/NEUTRAL	COMPOUN	IDS												
1B. Acenaphthene (83-32-9)			V							0					
2B. Acenaphtylene (208-96-8)			V							0					
3B. Anthracene (120-12-7)										0					
4B. Benzidine (92-87-5)			V							0					
5B. Benzo (a) Anthracene (56-55-3)										0					
6B. Benzo (a) Pyrene (50-32-8)			V							0					
7B. 3,4 – Benzofluoranthene (205-99-2)			<u>_</u>							0					
8B. Benzo (ghi) Perylene (191-24-2)			1							0					
9B. Benzo (k) Fluoranthene (207-08-9)										0					
10B. Bis (2-Chloroethoxy) Methane (111-91-1)										0					
11B. Bis (2-Chloroethyl) Ether (111-44-4)		Г	V							0					
12B. Bis (2- Chloroisopropyl) Ether (39638-32-9)										0					
13B. Bis (2-Ethylhexyl) Phthalate (117-81-7)			_							0					
14B. 4-Bromophenyl Phenyl Ether (101-55-3)			1							0					
15B. Butyl Benzyl Phthalate (85-68-7)			V							0					
16B. 2- Chloronaphthalene (91-58-7)										0					
17B. 4-Chlorophenyl Phenyl Ether (7005-72-3)			V							0					
18B. Chrysene (218-01-9)			V							0					
19B. Dibenzo (a.h) Anthracene (53-70-3)			V							0					
20B. 1,2 – Dichlorobenzene (95-50-1)										0					
21B. 1,3 – Dichlorobenzene (541-73-1)										0					

MO 780-1516 (02-12)

CONTINUE ON PAGE 6

				MO-0109	878		006								
L. L		2. MARK "X"				3.	EFFLUENT	-		•					
1. POLLUTANT		в.	C.	A. MAXIMUM DAIL	Y VALUE	B. MAXIMUM 30 D (if availabl		C. LONG TERN VALUE (if availab			4. U	NITS	5. INT	AKE (option	al)
AND CAS NUMBER (if available)	A. TESTING REQUIRED	BELIEVED	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM A VALUE		B. NO OF ANALYSES
				00.02									(1) CONCENTRATION	(2) MASS	
GC/MS FRACTION - BASE	E/NEUTRAL	COMPOUN	IDS (continu	ied)											
22B. 1, 4- Dichlorobenzene (106-46-7)			7							0					
23B. 3, 3'- Dichlorobenzidine (91-94-1)										0					
24B. Diethyl Phthalate (84-66-2)										0					
25B. Dimethyl Phthalate (131-11-3)			V							0					
26B. Di-N-butyl Phthalate (84-74-2)			V							0					
27B. 2,4-Dinitrotoluene (121-14-2)			V							0					
28B. 2,6-Dinitrotoluene (606-20-2)			V							0					
29B. Di-N-Octyphthalate (117-84-0)			V							0					
30B. 1,2- Diphenylhydrazine (as Azobenzene) (122-66- 7)			V							0					
31B. Fluoranthene (206-44-0)			_							0					
32B. Fluorene (86-73-7)			_							0					
33B. Hexachlorobenzene (87-68-3)										0					
34B. Hexachlorobutadiene (87-68-3)										0					
35B. Hexachloro- cyclopentadiene (77-47-4)										0					
36B. Hexachloroethane (67-72-1)			\							0					
37B. Indeno (1,2,3-c-d) Pyrene (193-39-5)	L		_							0					
38B. Isophorone (78-59-1)			_							0					
39B. Naphthalene (91-20-3)			V							0					
40B. Nitrobenzene (98-95-3)			\checkmark							0					
41B. N-Nitro- sodimethylamine (62-75- 9)			V							0					

