Bridgeton Landfill, LLC

Monthly Data Submittals

March, 2016

Required by Section 52.E of Agreed Order, Case No. 13SL-CC01088 Effective May 13, 2013

Contents:

Commentary on Data

Attachment A Work Completed and Planned Attachment B Daily Flare Monitoring Data

B-1 Flow Data TableB-2 Flow Data Graphs

• B-3 Flare TRS / Flare Station Flow

Attachment C Gas Well Analyses Maps

Attachment D Laboratory Data

D-1 Lab Analyses Summary
 D-2 Lab Analyses Reports

Attachment E Gas Wellfield Data

• E-1 Wellfield Data Table

• E-2 Maximum Wellhead Temperature Table

Attachment F Settlement Front Map

Attachment G Summary of Odor Complaints

Attachment H Liquid Characterization Data and Discharge Log

Attachment I Low Fill Project Area

Provided Separately:

- Flare Raw Data Excel Spreadsheet
- Gas Wellfield Raw Data Excel Spreadsheet

April 20, 2016

Commentary on Data

April 20, 2016

The following observations and comments are offered during this time period:

Gas Volume

• As seen in Attachment B-1, gas collection volumetric rate in for this month averaged 2,869 SCFM, as normalized per the MDNR weekly flow and TRS sampling results.

Gas Quality

- Attachments D and E contain the monthly data related to gas quality as measured at the respective wellheads.
- Attachment E-1 details vertical wells which had oxygen levels over 5% at one or more weekly monitoring events during this reporting period. These consisted of 11 older GEW wells (<#-120) that are experiencing low flows; 17 new GEW wells (>#-120) that are experiencing restricted flows; 5 GIW wells that have low gas flow due to the cooling loops that are installed within these wells. By the end of the month, the majority of these wells still exhibited oxygen at the wellhead at or greater than 5%. All these wells are low-flow/vacuum sensitive wells with valves only slightly open. On-going tuning, maintenance and pump operation is being performed to manage the oxygen content. These wells are in the south quarry area where the flexible membrane liner cap is in place to prevent atmospheric intrusion into the waste mass.
- Attachment E-2 contains gas temperatures as measured at the wellheads. Ten (10) vertical wells (excluding GIW wells) decreased by 30°F during this reporting period. Additionally, seven (7) vertical wells (excluding GIW wells) increased by 30°F or more. Wells GEW-125, GEW-142, and GEW-143 measured gas temperatures drops greater than 30°F that were outside of historical gas temperatures. Based on a review the wellhead monitoring data, the drops in temperature are most likely due to obstructed well screens from liquid levels within the gas well. These wells have a downhole pump which will be inspected and if necessary serviced in the near future. All other wells that exhibited changes greater than 30 degrees are all within the historical gas temperature norms for these wells or within the range of temperatures of nearby vertical wells.
- A detailed review of the gas extraction wells in the neck area was conducted. Wells GEW-157 and GEW-159 exhibited wellhead temperature increases greater than 30°F. Wells GEW-157 and GEW-159 were installed in December 2015 within the south quarry area/neck area and vacuum has been increased slightly over time as part of normal GCCS operations. The wellhead temperatures at GEW-157 and GEW-159 are similar as the wellhead temperatures of nearby wells. Maximum temperatures are consistent with previous months in each of the gas extraction wells in vicinity to the neck. Carbon

monoxide (CO) results during this reporting period showed stable month-over-month based on historic levels within the Neck Area wells.

- All wells in the North Quarry during this reporting period exhibited a maximum wellhead temperature under 145°F with the exception of GEW-054. The well had a maximum well head temperature of 147°F which is consistent with historic readings. The only North Quarry wells that had detections of carbon monoxide during this reporting period was GEW-053 (65 ppm) and GEW-054 (34 ppm). Carbon monoxide (CO) results showed nondetect (ND) for all other North quarry wells.
- Review of weekly gas quality in Attachment E reveals that all of the active North Quarry gas wells continue to have low, if any, oxygen and healthy methane and carbon dioxide levels indicating normal wellfield conditions for aged waste at all locations, consistent with GCCS wellfield conditions observed in the North Quarry for some time.

Settlement

• The South Quarry exhibited monthly maximum settlement up to 1.35 feet over 30 days for this reporting period (see Attachment F); which is comparable to last month's rate. The rate of settlement directly south of the neck continues to be small and stable compared to previous months.

Bird Monitoring and Mitigation

 Bridgeton Landfill conducted bird monitoring during this reporting period in accordance with the Approved Bird Hazard Monitoring and Mitigation Plan. Logs of bird population observations were provided to the Airport on a weekly basis. No change in bird population or bird hazards were observed and no bird mitigation measures were necessary.

Low Fill Project Area

Enclosed is the requested clean fill placement figure in accordance with the June 19, 2015 letter from the Missouri Department of Natural Resources (MDNR) granting modification approval to Permit number 0118912. This modification allows for the acceptance of clean fill and use thereof as a method of re-establishing positive surface drainage and maintaining structural stability of landfill infrastructure. Condition four (4) of this approval is satisfied via the text below and the accompanying figure.

• Clean fill activities commenced in late December and have continued into early April on a region of differential settlement located in the northeastern and southeast portions of the South Quarry. The total cubic yardage of fill material used is still to be determined. The enclosed figure indicates this fill area as well as clean fill materials stockpile areas on the West Lake OU2 portion of the property and the Bridgeton Landfill North Quarry portion of the property in support of this project. Upon conclusion of the fill project the requested cubic yardage, drainage features (if applicable), and drawings showing the completed location area shall be provided with the following monthly report.

Bridgeton Landfill, LLC Monthly Summary of Work Completed and Planned

Work Completed in March 2016

Gas Collection and Control System

- Continued operation and maintenance of GCCS System and GIW wells.
- Continued header realignment project to improve condensate management and header vacuum distribution.
- Began installation of five (5) dewatering sumps in a gas interceptor trench on the southern side of the landfill. The total number of sumps to be installed may vary based on field conditions.
- Began the installation of fifteen (15) gas extraction wells.

Alternative Heat Extraction System

Continued operation and maintenance of the HES.

Leachate Management System

- Continued routine operation of previously installed and upgraded features.
- Began work on West Lift Station including the replacement of flow meters and valves

Pre-Treatment Facility

- Continued ongoing operation of facility.
- Continued to optimize operation efficiency of pre-treatment facility.
- Permeate continued to be discharged directly to MSD Bissell Point Facility or other approved disposal facilities as determined by MSD. Continued hauling of activated sludge to MSD Bissell Point Facility to reduce solids concentrations in the treatment tank system.

Other Projects

- Continued North Quarry cap enhancements.
- Continued low area fill project in South Quarry.
- Continued acceptance of clean fill.

Work Planned for April 2016

Gas Collection and Control System

- Continue operation and maintenance of GCCS system.
- Continue header realignment project to improve condensate management and header vacuum distribution.
- Continue upgrades to GCCS system as necessary.
- Complete the installation of fifteen (15) gas extraction wells.

Alternative Heat Extraction System

Continued operation and maintenance of the HES.

Leachate Management System

- Continued routine operation of previously installed and upgraded features.
- Continue work on West Lift Station including of a condensate sump

Pre-Treatment Facility

- Ongoing operation of facility.
- Continue to optimize operation efficiency of pre-treatment facility.
- Permeate continued to be discharged directly to MSD Bissell Point Facility or other approved disposal facilities as determined by MSD.

Other Projects:

- Continue acceptance of clean fill materials for future fill projects.
- Complete north quarry cap enhancement project (weather permitting).

Daily Flare Monitoring Data - Bridgeton Landfill March 2016

	A۱	erage Devic	e Flow* (scf	m)	Total Avg.
Date	Utility Flare (FL-100)	Utility Flare (FL-120)	Utility Flare (FL-140)	Aux. Utility Flare***	Flow** (scfm)
3/1/2016	0	0	2,852	24	2,876
3/2/2016	0	0	2,881		2,881
3/3/2016	0	0	2,863		2,863
3/4/2016	0	0	2,818		2,818
3/5/2016	0	0	2,826		2,826
3/6/2016	0	0	2,836		2,836
3/7/2016	0	0	2,902		2,902
3/8/2016	0	0	2,912		2,912
3/9/2016	0	0	2,999		2,999
3/10/2016	0	0	2,954		2,954
3/11/2016	0	0	2,987		2,987
3/12/2016	0	0	2,962		2,962
3/13/2016	0	0	2,932		2,932
3/14/2016	0	0	2,961	102	3,063
3/15/2016	0	427	2,602		3,028
3/16/2016	0	1,646	1,281		2,927
3/17/2016	0	1,587	1,325		2,912
3/18/2016	0	1,621	1,125	160	2,906
3/19/2016	0	1,654	996	252	2,902
3/20/2016	0	1,525	1,095	251	2,871
3/21/2016	0	1,648	1,031	223	2,902
3/22/2016	0	1,161	1,354	237	2,751
3/23/2016	0	1,227	1,198	283	2,709
3/24/2016	0	1,307	1,125	275	2,707
3/25/2016	0	1,233	1,236	281	2,750
3/26/2016	0	1,219	1,231	285	2,735
3/27/2016	0	1,212	1,221	284	2,717
3/28/2016	0	940	1,568	269	2,777
3/29/2016	0	1,255	1,370	243	2,868
3/30/2016	0	1,398	1,186	271	2,855
3/31/2016	0	1,446	1,195	171	2,811
				Average	2,869

^{*} Flows normalized to **Blower Outlet Flowmeter - EPA Method 2 measurement verified *** On 3/18/2016, the Bridgeton Landfill began separating the North Quarry gas to the Auxiliary Flare.

Aug 2015 Sep 2015 Oct 2015 Nov 2015 Dec 2015 Jan 2016

─× N2

----- Gas Inlet Temp (°F)

Feb 2016 Mar 2016 Apr 2016 *BRIDGETON*

LANDFILL

Jul 2015

____CO2

—— CH4

0.0

Mar 2015 Apr 2015 May 2015 Jun 2015

^{*}Gas data collected from Laboratory Reports. Temperature data collected from field readings.

Inlet Carbon Monoxide*

Total Combined Flow (scfm)*

LANDFILL

Candlestick Flare (FL-100) Flow (scfm)*

Candlestick Flare (FL-120) Flow (scfm)*

Candlestick Flare (FL-140) Flow (scfm)*

Auxillary Candlestick Flare Flow (scfm)*

LANDFILL

Combined Inlet Methane (Field Data)*

Combined Inlet Oxygen (Field Data)*

BRIDGETON LANDFILL, LLC

FIGURE 1 - FLARE COMPOUND PROCESS FLOW DIAGRAM

Weaver Consultants Group

. JULECIS\12U\131 Bridgeton\Bridgeton Air Compliance 2U15\1KS Assistance\Hgure 1 - How Diagram - KEV.dwg jdthoenen;Way

COPYRIGHT © 2015 WEAVER CONSULTANTS GROUP. ALL RIGHTS RESERVED.

TABLE 1
Summary of Key LFG Tested Parameters
Flare Compound: *Blower Outlet*

Bridgeton Landfill, LLC. March 2, 2016 to April 12, 2016

SAMPLE	DATE	VELOCITY	FLOW	TRS
EVENT#	DATE	ft/sec	dscfm	ppm _{vd}
58-15 ¹	4/12/2016	31.32	2394	1700
28-12	4/12/2010	31.32	2354	1300
57-14	4/7/2016 31.20 25.		2527	1000
57-14	4/7/2016	31.20	2327	980
56-13	2/20/2016	22.62	2643	920
30-13	3/29/2016 32.63		2043	970
55-12 ¹	3/23/2016	29.54	2380	1600
55-12	3/23/2010	29.54	2360	1300
54-11	3/15/2016	36.80	2981	1200
34-11	3/13/2010	30.60	2301	1400
				1200
53-10 ¹	3/8/2016	37.31	3017	1200
				1100
52-09	3/2/2016	37.79	3061	VOID ²
32-03	3/2/2010	37.73	3001	1300

Notes

¹ Indicates velocity/flow determined by EPA Method 2

² Void due to acetone cross contamination

Bridgeton Landfill, LLC Weekly TRS Monthly Method 2C Event 58-15 04/12/2016

	PARAMETER	Blower Out
	SOUTH QUARRY LFG ONLY (FL120 & FL140)	
Date	Test Date	4/12/16
Start	Run Start Time Run Finish Time	14:20 15:20
	Net Traversing Points	8 (2 x 4)
Θ	Net Run Time, minutes	0:59:30
$C_{\mathbf{p}}$	Pitot Tube Coeficient	0.99
P_{Br}	Barometric Pressure, inches of Mercury	29.80
% H₂O	Moisture Content of LFG, %	3.78
% RH	Relative Humidity, %	90.20
$M_{\sf fd}$	Dry Mole Fraction	0.962
%CH₄	Methane, %	8.15
%CO ₂	Carbon Dioxide, %	37.00
%O ₂	Oxygen, %	8.10
%Balance	Assumed as Nitorgen, %	35.00
%H ₂	Hydrogen, %	10.50
%CO	Carbon Monoxide, %	0.11
M_d	Dry Molecular Weight, lb/lb-Mole	30.23
Ms	Wet Molecular weight, lb/lb-Mole	29.77
P_q	Flue Gas Static Pressure, inches of H ₂ O	19.47
P _s	Absolute Flue Gas Pressure, inches of Mercury	31.22
ts	Average Stack Gas Temperature, °F	103
ΔP_{avg}	Average Velocity Head, inches of H ₂ O	0.226
V _s	Average LFG Velocity, feet/second	31.32
A _s	Stack Crossectional Area, square feet	1.35
\mathbf{Q}_{sd}	Dry Volumetric Flow Rate, dry scfm	2,394
Q_s	Standard Volumetric Flow Rate, scfm	2,484
Q_{aw}	Actual Wet Volumetric Flue Gas Flow Rate, acfm	2,542
Q _{lb/hr}	Dry Air Flow Rate at Standard Conditions, lb/hr	11,269
NHV	Net Heating Value, Btu/scf	135
LFG _{CH4}	Methane, lb/hr	487.5
	Methane, grains/dscf	23.76
LFG _{CO2}	Carbon Dioxide, lb/hr Carbon Dioxide, grains/dscf	6,072.1 295.93
LFG ₀₂	Oxygen, lb/hr	966.5
LI G ₀₂	Oxygen, grains/dscf	47.10
LFG _{N2}	Balance gas as Nitrogen, lb/hr Balance gas as Nitrogen, grains/dscf	3,656.1 178.18
150	Hydrogen, lb/hr	78.9
LFG _{H4}	Hydrogen, grains/dscf	3.85
LFG _{co}	Carbon Monoxide, Ib/hr	11.0
	Carbon Monoxide, grains/dscf	0.53

		Outlet A	Outlet B
	Hydrogen Sulfide Concentration, ppmd	8.80	46.0
H ₂ S	Hydrogen Sulfide Rate, lb/hr	0.11	0.5
	Hydrogen Sulfide Rate, grains/dscf	0.005	0.02
	Carbonyl Sulfide Concentration, ppmd	0.67	0.5
cos	Carboynl Sulfide Rate, lb/hr	0.02	0.0
	Carbonyl Sulfide Rate, grains/dscf	0.001	0.00
	Methyl Mercaptan Concentration, ppmd	180.00	170.0
CH ₄ S	Methyl Mercaptan Rate, lb/hr	3.23	3.0
	Methyl Mercaptan Rate, grains/dscf	0.157	0.14
	Ethyl Mercaptan Concentration, ppmd	2.30	2.4
C ₂ H ₆ S	Ethyl Mercaptan Rate, lb/hr	0.05	0.0
	Ethyl Mercaptan Rate, grains/dscf	0.003	0.0
	Dimethyl Sulfide Concentration, ppmd	1,300.00	940.0
(CH ₃) ₂ S	Dimethyl Sulfide Rate, lb/hr	30.12	21.
	Dimethyl Sulfide Rate, grains/dscf	1.468	1.0
	Carbon Disulfide Concentration, ppmd	0.71	0.0
CS ₂	Carbon Disulfide Rate, lb/hr	0.02	0.
	Carbon Disulfide Rate, grains/dscf	0.001	0.00
	Dimethyl Disulfide Concentration, ppmd	100.00	94.0
$C_2H_6S_2$	Dimethyl Disulfide Rate, lb/hr	3.51	2.0
	Dimethyl Disulfide Rate, grains/dscf	0.171	0.13
0 E	TRS>SO2 Emission Concentration, ppmd	1,700.00	1,300.0
●E _{TRS-SO2}	TRS>SO2 Emission Rate, lb/hr TRS>SO2 Emission Rate, grains/dscf	40.61 1.979	31.0 1.5

Tuesday, April 12, 2016

LOCATION	TIME	F	LOW -SCFM		Method 2 vs.	Method 2 vs
200/111011		Method 2	FleetZoom	Kurz FM	Fleetzoom	Kurz
BLOWER OUT	14:20	2,484	2,680	2,561	-7.9%	-3.1%

Monthly Method 2C was attempted at FXA1212 (NQ Gas) but high moisture and watered-in sumps skewed results. Determination below was made using flow data from Fleetzoom instead.