CONTINUED FROM T													1		
		2. MARK "X"				3. B. MAXIMUM 30 D	EFFLUENT	C. LONG TERM				NITS	5. INTA	KE (option	ual)
1. POLLUTANT AND CAS NUMBER		в.	C.	A. MAXIMUM DAI	LY VALUE	(if availab		VALUE (if availab							ŗ
(if available)	A. TES-ING REQUIRED	BELIEVED	C. BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM AV VALUE		B. NO OF ANALYSES
													(1) CONCENTRATION	(2) MASS	
GC/MS FRACTION – BAS	E/NEUTRAL	COMPOUN	NDS (continu	ıed)											
42B. N-Nitroso N-Propylamine (621-64-7)										0					
43B. N-Nitro- sodiphenylamine (86-30- 6)			∠							0					
44B. Phenanthrene (85-01-8)			<u>√</u>							0					
45B. Pyrene (129-00-0)			✓							0					
46B. 1,2,4-Tri chlorobenzene (120-82-1)										0					
GC/MS FRACTION - P	ESTICIDES	;													
1P. Aldrin (309-00-2)			<u>_</u>							0					
2P. α-BHC (319-84-6)			<u> </u>							0					
3P. β-BHC (319-84-6)			<u> </u>							0					
4P. γ-BHC (58-89-9)										0					
5P. δ-BHC (319-86-8)			<u>_</u>							0					
6P. Chlordane (57-74-9)			<u>_</u>							0					
7P. 4,4'-DDT (50-29-3)			<u>_</u>							0					
8P. 4,4'-DDE (72-55-9)										0					
9P. 4,4'-DDD (72-54-8)										0					
10P. Dieldrin (60-57-1)										0					
11P. α-Endosulfan (115-29-7)			<u>_</u>							0					
12P. β-Endosultan (115-29-7)										0					
13P. Endosulfan Sulfate (1031-07-8)			<u>_</u>							0					
14P. Endrin (72-20-8)			<u>_</u>							0					
15P. Endrin Aldehyde (7421-93-4)			<u>_</u>							0					
16P. Heptachlor (76-44-8)			<u>_</u>				PAGE			0					

CONTINUED ON PAGE 8

CONTINUED F	ROM PAGE 7	7		NPDES # (MO-010	IF ASSIGNED 9878))	OUTFALI	NUMBER							
1. POLLUTANT		2. MARK "X"		A. MAXIMUM DAII	Y VALUE	3. B. MAXIMUM 30 D (if availab	EFFLUENT AY VALUE <i>l</i> e)	C. LONG TERM VALUE (if availab			- 4. U	INITS	5. INT/	AKE (optior	nal)
AND CAS NUMBER (if available)	A. TESTING REQUIRED	B. BELIEVED PRESENT	C. BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM AV VALUE		B. NO OF ANALYSES
				CONCENTRATION		CONCENTRATION		CONCENTRATION					(1) CONCENTRATION	(2) MASS	<u> </u>
GC/MS FRACTION - PE	STICISES (col	ntinued)													
17P. Heptachlor Epoxide (1024-57-3)			_							0					
18P. PCB-1242 (53469-21-9)			_							0					
19P. PBC-1254 (11097-69-1)			_							0					
20P. PCB-1221 (11104-28-2)			_							0					
21P. PCB-1232 (11141-16-5)			_							0					
22P. PCB-1248 (12672-29-6)			7							0					
23P. PCB-1260 (11096-82-5)			_							0					
24P. PCB-1016 (12674-11-2)			_							0					
25P. Toxaphene (8001-35-2)			_							0					
J. RADIOACTIVITY															
(1) Alpha Total			_							0					
(2) Beta Total			_							0					
(3) Radium Total			7							0					
(4) Radium 226 Total			7							0					
															1
															1
MO 780-1516 (06-13)	1	1	1	l	1	PAGE	8	1	1	1	1	1	1	1	<u> </u>

APPLICATION FOR DISCHARGE PERMIT FORM D – PRIMARY INDUSTRIES

TA	BLE II
NPDES # (IF ASSIGNED)	OUTFALL NUMBER
MO-0109878	007 & 008

1.30 If you are a primary industry and this outfall contains process wastewater, refer to Table A in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-A for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenols. Mark "X" in column 2-B for each pollutant you know or have reason to believe is present. Mark "X" in column 2-C for each pollutant you believe to be absent. If you mark either columns 2-A or 2-B for any pollutant, you must provide the results of at least one analysis for that pollutant. Note that there are seven pages to this part, please review each carefully. Complete one table (*all seven pages*) for each outfall. See instructions for additional details and requirements.