Fleetzoom Total =

scfm

217

	PARAMETER	EP14 NQ	EP14 NQ-2
	EP14 NORTH QUARRY LFG ONLY		
Date	Test Date		4/1
Time	Start - Finish	15:15	1
%CH₄	Methane, %	47.00	4
%CO ₂	Carbon Dioxide, %	38.00	3
%O ₂	Oxygen, %	1.80	
%Balance	Assumed as Nitorgen, %	12.00	1
%H ₂	Hydrogen, %	3.20	
%CO	Carbon Monoxide, %	0.005	0
P_g	Flue Gas Static Pressure, inches of H ₂ O	0.32	
t _s	Blower Outlet LFG Temperature, °F	80	
\mathbf{Q}_{sd}	Dry Volumetric Flow Rate, dry scfm (assumes 5%H2O)	206	
Q_s	Fleetzoom Standard Volumetric Flow Rate, scfm	217	
NHV	Net Heating Value, Btu/scf	431.0	438.0
LEC	Methane, lb/hr	241.8	2
LFG _{CH4}	Methane, grains/dscf	137.03	13
1.50	Carbon Dioxide, lb/hr	536.2	5
LFG _{CO2}	Carbon Dioxide, grains/dscf	303.92	30
1.50	Oxygen, lb/hr	18.5	
LFG _{O2}	Oxygen, grains/dscf	10.47	
	Balance gas as Nitrogen, lb/hr	107.8	
LFG _{N2}	Balance gas as Nitrogen, grains/dscf	61.09	5
	Hydrogen, lb/hr	2.1	
LFG _{H4}	Hydrogen, grains/dscf	1.17	
	Carbon Monoxide, lb/hr	0.0	
		0.0	
LFG _{co}	· · · · · · · · · · · · · · · · · · ·	0.02	
LFG _{co}	Carbon Monoxide, grains/dscf	0.02	
LFG _{co}	· · · · · · · · · · · · · · · · · · ·	0.02 EP14 NQ	EP14 NQ-2
LFG _{co}	· · · · · · · · · · · · · · · · · · ·		EP14 NQ-2
LFG _{co}	Carbon Monoxide, grains/dscf	EP14 NQ	EP14 NQ-2
	Carbon Monoxide, grains/dscf Hydrogen Sulfide Concentration, ppmd	EP14 NQ 31.00	EP14 NQ-2
	Carbon Monoxide, grains/dscf Hydrogen Sulfide Concentration, ppmd Hydrogen Sulfide Rate, lb/hr	EP14 NQ 31.00 0.03	EP14 NQ-2
	Carbon Monoxide, grains/dscf Hydrogen Sulfide Concentration, ppmd Hydrogen Sulfide Rate, lb/hr Hydrogen Sulfide Rate, grains/dscf Carbonyl Sulfide Concentration, ppmd	EP14 NQ 31.00 0.03 0.019	EP14 NQ-2
H ₂ S	Carbon Monoxide, grains/dscf Hydrogen Sulfide Concentration, ppmd Hydrogen Sulfide Rate, lb/hr Hydrogen Sulfide Rate, grains/dscf Carbonyl Sulfide Concentration, ppmd Carboynl Sulfide Rate, lb/hr	EP14 NQ 31.00 0.03 0.019 0.63	EP14 NQ-2
H ₂ S	Carbon Monoxide, grains/dscf Hydrogen Sulfide Concentration, ppmd Hydrogen Sulfide Rate, lb/hr Hydrogen Sulfide Rate, grains/dscf Carbonyl Sulfide Concentration, ppmd Carboynl Sulfide Rate, lb/hr Carbonyl Sulfide Rate, grains/dscf	EP14 NQ 31.00 0.03 0.019 0.63 0.00	EP14 NQ-2 0
H ₂ S	Carbon Monoxide, grains/dscf Hydrogen Sulfide Concentration, ppmd Hydrogen Sulfide Rate, lb/hr Hydrogen Sulfide Rate, grains/dscf Carbonyl Sulfide Concentration, ppmd Carboynl Sulfide Rate, lb/hr Carbonyl Sulfide Rate, grains/dscf Methyl Mercaptan Concentration, ppmd	EP14 NQ 31.00 0.03 0.019 0.63 0.00 0.001	EP14 NQ-2
H₂S COS	Carbon Monoxide, grains/dscf Hydrogen Sulfide Concentration, ppmd Hydrogen Sulfide Rate, lb/hr Hydrogen Sulfide Rate, grains/dscf Carbonyl Sulfide Concentration, ppmd Carboynl Sulfide Rate, lb/hr Carbonyl Sulfide Rate, grains/dscf Methyl Mercaptan Concentration, ppmd Methyl Mercaptan Rate, lb/hr	EP14 NQ 31.00 0.03 0.019 0.63 0.00 0.001 7.50	EP14 NQ-2 0
H₂S COS	Carbon Monoxide, grains/dscf Hydrogen Sulfide Concentration, ppmd Hydrogen Sulfide Rate, lb/hr Hydrogen Sulfide Rate, grains/dscf Carbonyl Sulfide Concentration, ppmd Carboynl Sulfide Rate, lb/hr Carbonyl Sulfide Rate, grains/dscf Methyl Mercaptan Concentration, ppmd Methyl Mercaptan Rate, lb/hr Methyl Mercaptan Rate, grains/dscf	31.00 0.03 0.019 0.63 0.00 0.001 7.50	EP14 NQ-2 0 0
H₂S COS CH₄S	Carbon Monoxide, grains/dscf Hydrogen Sulfide Concentration, ppmd Hydrogen Sulfide Rate, lb/hr Hydrogen Sulfide Rate, grains/dscf Carbonyl Sulfide Concentration, ppmd Carboynl Sulfide Rate, lb/hr Carbonyl Sulfide Rate, grains/dscf Methyl Mercaptan Concentration, ppmd Methyl Mercaptan Rate, lb/hr Methyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Concentration, ppmd	EP14 NQ 31.00 0.03 0.019 0.63 0.00 0.001 7.50 0.01 0.007	EP14 NQ-2 0 0
H₂S COS	Carbon Monoxide, grains/dscf Hydrogen Sulfide Concentration, ppmd Hydrogen Sulfide Rate, lb/hr Hydrogen Sulfide Rate, grains/dscf Carbonyl Sulfide Concentration, ppmd Carboynl Sulfide Rate, lb/hr Carbonyl Sulfide Rate, grains/dscf Methyl Mercaptan Concentration, ppmd Methyl Mercaptan Rate, lb/hr Methyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Concentration, ppmd Ethyl Mercaptan Rate, lb/hr	EP14 NQ 31.00 0.03 0.019 0.63 0.00 0.001 7.50 0.01 0.007	EP14 NQ-2 0 0
H₂S COS CH₄S	Carbon Monoxide, grains/dscf Hydrogen Sulfide Concentration, ppmd Hydrogen Sulfide Rate, lb/hr Hydrogen Sulfide Rate, grains/dscf Carbonyl Sulfide Concentration, ppmd Carboynl Sulfide Rate, lb/hr Carbonyl Sulfide Rate, grains/dscf Methyl Mercaptan Concentration, ppmd Methyl Mercaptan Rate, lb/hr Methyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Concentration, ppmd Ethyl Mercaptan Rate, grains/dscf	EP14 NQ 31.00 0.03 0.019 0.63 0.00 0.001 7.50 0.01 0.007 0.63 0.00	EP14 NQ-2 0 0 0
H₂S COS CH₄S C₂H ₆ S	Carbon Monoxide, grains/dscf Hydrogen Sulfide Concentration, ppmd Hydrogen Sulfide Rate, lb/hr Hydrogen Sulfide Rate, grains/dscf Carbonyl Sulfide Concentration, ppmd Carboynl Sulfide Rate, lb/hr Carbonyl Sulfide Rate, grains/dscf Methyl Mercaptan Concentration, ppmd Methyl Mercaptan Rate, lb/hr Methyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Concentration, ppmd Ethyl Mercaptan Rate, grains/dscf Dimethyl Sulfide Concentration, ppmd	EP14 NQ 31.00 0.03 0.019 0.63 0.00 0.001 7.50 0.01 0.007 0.63 0.00 0.001 110.00	EP14 NQ-2 0 0 0 11
H₂S COS CH₄S	Carbon Monoxide, grains/dscf Hydrogen Sulfide Concentration, ppmd Hydrogen Sulfide Rate, lb/hr Hydrogen Sulfide Rate, grains/dscf Carbonyl Sulfide Concentration, ppmd Carboynl Sulfide Rate, lb/hr Carbonyl Sulfide Rate, grains/dscf Methyl Mercaptan Concentration, ppmd Methyl Mercaptan Rate, lb/hr Methyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Concentration, ppmd Ethyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Rate, grains/dscf Dimethyl Sulfide Concentration, ppmd Dimethyl Sulfide Rate, lb/hr	## SEP14 NQ 31.00 0.03 0.019 0.63 0.00 0.001 7.50 0.01 0.007 0.63 0.00 0.001 110.00 0.22	60 0 0 0 0
H₂S COS CH₄S C₂H ₆ S	Carbon Monoxide, grains/dscf Hydrogen Sulfide Concentration, ppmd Hydrogen Sulfide Rate, lb/hr Hydrogen Sulfide Rate, grains/dscf Carbonyl Sulfide Rate, grains/dscf Carbonyl Sulfide Rate, lb/hr Carbonyl Sulfide Rate, grains/dscf Methyl Mercaptan Concentration, ppmd Methyl Mercaptan Rate, lb/hr Methyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Rate, grains/dscf Dimethyl Sulfide Concentration, ppmd Dimethyl Sulfide Rate, lb/hr Dimethyl Sulfide Rate, grains/dscf	8P14 NQ 31.00 0.03 0.019 0.63 0.00 0.001 0.007 0.63 0.00 0.001 110.00 0.22 0.124	EP14 NQ-2 0 0 0 11