	2.	MARK "X"					. EFFLUENT								
1. POLLUTANT		в.	C.	A. MAXIMUM DAIL	Y VALUE	B. MAXIMUM 30 D (if availab		C. LONG TERM A (if availal		D.	4. U	NITS		KE (option	al)
AND CAS NUMBER (if available)	A. TEST-ING REQUIRED	BELIEVE D PRESENT	BELIEVE D ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM AV VALUE		B. NO OF ANALYSES
				00102						ANALIOLO			(1) CONCENTRATION	(2) MASS	
METALS, AND TOTAL															
1M. Antimony, Total (7440- 36-9)			<u> </u>							0					
2M. Arsenic, Total (7440-38-2)		v								0					
3M. Beryllium, Total (7440- 41-7)			<u> </u>							0					
4M. Cadmium, Total (7440-43-9)			<u> </u>							0					
5M. Chromium III (16065-83-1)		V								0					
6M. Chromium VI (18540-29-9)		V								0					
7M. Copper, Total (7440-50-8)		V								0					
8M. Lead, Total (7439-92-1)										0					
9M. Magnesium Total (7439-95-4)			_							0					
10M. Mercury, Total (7439-97-6)	_									0					
11M. Molybdenum Total (7439-98-7)	_									0					
12M. Nickel, Total (7440-02-0)			_							0					
13M. Selenium, Total (7782-49-2)	_	<u> </u>								0					
14M. Silver, Total (7440-22-4)	-									0					
15M. Thallium, Total (7440- 28-0)	·		1							0					
16M. Tin Total (7440-31-5)	_		_							0					
17M. Titanium Total (7440-32-6)	_		v							0					
18M. Zinc, Total (7440-66-6) MO 780-1516 (06-13)		<u>_</u>								0					

MO 780-1516 (06-13)

PAGE 2

CONTINUED FROM PAGE 3

19M. Cyanide, Amenable to Chlorination										0					<u> </u>
20M. Phenols, Total		/								0					
DIOXIN															
2,3,7,8 – Tetra – chlorodibenzo-P-Dioxin (1764-01-6)			<u>/</u>	DESCRIBE RE	SULTS										
		2. MARK "X"				B. MAXIMUM 30 DA	. EFFLUENT AY VALUE	C. LONG TERM A	/RG. VALUE		4. U	NITS	5. INT/	KE (optioi	nal)
1. POLLUTANT AND CAS NUMBER (if available)	A. TES- ING RE- QUIRED	B. BELIEVED PRESENT	C. BELIEVED ABSENT	A. MAXIMUM DAI		(if available	e)	(if availat	ble)	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM A VALUE		B. NO OF ANALYSES
. ,	QUINED	FRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS		TRATION		(1) CONCENTRATION	(2) MASS	
GC/MS FRACTION – VOL	ATILE C	OMPOUND	DS .												
V. Acrolein			V							0					
(107-02-8) 2V. Acrylonitrile															<u> </u>
(107-13-1) 3V. Benzene			V							0					<u> </u>
(71-43-2)										0					
4V. Bis (<i>Chloromethyl</i>) Ether (542-88-1)										0					
5V. Bromoform (75-25-2)			/							0					
6V. Carbon Tetrachloride (56-23-5)			V							0					
7V. Chlorobenzene (108-90-7)										0					
8V. Chlorodibromomethane (124-48-1)			/							0					
9V. Chloroethane (75-00-3)			7							0					
10V. 2-Chloroethylvinyl Ether (110-75-8)			7							0					
11V. Chloroform (67-66-3)										0					
12V. Dichlorobromomethane (75-27-4)			V							0					
13V. Dichloro- difluoromethane (75-71-8)										0					
14V. 1,1 – Dichloroethane (75-34-3)			7							0					
15V. 1,2 – Dichloroethane (107-06-2)	_		7							0					
16V. 1,1 – Dichloroethylene (75-35-4)			<u> </u>							0					
17V. 1,3 – Dichloropropane (78-87-5)			7							0					
18V. 1,2 –Dichloropropylene (542-75-6)			_							0					
19V. Ethylbenzene (100-41-4)		7								0					
20V. Methyl Bromide (74-83-9)			7							0					
21V. Methyl Chloride (74-87-3)			/					-		0					
MO 780-1516 (06-13)							PAGE 3						iction, no s esent" box		