H ₂ S COS CH ₄ S C ₂ H ₆ S (CH ₃) ₂ S	Carbon Monoxide, grains/dscf Hydrogen Sulfide Concentration, ppmd Hydrogen Sulfide Rate, lb/hr Hydrogen Sulfide Rate, grains/dscf Carbonyl Sulfide Rate, grains/dscf Carboynl Sulfide Rate, lb/hr Carboynl Sulfide Rate, grains/dscf Methyl Mercaptan Concentration, ppmd Methyl Mercaptan Rate, lb/hr Methyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Rate, lb/hr Ethyl Mercaptan Rate, grains/dscf Dimethyl Sulfide Concentration, ppmd Dimethyl Sulfide Rate, lb/hr Dimethyl Sulfide Rate, grains/dscf Carbon Disulfide Concentration, ppmd	8P14 NQ 31.00 0.03 0.019 0.63 0.00 0.001 7.50 0.01 0.007 0.63 0.00 0.001 110.00 0.22 0.124 0.63	0 0 0 0 11
H₂S COS CH₄S C₂H ₆ S	Carbon Monoxide, grains/dscf Hydrogen Sulfide Concentration, ppmd Hydrogen Sulfide Rate, lb/hr Hydrogen Sulfide Rate, grains/dscf Carbonyl Sulfide Concentration, ppmd Carboynl Sulfide Rate, lb/hr Carbonyl Sulfide Rate, grains/dscf Methyl Mercaptan Concentration, ppmd Methyl Mercaptan Rate, lb/hr Methyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Rate, lb/hr Ethyl Mercaptan Rate, grains/dscf Dimethyl Sulfide Concentration, ppmd Dimethyl Sulfide Rate, lb/hr Dimethyl Sulfide Rate, grains/dscf Carbon Disulfide Concentration, ppmd Carbon Disulfide Rate, lb/hr	EP14 NQ 31.00 0.03 0.019 0.63 0.00 0.001 7.50 0.01 0.007 0.63 0.00 0.001 110.00 0.22 0.124 0.63 0.00	EP14 NQ-2 0 0 0 11
H ₂ S COS CH ₄ S C ₂ H ₆ S (CH ₃) ₂ S	Carbon Monoxide, grains/dscf Hydrogen Sulfide Concentration, ppmd Hydrogen Sulfide Rate, lb/hr Hydrogen Sulfide Rate, grains/dscf Carbonyl Sulfide Concentration, ppmd Carboynl Sulfide Rate, lb/hr Carbonyl Sulfide Rate, grains/dscf Methyl Mercaptan Concentration, ppmd Methyl Mercaptan Rate, lb/hr Methyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Concentration, ppmd Ethyl Mercaptan Rate, lb/hr Ethyl Mercaptan Rate, grains/dscf Dimethyl Sulfide Concentration, ppmd Dimethyl Sulfide Rate, lb/hr Dimethyl Sulfide Rate, grains/dscf Carbon Disulfide Rate, lb/hr Carbon Disulfide Rate, lb/hr Carbon Disulfide Rate, grains/dscf	8P14 NQ 31.00 0.03 0.019 0.63 0.00 0.001 0.007 0.63 0.00 0.001 110.00 0.22 0.124 0.63 0.00 0.001	60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H ₂ S COS CH ₄ S C ₂ H ₆ S (CH ₃) ₂ S CS ₂	Carbon Monoxide, grains/dscf Hydrogen Sulfide Concentration, ppmd Hydrogen Sulfide Rate, lb/hr Hydrogen Sulfide Rate, grains/dscf Carbonyl Sulfide Concentration, ppmd Carboynl Sulfide Rate, lb/hr Carbonyl Sulfide Rate, grains/dscf Methyl Mercaptan Concentration, ppmd Methyl Mercaptan Rate, lb/hr Methyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Rate, grains/dscf Dimethyl Sulfide Concentration, ppmd Dimethyl Sulfide Concentration, ppmd Dimethyl Sulfide Rate, lb/hr Dimethyl Sulfide Rate, grains/dscf Carbon Disulfide Concentration, ppmd Carbon Disulfide Rate, grains/dscf Dimethyl Disulfide Rate, grains/dscf	EP14 NQ 31.00 0.03 0.019 0.63 0.00 0.001 7.50 0.01 0.007 0.63 0.00 0.001 110.00 0.22 0.124 0.63 0.00 0.001 8.50	EP14 NQ-2 0 0 0 11 0 0
H ₂ S COS CH ₄ S C ₂ H ₆ S (CH ₃) ₂ S	Carbon Monoxide, grains/dscf Hydrogen Sulfide Concentration, ppmd Hydrogen Sulfide Rate, lb/hr Hydrogen Sulfide Rate, grains/dscf Carbonyl Sulfide Concentration, ppmd Carboynl Sulfide Rate, lb/hr Carbonyl Sulfide Rate, grains/dscf Methyl Mercaptan Concentration, ppmd Methyl Mercaptan Rate, lb/hr Methyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Rate, lb/hr Ethyl Mercaptan Rate, grains/dscf Dimethyl Sulfide Concentration, ppmd Dimethyl Sulfide Rate, lb/hr Dimethyl Sulfide Rate, grains/dscf Carbon Disulfide Concentration, ppmd Carbon Disulfide Rate, lb/hr Carbon Disulfide Rate, grains/dscf Dimethyl Disulfide Rate, grains/dscf	EP14 NQ 31.00 0.03 0.019 0.63 0.00 0.001 7.50 0.01 0.007 0.63 0.00 0.001 110.00 0.22 0.124 0.63 0.00 0.001 8.50 0.03	EP14 NQ-2 0 0 0 11
H ₂ S COS CH ₄ S C ₂ H ₆ S (CH ₃) ₂ S CS ₂	Carbon Monoxide, grains/dscf Hydrogen Sulfide Concentration, ppmd Hydrogen Sulfide Rate, lb/hr Hydrogen Sulfide Rate, grains/dscf Carbonyl Sulfide Concentration, ppmd Carboynl Sulfide Rate, lb/hr Carbonyl Sulfide Rate, grains/dscf Methyl Mercaptan Concentration, ppmd Methyl Mercaptan Rate, lb/hr Methyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Rate, grains/dscf Dimethyl Sulfide Concentration, ppmd Dimethyl Sulfide Concentration, ppmd Dimethyl Sulfide Rate, lb/hr Dimethyl Sulfide Rate, grains/dscf Carbon Disulfide Concentration, ppmd Carbon Disulfide Rate, grains/dscf Dimethyl Disulfide Rate, grains/dscf	EP14 NQ 31.00 0.03 0.019 0.63 0.00 0.001 7.50 0.01 0.007 0.63 0.00 0.001 110.00 0.22 0.124 0.63 0.00 0.001 8.50	EP14 NQ-2 0 0 0 11
H ₂ S COS CH ₄ S C ₂ H ₆ S (CH ₃) ₂ S CS ₂	Carbon Monoxide, grains/dscf Hydrogen Sulfide Concentration, ppmd Hydrogen Sulfide Rate, lb/hr Hydrogen Sulfide Rate, grains/dscf Carbonyl Sulfide Concentration, ppmd Carboynl Sulfide Rate, lb/hr Carbonyl Sulfide Rate, grains/dscf Methyl Mercaptan Concentration, ppmd Methyl Mercaptan Rate, lb/hr Methyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Rate, grains/dscf Dimethyl Sulfide Concentration, ppmd Dimethyl Sulfide Rate, grains/dscf Carbon Disulfide Rate, grains/dscf Carbon Disulfide Rate, grains/dscf Dimethyl Disulfide Rate, grains/dscf Dimethyl Disulfide Rate, grains/dscf Dimethyl Disulfide Rate, grains/dscf	8.50 0.03 0.019 0.63 0.00 0.001 7.50 0.01 0.007 0.63 0.00 0.001 110.00 0.22 0.124 0.63 0.00 0.001 8.50 0.03 0.015	6 EP14 NQ-2 0 0 0 0 11 0 0
H ₂ S COS CH ₄ S C ₂ H ₆ S (CH ₃) ₂ S CS ₂ C ₂ H ₆ S ₂	Carbon Monoxide, grains/dscf Hydrogen Sulfide Concentration, ppmd Hydrogen Sulfide Rate, lb/hr Hydrogen Sulfide Rate, grains/dscf Carbonyl Sulfide Concentration, ppmd Carboynl Sulfide Rate, lb/hr Carbonyl Sulfide Rate, grains/dscf Methyl Mercaptan Concentration, ppmd Methyl Mercaptan Rate, lb/hr Methyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Rate, lb/hr Ethyl Mercaptan Rate, grains/dscf Dimethyl Sulfide Concentration, ppmd Dimethyl Sulfide Rate, lb/hr Dimethyl Sulfide Rate, grains/dscf Carbon Disulfide Rate, grains/dscf Dimethyl Disulfide Rate, lb/hr Carbon Disulfide Rate, grains/dscf Dimethyl Disulfide Rate, grains/dscf Dimethyl Disulfide Rate, grains/dscf Dimethyl Disulfide Rate, grains/dscf TRS>SO2 Emission Concentration, ppmd	8 EP14 NQ 31.00 0.03 0.019 0.63 0.00 0.001 7.50 0.01 0.007 0.63 0.00 0.001 110.00 0.22 0.124 0.63 0.00 0.001 8.50 0.00 0.001	0 0 0 0 0 0 0 0 0 0
H ₂ S COS CH ₄ S C ₂ H ₆ S (CH ₃) ₂ S CS ₂	Carbon Monoxide, grains/dscf Hydrogen Sulfide Concentration, ppmd Hydrogen Sulfide Rate, lb/hr Hydrogen Sulfide Rate, grains/dscf Carbonyl Sulfide Concentration, ppmd Carboynl Sulfide Rate, lb/hr Carbonyl Sulfide Rate, grains/dscf Methyl Mercaptan Concentration, ppmd Methyl Mercaptan Rate, lb/hr Methyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Rate, grains/dscf Dimethyl Sulfide Concentration, ppmd Dimethyl Sulfide Rate, grains/dscf Carbon Disulfide Rate, grains/dscf Carbon Disulfide Rate, grains/dscf Dimethyl Disulfide Rate, grains/dscf Dimethyl Disulfide Rate, grains/dscf Dimethyl Disulfide Rate, grains/dscf	8.50 0.03 0.019 0.63 0.00 0.001 7.50 0.01 0.007 0.63 0.00 0.001 110.00 0.22 0.124 0.63 0.00 0.001 8.50 0.03 0.015	0 0 0 0 0 11 0