if required to be sampled under current MSOP.

CONTINUED FROM TH				NF		ASSIGNED) -0109878		ALL NUMBER 007 & 008							
1. POLLUTANT		2. MARK "X"	6	A. MAXIMUM DAI	LY VALUE	3. B. MAXIMUM 30 D (if availab		C. LONG TERN VALUE (if availab			4. U	INITS	5. INT	AKE (option	nal)
AND CAS NUMBER (if available)	A. TESTING RE-QUIRED	B. BELIEVED PRESENT	C. BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM A VALUE	VRG.	B. NO OF ANALYSES
					(_)	CONCENTRATION	(_)	CONCENTRATION	(-,				(1) CONCENTRATION	(2) MASS	
GC.MS FRACTION - V	OLATILE O	OMPOUN	IDS (contin	nued)											
22V. Methylene Chloride (75-09-2)										0					
23V. 1,1,2,2 – Tetra- chloroethane (79-34-5)										0					
24V. Tetrachloroethylene (127-18-4)			V							0					
25V. Toluene (108-88-3)			<u>v</u>							0					
26V. 1,2 – Trans Dichloroethylene (156-60-5)										0					
27V. 1,1,1 – Tri – chloroethane (71-55-6)										0					
28V. 1,1,2 – Tri- chloroethane (79-00-5)			V							0					
29V. Trichloro – ethylene (79-01-6)			<u>v</u>							0					
30V. Trichloro – fluoromethane (75-69-4)			V							0					
31V. Vinyl Chloride (75-01-4)			<u> </u>							0					
GC/MS FRACTION - A		OUNDS												•	
1A. 2 – Chlorophenol (95-57-8)			<u>_</u>							0					
2A. 2,4 – Dichloro – phenol (120-83-2)			_							0					
3A. 2,4 – Dimethyl – phenol (105-67-9)			_							0					
4A. 4,6 – Dinitro - O- Cresol (534-52-1)			_							0					
5A. 2,4 – Dinitro – phenol (51-28-5)			_							0					
6A. 2-Nitrophenol (88-75-5)			_							0					
7A. 4-Nitrophenol (100-02-7)			_							0					
8A. P – Chloro – M Cresol (59-50-7)			_							0					
9A. Pentachloro – phenol (87-86-5)			_							0					
10A. Phenol (108-952)			<u>_</u>							0					
11A. 2,4,6 – Trichloro- phenol (88-06-2)			<u>_</u>							0			1		
12A. 2 - methyl – 4,6 dinitrophenol (534-52-1)			7							0					
MO 780-1516 (06-13)				·	Į	PAGE	Ξ4							CONTINUE	ON PAGE 5

CONTINUED FROM T		2. MARK "X"				3.	EFFLUENT								
1. POLLUTANT AND CAS NUMBER	A. TESTING	B. BELIEVED	C. BELIEVED	A. MAXIMUM DAI	LY VALUE	B. MAXIMUM 30 D (if availabl	AY VALUE	C. LONG TERN VALUE (if availab		D. NO. OF	4. U A.	NITS B. MASS	5. INTA	KE (option	al) B. NO OF
(if available)	REQUIRED	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	CONCEN- TRATION	D. 11700	(1) CONCENTRATION	(2) MASS	ANALYSES
GC/MS FRACTION – BAS	E/NEUTRAL	COMPOUN	IDS										CONCENTRATION	MASS	
1B. Acenaphthene (83-32-9)										0					
2B. Acenaphtylene (208-96-8)										0					
3B. Anthracene (120-12-7)			/							0					
4B. Benzidine (92-87-5)			V							0					
5B. Benzo (a) Anthracene (56-55-3)			V							0					
6B. Benzo (a) Pyrene (50-32-8)			1							0					
7B. 3,4 – Benzofluoranthene (205-99-2)										0					
8B. Benzo (ghi) Perylene (191-24-2)			<u> </u>							0					
9B. Benzo (k) Fluoranthene (207-08-9)										0					
10B. Bis (2-Chloroethoxy) Methane (111-91-1)										0					
11B. Bis (2-Chloroethyl) Ether (111-44-4)		Γ	V							0					
12B. Bis (2- Chloroisopropyl) Ether (39638-32-9)			V							0					
13B. Bis (2-Ethylhexyl) Phthalate (117-81-7)			_							0					
14B. 4-Bromophenyl Phenyl Ether (101-55-3)										0					
15B. Butyl Benzyl Phthalate (85-68-7)										0					
16B. 2- Chloronaphthalene (91-58-7)			 Image: A start of the start of							0					
17B. 4-Chlorophenyl Phenyl Ether (7005-72-3)			V							0					
18B. Chrysene (218-01-9)			\checkmark							0					
19B. Dibenzo (a.h) Anthracene (53-70-3)			V							0					
20B. 1,2 – Dichlorobenzene (95-50-1)										0					
21B. 1,3 – Dichlorobenzene (541-73-1)										0					

CONTINUED FR	OM PAGE 5			NPDES # (MO-0109	IF ASSIGNED 9878))	OUTFALL 007 & 0	NUMBER 08							
		2. MARK "X"				3.	EFFLUENT								
1. POLLUTANT		В.	C.	A. MAXIMUM DAII	LY VALUE	B. MAXIMUM 30 D (if availab		C. LONG TERN VALUE (if availab			4. U	NITS		AKE (optior	ial)
AND CAS NUMBER (if available)	A. TESTING REQUIRED	BELIEVED	BELIEVED	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM A VALUE		B. NO OF ANALYSES
													(1) CONCENTRATION	(2) MASS	<u> </u>
GC/MS FRACTION – BAS	E/NEUTRAL	COMPOUN	IDS (continu	ied)											
22B. 1, 4- Dichlorobenzene (106-46-7)			V							0					
23B. 3, 3'- Dichlorobenzidine (91-94-1)			_							0					
24B. Diethyl Phthalate (84-66-2)										0					
25B. Dimethyl Phthalate (131-11-3)										0					
26B. Di-N-butyl Phthalate (84-74-2)										0					
27B. 2,4-Dinitrotoluene (121-14-2)			V							0					
28B. 2,6-Dinitrotoluene (606-20-2)										0					
29B. Di-N-Octyphthalate (117-84-0)			V							0					
30B. 1,2- Diphenylhydrazine (as Azobenzene) (122-66- 7)			V							0					
31B. Fluoranthene (206-44-0)			_							0					
32B. Fluorene (86-73-7)			1							0					
33B. Hexachlorobenzene (87-68-3)										0					
34B. Hexachlorobutadiene (87-68-3)			7							0					
35B. Hexachloro- cyclopentadiene (77-47-4)			7							0					
36B. Hexachloroethane (67-72-1)			\							0					
37B. Indeno (1,2,3-c-d) Pyrene (193-39-5)		L	_							0					
38B. Isophorone (78-59-1)										0					
39B. Naphthalene (91-20-3)			V							0					
40B. Nitrobenzene (98-95-3)										0					
41B. N-Nitro- sodimethylamine (62-75- 9)			\checkmark							0					