April 15, 2016

Republic Services

ATTN: Nick Bauer

Bridgeton, MO 63044

13570 St. Charles Rock Rd.

ADE-1461 EPA Methods TO3, TO14A, TO15 SIM & SCAN ASTM D1946

TX Cert T104704450-14-6 EPA Methods T014A, T015

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

LABORATORY TEST RESULTS

Project Reference: Bridgeton Landfill Lab Number: H041302-01/04

Enclosed are results for sample(s) received 4/13/16 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the NELAC Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Nick Bauer, Mike Lambrich, Ryan Ayer, Jim Getting, David Randall and Dustin Thoenen, Weaver Consultants Group, on 4/14/16.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely.

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

Enclosures

Note: The cover letter is an integral part of this analytical report.

	ATTECHNOLOGY			18501 F G	ale Ave., Suite 130			СН	AIN (OF C	USTO	DY RE	CORD				
AII	LECH	INOL	OGY			stry, CA 91748	TURN	IAROUN	D TIME		DE	LIVERA	BLES	PAGE:	1	OF	1
العكم	Labora	atories, Inc.			Ph: 626-964 Fx: 626-964		Standard Same Day		48 hours 72 hours					Condition	upon receip Sealed		No 🔲
Project No.:	-						24 hours	Û	96 hours			Level 3		1	Intact	Yes 🗌	No 🗌
Project Name:	Bridgeton La	andfill					Other:		5 day		100	Level 4			Chilled		deg C
Report To:	Nick Bauer							BILL	ING				А	NALYSIS	REQUES	T	
Company:	Republic Se	rvices					P.O. No.:	PO486	2452 5	5441	00						
Street:	13570 St. C	harles Rock Ro	i.				Bill to:	Republ	ic Servi	ces	DAN	Vic-					
City/State/Zip:	Bridgeton, I	MO 63044						Attn: Ni	ck Baue	er			٥ŏ				
Phone& Fax:	314-683-392	21			13570 St. Charles Rock Rd.												
e-mail:	Mbauer@republicservices.com Canister Pressures ("hg)					Bridgeton, MO 63044					+ TRS	+H2+	25C				
LAB USE	ONLY	Canis	ster Pressu	ures ("hg	Lab Receive	SAMPLE IDENTIFICATION	SAMPLE	SAMPLE	CONTAINER	MATRIX	PRESERVA- TION	EPA 15/16 +	ASTM 1946 +H2 BTU/SCF	EPA Method 25C			
Ho4130	12-01	1290	-20.35	-4.92	-6	Blower Outlet 1	4/12/2016	1523	С	LFG		х	Х	х			1 1
1	-62	5227	-18.97	-2.65	-4	Blower Outlet 2	4/12/2016	1548	С	LFG	NA	х	х	х			
	-03	6009	-20.27	-3.2	-5	EP14 NQ	4/12/2016	1515	С	LFG	NA	х	X	х	4 6 7		
1	-04	1295	-20.21	-3.76	-5	EP14 NQ-2	4/12/2016	1543	С	LFG	NA	X	Х	Х			
	- 3/									F						-	
AUTHORIZATION TO PE	RFORM WORK: Da	ve Penoyer				COMPANY: Republic Services	DATE/TIME:		сомм	ENTS	· F			1	1		
SAMPLED BY: Ryan	Ayers					COMPANY: Republic Services	DATE/TIME		*	24	hr	TA	TP	lease	i		
RELINQUISHED BY	By	Agen	>	4-12-14	1700	DATE/RECEIVED BY	DATE/TIME	11.									
RELINQUISHED BY	7.4	50° 9×	to FodFo	LIDO O	-dec ATIL	DATE/RECEIVED BY	DAJTE/TIME	40									

Client:

Republic Services

Attn:

Nick Bauer

Project Name:

Bridgeton Landfill

Project No .:

NA

Date Received:

04/13/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H0413	302-01	H041	302-02	H041	302-03	H041	302-04			
Client Sample I.D.:	Blower Outlet 1		Blower Outlet 2		EP1	4 NQ	EP14 NQ-2				
Date/Time Sampled:	4/12/10	6 15:23	4/12/16 15:48		4/12/1	6 15:15	4/12/1	6 15:43			
Date/Time Analyzed:	4/13/16 13:11		4/13/1	6 14:40	4/13/1	6 17:14	4/13/1	6 17:29			
QC Batch No.:	160413	GC8A1	160413	GC8A1	160413	GC8A1	160413	GC8A1			
Analyst Initials:	A	S.	A	S	A	S	A	S			
Dilution Factor:	3.4		3	3.0		3.0 3.2		3.2		3.2	
ANALYTE	Result	RL % v/v	Result	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v			
Hydrogen	11	3.4	10	3.0	ND	3.2	ND	3.2			
Carbon Dioxide	38	0.034	36	0.030	38	0.032	38	0.032			
Oxygen/Argon	7.7	1.7	8.5	1.5	1.8	1.6	1.7	1.6			
Nitrogen	34	3.4	36	3.0	12	3.2	11	3.2			
Methane	8.4	0.0034	7.9	0.0030	47	0.0032	47	0.0032			
Carbon Monoxide	0.11	0.0034	0.10	0.0030	0.0047	0.0032	0.0048	0.0032			
Net Heating Value (BTU/ft3)	139	3.4	130	3.0	431	3.2	438	3.2			
Gross Heating Value (BTU/ft3)	157	3.4	148	3.0	479	3.2	487	3.2			

Results normalized including non-methane hydrocarbons

BTU values based on D1946 analysis and non-methane analysis assumed as propane

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Operations Manager

The cover letter is an integral part of this analytical report

Page 2 of 6

H041302

QC Batch No.: 160413GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method	Blank	L	CS	L	CSD		
Date/Time Analyzed:	4/13/10	6 9:58	4/13/16 9:29		4/13/	16 9:43		
Analyst Initials:	A	AS		AS		AS		
Datafile:	13ap	13apr008		pr006	13a	pr007		
Dilution Factor:	Dilution Factor: 1.0			1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	114	70-130%	113	70-130%	0.7	<30
Carbon Dioxide	ND	0.010	103	70-130%	102	70-130%	1.3	<30
Oxygen/Argon	ND	0.50	100	70-130%	99	70-130%	1.2	<30
Nitrogen	ND	1.0	100	70-130%	99	70-130%	1.3	<30
Methane	ND	0.0010	97	70-130%	97	70-130%	0.3	<30
Carbon Monoxide	ND	0.0010	115	70-130%	114	70-130%	0.5	<30

ND = Not Detected (Below RL)

Reviewed/Approved By:	MARIL. 1	Date: 4/14/16
	Mark J. Johnson	
	Operations Manager	

The cover letter is an integral part of this analytical report.

Client:

Republic Services

Attn:

Nick Bauer

Project Name:

Bridgeton Landfill

Project Number:

NA

Date Received: Matrix: 4/13/2016 Vapor

TNMOC by EPA METHOD 25C

	Lab Number:	H04130	H041302-01		H041302-02		H041302-03		2-04	
Clie	eut Sample ID:	Blower Outlet 1		Blower Outlet 2		EP14 NQ		EP14 NQ-2		
Date/I	'ime Collected:	4/12/16 15:23		4/12/16 1	15:48	4/12/16	15:15	4/12/16	15:43	
Date/Time Analyzed:		4/13/16 1	3:55	4/14/16 1	2:48	4/14/16 10:36		4/14/16 11:34		
Analyst Initials:		AS		AS		AS		AS		
	QC Batch:	160413GC8A1		160414GC8A1		160414GC8A1		160414GC8A1		
D	dution Factor:	33.7		29.7		3.2		3.2		
ANALYTE	Units	Result	RL	Result	RL	Result	RL	Result	RL	
rnmoc	ррту С	121,000	337	110,000	297	6,700	32	7,300	32	
NMOC uncorr*	ppmv C	44,000	337	37,000	297	5,500	32	6,000	32	

ND = Not detected at or above reporting limit.

TNMOC = Total Non-Methane Organic Carbon.