CONTINUED FROM T	HE FRONT			1							•		1		
		2. MARK "X"				3. B. MAXIMUM 30 D	EFFLUENT	C. LONG TERM			4. U	NITS	5. INT4	KE (optior	nal)
1. POLLUTANT		В.	C.	A. MAXIMUM DAII	LY VALUE	(if availab		VALUE (if availab							
AND CAS NUMBER (if available)	A. TES-ING REQUIRED	BELIEVED	C. BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM AV VALUE		B. NO OF ANALYSES
				CONCENTION									(1) CONCENTRATION	(2) MASS	
GC/MS FRACTION - BAS	E/NEUTRAL	COMPOUN	NDS (continu	ied)											
42B. N-Nitroso N-Propylamine (621-64-7)										0					
43B. N-Nitro- sodiphenylamine (86-30- 6)			_							0					
44B. Phenanthrene (85-01-8)			<u> </u>							0					
45B. Pyrene (129-00-0)			<u>√</u>							0					
46B. 1,2,4-Tri chlorobenzene (120-82-1)										0					
GC/MS FRACTION - PE	ESTICIDES	;													
1P. Aldrin (309-00-2)			<u>_</u>							0					
2P. α-BHC (319-84-6)			<u> </u>							0					
3P. β-BHC (319-84-6)			_							0					
4P. γ-BHC (58-89-9)										0					
5Ρ. δ-BHC (319-86-8)			<u>_</u>							0					
6P. Chlordane (57-74-9)			<u>_</u>							0					
7P. 4,4'-DDT (50-29-3)			<u> </u>							0					
8P. 4,4'-DDE (72-55-9)			<u>_</u>							0					
9P. 4,4'-DDD (72-54-8)										0					
10P. Dieldrin (60-57-1)										0					
11P. α-Endosulfan (115-29-7)			<u>_</u>							0					
12P. β-Endosultan (115-29-7)										0					
13P. Endosulfan Sulfate (1031-07-8)										0					
14P. Endrin (72-20-8)			<u>_</u>							0					
15P. Endrin Aldehyde (7421-93-4)			<u>_</u>							0					
16P. Heptachlor (76-44-8) MO 780-1516 (06-13)			<u>_</u>				PAGE			0			CONTINUED		

PAGE 7

CONTINUED ON PAGE 8

CONTINUED FI	ROM PAGE 7	7		NPDES # (MO-010	IF ASSIGNED 9878))	OUTFALL	NUMBER							
1. POLLUTANT		2. MARK "X"		A. MAXIMUM DAI	LY VALUE	3. B. MAXIMUM 30 D (<i>if availab</i>		C. LONG TERM VALUE (if availab			4. U	INITS	5. INT <i>i</i>	AKE (option	nal)
AND CAS NUMBER (if available)	A. TESTING REQUIRED	B. BELIEVED PRESENT	C. BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES	A. CONCEN- TRATION	B. MASS	A. LONG TERM AV VALUE		B. NO OF ANALYSES
		- ((1) CONCENTRATION	(2) MASS	<u></u>
GC/MS FRACTION – PE	STICISES (COI	ntinuea)	1	[
Epoxide (1024-57-3)			_							0					
18P. PCB-1242 (53469-21-9)			1							0					
19P. PBC-1254 (11097-69-1)			_							0					
20P. PCB-1221 (11104-28-2)			7							0					
21P. PCB-1232 (11141-16-5)			7							0					
22P. PCB-1248 (12672-29-6)			_							0					
23P. PCB-1260 (11096-82-5)			_							0					
24P. PCB-1016 (12674-11-2)			7							0					
25P. Toxaphene (8001-35-2)			7							0					
J. RADIOACTIVITY															
(1) Alpha Total			7							0					
(2) Beta Total			_							0					
(3) Radium Total			_							0					
(4) Radium 226 Total			_							0					
															1
MO 780-1516 (06-13)						PAGE	8								