TNMOC uncorr* = TNMOC concentration in sample without nitrogen/moisture correction.

NA = Nitrogen/moisture correction causes division by zero.

Operations Manager

The cover letter is an integral part of this analytical report.

Page 5 of 6 H041302

Client:

Republic Services

Attn:

Nick Bauer

Project Name:

Bridgeton Landfill

Project No .:

NA

Date Received:

04/13/16

Matrix:

Air

Reporting Units: ppmv

EPA 15/16

Lab No.:	H0413	02-01	H041	302-02	H0413	02-03	H041302-04		
Client Sample I.D.:	Blower (Blower Outlet 1		Outlet 2	EP14	NQ	EP14 NQ-2		
Date/Time Sampled:	4/12/16	15:23	4/12/1	5 15:48	4/12/16	15:15	4/12/16	15:43	
Date/Time Analyzed:	4/13/16	14:17	4/13/1	5 13:32	4/13/16	14:57	4/13/16	15:33	
QC Batch No.:	1604130	GC3A1	160413	GC3A1	160413	GC3A1	160413G	C3A1	
Analyst Initials:	AS	5	A	S	A	S	AS		
Dilution Factor:	3.4	1	3	.0	3.	2	3.2		
ANALYTE	Result ppmv	RL ppmv	Result ppmv	RL	Result ppmv	RL ppmv	Result ppmv	RL ppmv	
Hydrogen Sulfide	8.8	0.67	46	5.9	31 0	6.3	ND	0.63	
Carbonyl Sulfide	ND	0.67	ND	0.59	ND	0.63	ND	0.63	
Methyl Mercaptan	180 d	6.7	170	5.9	7.5	0.63	5.6	0.63	
Ethyl Mercaptan	2.3	0.67	2.4	0.59	ND	0.63	ND	0.63	
Dimethyl Sulfide	1,300 d	67.0	940	59.0	110	6.3	110 d	6.3	
Carbon Disulfide	0.71	0.67	0.65	0.59	ND	0.63	ND	0.63	
Dimethyl Disulfide	100 d	6.7	94	5.9	8.5	0.63	9.0	0.63	
Total Reduced Sulfur	1,700	0.67	1,300	0.59	170	0.63	130	0.63	

ND = Not Detected (below RL)

RL = Reporting Limit

d =Reported from a secondary dilution

Reviewed/Approved By:

Operations Manager

The cover letter is an integral part of this analytical report

Page 6 of 6 H041302

QC Batch No.:

160413GC3A1

Matrix: Units: Air ppmv

QC for Sulfur Compounds by EPA 15/16

Lab No.:	Method Blank		1	LCS	L	CSD		
Date/Time Analyzed:	4/13/16 13:20		4/13/	16 12:55	4/13/	16 13:08		
Analyst Initials:	AS			AS		AS		
Datafile:	13apr003		13:	apr001	13:	apr002		
Dilution Factor:	1.0			1.0		1.0	%RPD	
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria		Criteria
Hydrogen Sulfide	ND	0.20	88	70-130%	87	70-130%	0.8	<30
Carbonyl Sulfide	ND	0.20	96	70-130%	93	70-130%	2.6	<30
Methyl Mercaptan	ND	0.20	86	70-130%	89	70-130%	3.7	<30
Ethyl Mercaptan	ND	0.20	92	70-130%	92	70-130%	0.3	<30
Dimethyl Sulfide	ND	0.20	95	70-130%	95	70-130%	0.7	<30
Carbon Disulfide	ND	0.20	89	70-130%	91	70-130%	2.0	<30
Dimethyl Disulfide	ND	0.20	100	70-130%	96	70-130%	4.1	<30

ND = Not Detected (Below RL)

RL = Reporting Limit

Reviewed/Approved By: _		MANN. 1	Date: U/u/16
	Mark J. Johnson	00000	

The cover letter is an integral part of this analytical report.

	PARAMETER	Outlet A	Outlet B
Date	Test Date		4/7
Time	Start - Finish	14:21	14
%CH₄	Methane, %	6.70	7
%CO ₂	Carbon Dioxide, %	31.40	36
%O ₂	Oxygen, %	10.30	8
%Balance	Assumed as Nitorgen, %	41.60	35
%H ₂	Hydrogen, %	9.10	10
%CO	Carbon Monoxide, %	0.089	0.1
P_g	Flue Gas Static Pressure, inches of H ₂ O	21.31	21
t _s	Blower Outlet LFG Temperature, °F	90	
\mathbf{Q}_{sd}	Dry Volumetric Flow Rate, dry scfm (assumes 5%H2O)	2,527	
Q_s	Kurz FM, Standard Volumetric Flow Rate, scfm	2,660	
NHV	Net Heating Value, Btu/scf	105.8	125.6
	Methane, Ib/hr	423.1	47
LFG _{CH4}	Methane, grains/dscf	19.53	21
	Carbon Dioxide, lb/hr	5,440.1	6,23
LFG _{CO2}	,	251.14	287
	Carbon Dioxide, grains/dscf		1,07
LFG _{O2}	Oxygen, lb/hr	1,297.5	49
	Oxygen, grains/dscf	59.90	3,95
LFG _{N2}	Balance gas as Nitrogen, lb/hr	4,587.7	
	Balance gas as Nitrogen, grains/dscf	211.79	182
LFG _{H4}	Hydrogen, lb/hr	72.2	8
	Hydrogen, grains/dscf	3.33	3
LFG _{co}	Carbon Monoxide, lb/hr	9.8	1
	Carbon Monoxide, grains/dscf	0.43	C
H ₂ S	Hydrogen Sulfide Concentration, ppmd	22.00	0
п ₂ 3	Hydrogen Sulfide Rate, lb/hr	0.30	0
	Hydrogen Sulfide Rate, grains/dscf	0.014	0.0
000	Carbonyl Sulfide Concentration, ppmd	0.59	0
cos	Carboynl Sulfide Rate, lb/hr	0.01	0
	Carbonyl Sulfide Rate, grains/dscf	0.001	0.0
	Methyl Mercaptan Concentration, ppmd	150.00	120
CH₄S	Methyl Mercaptan Rate, lb/hr	2.84	2
	Methyl Mercaptan Rate, grains/dscf	0.131	0.
	Ethyl Mercaptan Concentration, ppmd	2.10	1
C₂H ₆ S	Ethyl Mercaptan Rate, lb/hr	0.05	C
	Ethyl Mercaptan Rate, grains/dscf	0.002	0.0
	Dimethyl Sulfide Concentration, ppmd	800.00	800
(CH ₃) ₂ S	Dimethyl Sulfide Rate, lb/hr	19.57	19
	Dimethyl Sulfide Rate, grains/dscf	0.903	0.9
	Carbon Disulfide Concentration, ppmd	0.59	C
CS ₂	Carbon Disulfide Rate, lb/hr	0.02	C
	Carbon Disulfide Rate, grains/dscf	0.001	0.0
	Dimethyl Disulfide Concentration, ppmd	29.00	28
C ₂ H ₆ S ₂	Dimethyl Disulfide Rate, lb/hr	1.08	1
	Dimethyl Disulfide Rate, grains/dscf	0.050	0.0
	TRS>SO2 Emission Concentration, ppmd	1,000.00	980
	TRS>SO2 Emission Rate, lb/hr	25.22	24
OETRS-SO2			
●E _{TRS-SO2}	TRS>SO2 Emission Rate, grains/dscf	1.164	1.

AITTECHNOLOGY			18501 E. Ga	ale Ave., Suite 130	CHAIN OF CUSTODY RECORD												
		City of Indus	TUR	ND TIME D			ELIVERABLES		PAGE:	-1	OF	1					
Laboratories, Inc. Ph: 626-964-4 Fx: 626-964-5					Standard		48 hours					Condition	upon recei	pt:			
							Same Day		72 hours			EDF			Sealed	Yes	No 🗌
Project No.:							24 hours		96 hours			Level 3		1	Intact	Yes	No 🗌
Project Name:	Bridgeton La	andfill					Other:		5 day			Level 4			Chilled	_	deg C
Report To: Nick Bauer							BILLING					ANALYSIS REQUEST					
Company:	Republic Se	rvices					P.O. No.:	PO486	2452								
Street: 13570 St. Charles Rock Rd.							Bill to: Repub								- 1		
City/State/Zip: Bridgeton , MO 63044									ick Baue				∞5		≈ F.		
Phone& Fax: 314-683-3921							13570 St. Charles Rock Rd.						8		CO & ONLY)		
e-mail: JGetting@republicservices.com					Bridgeton,					+		4 1 1 1					
												+ TRS	± F	1 1	6 +H2 + (by CH4		
Canister Pressures ("hg LAB USE ONLY Canister ID Sample Start Sample End		ures ("hg)	Lab Receive	SAMPLE IDENTIFICATION	SAMPLE DATE	SAMPLE	CONTAINER	MATRIX	PRESERVA- TION	EPA 15/16	ASTM 1946 BTU/SCF		ASTM 1946 BTU/SCF (b)				
H04080	5-01	J1721	-19.9	-3.5	-4	Outlet A	4/7/2016	1421	С	LEC		Х	X		ď m		
	-02	1539	-19.7	-3.5	-4	Outlet B				LFG	NA		1				
	-03	1616		7 7 7 1	1		4/7/2016	1431	С	LFG	NA	Х	X		-		>
	-OH		-20.2	-3.5		NQ Outlet #1	4/7/2016	1333	С	LFG	NA	Х			Х		
		J1717	-18.9	-3.5	4	NQ Outlet #2	4/7/2016	1343	С	LFG	NA	Х			Х		
THE THE P													-				
					7-3					-					-		_
																	-
AUTHORIZATION TO PE	ERFORM WORK: Da	ve Penoyer				COMPANY: Republic Services	DATE/TIME:		COMME	NTS			-				
SAMPLED BY: Ryan	Ayers					COMPANY: Republic Services	DATE/TIME										
RELINQUISHED BY	- Au	elb		4-7-16		DATE/RECEIVED BY	DATE/TIME										
RELINQUISHED BY	15-18	A A		1110	150	DATE RECEIVED BY 5 - 4 8	DATE/TIME 12	15									
RELINQUISHED BY	-101	0/				DATE/RECEIVED BY	DATE/TIME	17									
METUOD OF TE	ANCDORT (al-	ala analy 18/-11		DIDO O													

Client:

Republic Services

Attn:

Nick Bauer

Project Name:

Bridgeton Landfill

Project No .:

NA

Date Received:

04/08/16

Matrix:

Air

Reporting Units: ppmv

EPA 15/16

Lab No.:	H040805-01 Outlet A			H040805-02			H0408	05-03	H040805-04		
Client Sample I.D.:				0	utle	et B	NQ Ou	tlet #1	NQ Outlet #2		
Date/Time Sampled:	4/7/	14:21	4/7/	16 1	14:31	4/7/16	13:33	4/7/16 13:43			
Date/Time Analyzed:	4/8/	14:31	4/8/	16 1	13:55	4/8/16	15:08	4/8/16 15:33			
QC Batch No.:	160408GC3A1			1604	08G	C3A1	1604080	GC3A1	160408GC3A1		
Analyst Initials:	AS				AS		A	S	AS		
Dilution Factor:	3.0				3.0		3.0	0	3.0		
ANALYTE	Result ppmv		RL ppmv	Result ppmv		RL ppmv	Result ppmv	RL ppmv	Result ppmv	RL ppmv	
Hydrogen Sulfide	22	d	5.9	ND		0.59	ND	0.59	ND	0.59	
Carbonyl Sulfide	ND		0.59	ND		0.59	ND	0.59	ND	0.59	
Methyl Mercaptan	150	d	5.9	120	d	5.9	ND	0.59	2.5	0.59	
Ethyl Mercaptan	2.1		0.59	1.8		0.59	ND	0.59	ND	0.59	
Dimethyl Sulfide	800	d	59.0	800	d	59.0	48 d	5.9	50 d	5.9	
Carbon Disulfide	ND		0.59	ND		0.59	ND	0.59	ND	0.59	
Dimethyl Disulfide	29		0.59	28		0.59	7.3	0.59	4.7	0.59	
Total Reduced Sulfur	1,000		0.59	980		0.59	64	0.59	62	0.59	

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary dilution

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 4-12-16

QC Batch No.:

160408GC3A1

Matrix: Units:

Air

ppmv

QC for Sulfur Compounds by EPA 15/16

Lab No.:	Method I	Blank	J	LCS	L	CSD		
Date/Time Analyzed:	4/8/16 9:36		4/8/	4/8/16 9:11		4/8/16 9:23		
Analyst Initials:	AS	AS		AS		AS		
Datafile:	08apr0	03	08:	apr001	08:	apr002		
Dilution Factor:	1.0			1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen Sulfide	ND	0.20	84	70-130%	84	70-130%	0.1	<30
Carbonyl Sulfide	ND	0.20	89	70-130%	89	70-130%	0.4	<30
Methyl Mercaptan	ND	0.20	85	70-130%	85	70-130%	1.0	<30
Ethyl Mercaptan	ND	0.20	87	70-130%	84	70-130%	2.6	<30
Dimethyl Sulfide	ND	0.20	87	70-130%	87	70-130%	0.1	<30
Carbon Disulfide	ND	0.20	88	70-130%	88	70-130%	0.3	<30
Dimethyl Disulfide	ND	0.20	90	70-130%	92	70-130%	2.1	<30

ND = Not Detected (Below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

Date: 17-12-16

Republic Services

Attn:

Nick Bauer

Project Name:

Bridgeton Landfill

Project No .:

NA

Date Received:

04/08/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H0408	805-01	H040	805-02		
Client Sample I.D.:	Outlet A		Out	let B		
Date/Time Sampled:	4/7/16 14:21		4/7/16 14:31			
Date/Time Analyzed:	4/8/16 14:50		4/8/16 15:05			
QC Batch No.:	160408GC8A1		160408GC8A1			
Analyst Initials:	A	AS AS				
Dilution Factor:	3.	.0	3.0			
ANALYTE	Result % v/v	RL % v/v	Result % v/v	RL % v/v		
Hydrogen	9.1	3.0	10.8	3.0		
Carbon Dioxide	31.4	0.030	36.0	0.030		
Oxygen/Argon	10.3	1.5	8.5	1.5		
Nitrogen	41.6	3.0	35.9	3.0		
Methane	6.7	0.0030	7.5	0.0030		
Carbon Monoxide	0.089	0.0030	0.10	0.0030		
Net Heating Value (BTU/ft3)	105.8	3.0	125.6	3.0		1
Gross Heating Value (BTU/ft3)	120.4	3.0	142.9	3.0		

Results normalized including non-methane hydrocarbons

BTU values based on D1946 analysis and non-methane analysis assumed as propane

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson Operations Manager

Date 4-12-16

Republic Services

Attn:

Nick Bauer

Project Name:

Bridgeton Landfill

Project No .:

NA

Date Received:

04/08/16

Matrix:

Air

Reporting Units: % v/v

AS	IM	D1	946

Lab No.:	H040805-03		H040	805-04		
Client Sample I.D.:	NQ Outlet #1		NQ Outlet #2			
Date/Time Sampled:	4/7/16 13:33		4/7/16 13:43			
Date/Time Analyzed:	4/8/16 15:20		4/8/16	15:35		
QC Batch No.:	160408	GC8A1	160408	GC8A1		
Analyst Initials:	A	S	AS			
Dilution Factor:	3	.0	3	.0		
ANALYTE	Result	RL % v/v	Result	RL % v/v		
Hydrogen	ND	3.0	ND	3.0		
Carbon Dioxide	31.0	0.030	30.5	0.030		
Oxygen/Argon	5.2	1.5	5.3	1.5		
Nitrogen	23.9	3.0	25.6	3.0		
Methane	39.0	0.0030	37.7	0.0030		
Carbon Monoxide	0.0032	0.0030	ND	0.0030		
Net Heating Value (BTU/ft3) methane only	354.7	3.0	343.1	3.0		
Gross Heating Value (BTU/ft3) methane only	393.9	3.0	381.1	3.0		77

Results normalized including non-methane hydrocarbons

BTU values based on D1946 analysis methane only

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 17-12-16

QC Batch No.: 160408GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method	Method Blank		CS	L	CSD		
Date/Time Analyzed:	4/8/16 13:15		4/8/16 10:16		4/8/16 10:30			
Analyst Initials:	AS			AS		AS		
Datafile:	08ap	r009	08a	08apr006		08apr007		
Dilution Factor:	1.	0		1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	97	70-130%	95	70-130%	2.7	<30
Carbon Dioxide	ND	0.010	96	70-130%	92	70-130%	3.8	<30
Oxygen/Argon	ND	0.50	103	70-130%	99	70-130%	3.2	<30
Nitrogen	ND	1.0	102	70-130%	99	70-130%	3.0	<30
Methane	ND	0.0010	109	70-130%	108	70-130%	0.7	<30
Carbon Monoxide	ND	0.0010	116	70-130%	115	70-130%	0.6	<30
Carbon Monoxide	ND	0.0010	110	/0-130%	115	/0-130%	0.6	

ND = Not Detected (Below RL)