A. IS ANY POLLUTANT LISTED				
MEATINE TEARS USE OF	D IN ITEM 1.30 A SUBSTANCE OR A COMPO R MANUFACTURE AS AN INTERMEDIATE OF	ONENT OF A SUBSTANCE R FINAL PRODUCT OR BY	WHICH YOU DO (PRODUCT?	OR EXPECT THAT YOU WILL OVER TH
YES (LIST ALL SU	UCH POLLUTANTS BELOW)	NO (GO TO B)		
 ARE YOUR OPERATIONS S DISCHARGES OF POLLUTA 	UCH THAT YOUR RAW MATERIALS, PROCE	ESSES OR PRODUCTS CA	N REASONABLE	BE EXPECTED TO VARY SO THAT YO
YES (COMPLETE		LICELD INVO INVED INE	MAXIMUM VALUE	ES REPORTED IN ITEM 1.30?
C. IF YOU ANSWERED "YES" T				
YOU ANTICIPATE WILL BE D CONTINUE ON ADDITIONAL	DISCHARGED FROM EACH OUTFALL OVER SHEETS IF YOU NEED MORE SPACE.	THE NEXT FIVE YEARS, "	TO THE BEST OF	D LEVELS OF SUCH POLLUTANTS TH/ YOUR ABILIITY AT THIS TIME.
	CHEETO IN TOO NEED MORE SPACE.		·····	
00 CONTRACT ANALYSIS				
WERE ANY OF THE AN	ALYSES REPORTED IN 1.30 PERFORMED I	BY A CONTRACT LABORA	TORY OR CONSU	LTING FIRM?
YES (LIST THE NAI	ME, ADDRESS, AND TELEPHONE NUMBER	OF. AND ANALYZED BY	ACH SUCH LARO	
NO (GO TO SECTIO	DN 4.00)	,	CHOIN SOUTH LABO	RATORY OR FIRM BELOW)
A. NAME	B. ADDRESS	C. TELEPHONE (area	code and number)	D. POLLUTANTS ANALYZED (list)
		(ursu	code and namber)	U. PULLUIANIS ANALYZED /lice
Test America	500 Wilson Pike Circle	(615) 726	0177	
Test America	500 Wilson Pike Circle	(615) 726	-0177	2017 NPDES parameters
Test America	500 Wilson Pike Circle Suite 100, Brentwood TN	(615) 726	-0177	
	Suite 100, Brentwood TN	(615) 726	-0177	
Test America Teklab, Inc.		(615) 726		2017 NPDES parameters
	Suite 100, Brentwood TN			2017 NPDES parameters
	Suite 100, Brentwood TN 8421 Nieman Road,			2017 NPDES parameters
	Suite 100, Brentwood TN 8421 Nieman Road,			
	Suite 100, Brentwood TN 8421 Nieman Road,			2017 NPDES parameters
	Suite 100, Brentwood TN 8421 Nieman Road,			2017 NPDES parameters
Teklab, Inc.	Suite 100, Brentwood TN 8421 Nieman Road,			2017 NPDES parameters
Teklab, Inc.	Suite 100, Brentwood TN 8421 Nieman Road, Lenexa, KS 66214	(913) 541	-1998	2017 NPDES parameters 2018&2019 NPDES paramete
Teklab, Inc.	Suite 100, Brentwood TN 8421 Nieman Road, Lenexa, KS 66214	(913) 541	-1998	2017 NPDES parameters 2018&2019 NPDES paramete
Teklab, Inc. Teklab, Inc. CERTIFICATION CERTIFICATION ertify under penalty of la plication and all attachm	Suite 100, Brentwood TN 8421 Nieman Road, Lenexa, KS 66214 w that I have personally examine	(913) 541	-1998 vith the inform	2017 NPDES parameters 2018&2019 NPDES paramete
Teklab, Inc. CERTIFICATION CERTIFICATION ertify under penalty of la plication and all attachm e information, I believe th	Suite 100, Brentwood TN 8421 Nieman Road, Lenexa, KS 66214 w that I have personally examine pents and that, based on my inqu	(913) 541	-1998 vith the informals immediate	2017 NPDES parameters 2018&2019 NPDES paramete
Teklab, Inc. ⁰ CERTIFICATION ertify under penalty of la plication and all attachm e information, I believe th nalties for submitting fals	Suite 100, Brentwood TN 8421 Nieman Road, Lenexa, KS 66214 w that I have personally examine ients and that, based on my inquinat the information is true, accura se information, including the poss	(913) 541	-1998 vith the informals immediate	2017 NPDES parameters 2018&2019 NPDES paramete
Teklab, Inc. ⁰ CERTIFICATION certify under penalty of la pplication and all attachm e information, I believe the malties for submitting false	Suite 100, Brentwood TN 8421 Nieman Road, Lenexa, KS 66214 w that I have personally examine ients and that, based on my inquinat the information is true, accura se information, including the poss	(913) 541	-1998 vith the inform als immediate am aware that oprisonment.	2017 NPDES parameters 2018&2019 NPDES paramete 2018&2019 NPDES paramete 2018 2018 paramete 2018 para
Teklab, Inc. CERTIFICATION CERTIFI	Suite 100, Brentwood TN 8421 Nieman Road, Lenexa, KS 66214 w that I have personally examine thents and that, based on my inquinat the information is true, accura se information, including the pose DR PRINT)	(913) 541 (913) 541 ed and am familiar w iry of those individu ate and complete. I sibility of fine and im	vith the inform als immediate am aware that prisonment. PHONE NUMBE	2017 NPDES parameters 2018&2019 NPDES paramete
Teklab, Inc. CERTIFICATION CERTIFI	Suite 100, Brentwood TN 8421 Nieman Road, Lenexa, KS 66214 w that I have personally examine thents and that, based on my inquinat the information is true, accura se information, including the pose DR PRINT)	(913) 541 (913) 541 ed and am familiar w iry of those individu ate and complete. I sibility of fine and im	-1998 vith the informals immediate am aware that prisonment. PHONE NUMBE \mathcal{S} 16 - 2 5	2017 NPDES parameters 2018&2019 NPDES paramete
Teklab, Inc. CERTIFICATION Pertify under penalty of la plication and all attachm e information, I believe th nalties for submitting fals ME AND OFFICIAL TITLE (TYPE C	Suite 100, Brentwood TN 8421 Nieman Road, Lenexa, KS 66214 w that I have personally examine ients and that, based on my inquinat the information is true, accura se information, including the poss	(913) 541 (913) 541 ed and am familiar w iry of those individu ate and complete. I sibility of fine and im	vith the inform als immediate am aware that prisonment. PHONE NUMBE	2017 NPDES parameters 2018&2019 NPDES paramete 2018&2019 NPDES paramete 2018 2018 paramete 2018 para
Teklab, Inc. D CERTIFICATION ertify under penalty of la plication and all attachm e information, I believe th nalties for submitting fals TE AND OFFICIAL TITLE (TYPE C D $M \in QU \in IT \in Y$ S NATURE	Suite 100, Brentwood TN 8421 Nieman Road, Lenexa, KS 66214 w that I have personally examine thents and that, based on my inquinat the information is true, accura se information, including the pose DR PRINT)	(913) 541 (913) 541 ed and am familiar w iry of those individu ate and complete. I sibility of fine and im	vith the informals immediate am aware that prisonment. PHONE NUMBE \mathcal{E} 16 - 2 S DATE SIGNED	2017 NPDES parameters
Teklab, Inc. CERTIFICATION ertify under penalty of la plication and all attachm information, I believe th nalties for submitting fals E AND OFFICIAL TITLE (TYPE C	Suite 100, Brentwood TN 8421 Nieman Road, Lenexa, KS 66214 w that I have personally examine thents and that, based on my inquinat the information is true, accura se information, including the pose DR PRINT)	(913) 541 (913) 541 ed and am familiar w iry of those individu ate and complete. I sibility of fine and im	vith the informals immediate am aware that apprisonment. PHONE NUMBE \mathcal{E} 16 - 2 5	2017 NPDES parameters