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

Date: 4-12-16

	PARAMETER	Outlet A	Outlet B
Date	Test Date		3/29
Time	Start - Finish	15:32	15
%CH₄	Methane, %	7.80	7
%CO ₂	Carbon Dioxide, %	33.80	32
%O ₂	Oxygen, %	9.60	9
%Balance	Assumed as Nitorgen, %	38.70	39
%H ₂	Hydrogen, %	9.00	Ę
%CO	Carbon Monoxide, %	0.092	0.
P_g	Flue Gas Static Pressure, inches of H ₂ O	28.54	28
t _s	Blower Outlet LFG Temperature, °F	103	
\mathbf{Q}_{sd}	Dry Volumetric Flow Rate, dry scfm (assumes 5%H2O)	2,643	
Q _s	Kurz FM, Standard Volumetric Flow Rate, scfm	2,783	
NHV	Net Heating Value, Btu/scf	117.7	116.6
	Methane, Ib/hr	515.3	48
LFG _{CH4}	Methane, grains/dscf	22.74	2
	Carbon Dioxide, Ib/hr	6,125.2	5,96
LFG _{CO2}	Carbon Dioxide, ib/iii Carbon Dioxide, grains/dscf	270.33	263
			1,29
LFG _{O2}	Oxygen, lb/hr	1,264.9	56
	Oxygen, grains/dscf	55.83	4,54
LFG _{N2}	Balance gas as Nitrogen, Ib/hr	4,464.1	200
	Balance gas as Nitrogen, grains/dscf	197.02	
LFG _{H4}	Hydrogen, Ib/hr	74.7	7
	Hydrogen, grains/dscf	3.30	
LFG _{co}	Carbon Monoxide, lb/hr Carbon Monoxide, grains/dscf	10.6 0.44	(
H₂S	Hydrogen Sulfide Concentration, ppmd Hydrogen Sulfide Rate, lb/hr	16.00 0.22	25
20	Hydrogen Sulfide Rate, lb/ni Hydrogen Sulfide Rate, grains/dscf	0.010	0.
	Carbonyl Sulfide Concentration, ppmd	0.58	(
cos	Carboynl Sulfide Rate, lb/hr	0.01	(
	Carbonyl Sulfide Rate, Ib/III Carbonyl Sulfide Rate, grains/dscf	0.001	0.
	Methyl Mercaptan Concentration, ppmd	150.00	140
CH₄S	Methyl Mercaptan Rate, lb/hr	2.97	2
- -		0.131	0.
	Methyl Mercaptan Rate, grains/dscf Ethyl Mercaptan Concentration, ppmd	1.90	2
C ₂ H ₆ S	, , , , , , , , , , , , , , , , , , , ,	0.05	(
-20-	Ethyl Mercaptan Rate, lb/hr	0.002	0.
	Ethyl Mercaptan Rate, grains/dscf	700.00	740
(CH ₃) ₂ S	Dimethyl Sulfide Concentration, ppmd	17.91	12
3.13/2	Dimethyl Sulfide Rate, lb/hr	0.790	0.
	Dimethyl Sulfide Rate, grains/dscf	0.790	0.
CS ₂	Carbon Disulfide Concentration, ppmd	0.02	(
J J 2	Carbon Disulfide Rate, lb/hr	0.02	0.
	Carbon Disulfide Rate, grains/dscf	28.00	28
C ₂ H ₆ S ₂	Dimethyl Disulfide Concentration, ppmd		
O21 16O2	Dimethyl Disulfide Rate, lb/hr	1.09	1
	Dimethyl Disulfide Rate, grains/dscf	0.048	0.
	TRS>SO2 Emission Concentration, ppmd	920.00	970
	11107002 Emission Concentration, ppmu		
0 E _{TRS 800}	TDS SSO2 Emission Boto lb/br	24 27	25
●E _{TRS-SO2}	TRS>SO2 Emission Rate, lb/hr TRS>SO2 Emission Rate, grains/dscf	24.27 1.071	25 1.

April 5, 2016

Republic Services

ATTN: Nicholas Bauer

Bridgeton, MO 63044

13570 St. Charles Rock Rd.

ADE-1461 EPA Methods TO3, TO14A, TO15 SIM & SCAN ASTM D1946

TX Cert T104704450-14-6 EPA Methods T014A, T015

UT Cert CA0133332015-3 EPA Methods T03, T014A, T015, RSK-175

LABORATORY TEST RESULTS

Project Reference: Bridgeton Landfill Lab Number: H033002-01/04

Enclosed are results for sample(s) received 3/30/16 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the NELAC Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Nicholas Bauer, Mike Lambrich, Ryan Ayer, Jim Getting and David Randall, Weaver Consultants Group, on 4/01/16.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely,

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

Enclosures

18501 E. Gale Ave., Suite 130				ala Ava Cuita 120			CH	AIN (OF C	USTO	DY RE	CORD					
Air	TECH	INOL	OGY			stry, CA 91748	TUR	NAROUN	D TIME		DE	LIVERA	BLES	PAGE:	1	OF	1
A A A A	Labor	atories, Inc.			Ph: 626-964	1.04	Standard		48 hours			EDD		Condition u	upon recei	ipt:	
				12	Fx: 626-964	~5832	Same Day		72 hours		1.3	EDF [Sealed	Yes	No 🗌
Project No.:							24 hours		96 hours			Level 3			Intact	Yes	No 🗌
Project Name:	Bridgeton L	andfill					Other:		5 day			Level 4			Chilled		deg C
Report To:	Jim Getting	Nicholas :			BILL	ING				A	NALYSIS	REQUES	ST				
Company:	Republic Se	ervices					P.O. No.:	PO486	2452 5	54410	00	46					
Street:	13570 St. C	Charles Rock Ro	d.				Bill to:	Repub	lic Servi	ces 🤊	31341	119					
City/State/Zip:	Bridgeton,	MO 63044					m Gettir			ASTM1946							
Phone& Fax:	314-683-3921						13570 St.	Charles	Rock	Rd.		∞ 🕏		. 1			
e-mail:	JGetting@	republicservic	ces.com				Bridgeton,	MO 63	044			+TRS BTC					
LAB USE	ONLY	Canister Pressures ("hg) Canister ID Sample Start Sample End Lab Receive			SAMPLE IDENTIFICATION	SAMPLE	SAMPLE	CONTAINER QTY/TYPE	MATRIX	PRESERVA- TION	EPA 15/16 + + H2 , CO, B						
Hn3300	52-01	1536	-20.2	-3.5	-3.5	Outlet A	3/29/2016	1532	С	LFG	NA	X					
1	-02	1621	-19.6	-3.5	-3	Outlet B	3/29/2016	1541	С	LFG	NA	х					
	-03	1619	-19.8	-3.5	-3	NQ Outlet #1	3/29/2016	1458	С	LFG	NA	Х					
	-04	J17189	-19.7	-3.5	-3.9	NQ Outlet #2	3/29/2016	1507	С	LFG	NA	х					- 1
										112					_		
																_=1	
																	12.0
\ *i=																	
AUTHORIZATION TO P	Ere Cram Front	ave Penoyer				COMPANY: Republic Services	DATE/TIME:		COMM		R PU	V has	ed on	CHA, H	. (8)	and oth	~ [
SAMPLED BY: Ryan	Ayers					COMPANY: Republic Services	DATE/TIME		NGI	N TILE	T IST	محمعط ف	d one	illd or	Mes- 6	and an	NB
RELINQUISHED BY	4-1	14eus		3-29-16	1600		DATE/TIME		1,00	,0,00	10.			CH4 on	3	3130	116 1423
RELINQUISHED BY	TOTAL	0		230116	Dazs	DATE RECEIVED BY	DATE/TIME	24									- 1
RELINQUISHED BY						DATE/RECEIVED BY	DATE/TIME										
METHOD OF TI	RANSPORT (ci	ircle one): Walk	-In FedEx	UPS Co	urier ATLI	Other			1								

Republic Services

Attn:

Nicholas Bauer

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/30/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H0336	002-01	H0330	002-02		
Client Sample I.D.:	Out	Outlet A		Outlet B		
Date/Time Sampled:	3/29/16 15:32		3/29/16 15:41			
Date/Time Analyzed:	3/30/16 15:11		3/30/10	6 15:26		
QC Batch No.:	160330	160330GC8A1		160330GC8A1		
Analyst Initials:	A	S	A	S		
Dilution Factor:	2	.9	2	.8		
ANALYTE	Result	RL % v/v	Result % v/v	RL % v/v		
Hydrogen	9.0	2.9	9.5	2.8		
Carbon Dioxide	33.8	0.029	32.9	0.028		
Oxygen/Argon	9.6	1.4	9.8	1.4		
Nitrogen	38.7	2.9	39.4	2.8		
Methane	7.8	0.0029	7.3	0.0028		
Carbon Monoxide	0.092	0.0029	0.089	0.0028		
Net Heating Value (BTU/ft3)	117.7	2.9	116.6	2.8		
Gross Heating Value (BTU/ft3)	133.6	2.9	132.5	2.8		

Results normalized including non-methane hydrocarbons

BTU values based on D1946 analysis and non-methane analysis assumed as propane

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Operations Manager

The cover letter is an integral part of this analytical report

Page 2 of 6

H033002

Republic Services

Attn:

Nicholas Bauer

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/30/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H0330	002-03	H0330	002-04		_
Client Sample I.D.:	NQ Outlet #1		NQ Outlet #2			
Date/Time Sampled:	3/29/16 14:58		3/29/16 15:07			
Date/Time Analyzed:	3/30/10	5 15:40	3/30/10	5 15:55		
QC Batch No.:	160330	GC8A1	160330	GC8A1		
Analyst Initials:	A	S	AS			
Dilution Factor:	2	.8	2.9			
ANALYTE	Result	RL % v/v	Result % v/v	RL % v/v		
Hydrogen	ND	2.8	ND	2.9		
Carbon Dioxide	31.8	0.028	35.3	0.029		
Oxygen/Argon	5.0	1.4	3.0	1.4		
Nitrogen	21.6	2.8	15.5	2.9		
Methane	40.5	0.0028	45.0	0.0029		
Carbon Monoxide	0.0029	0.0028	ND	0.0029		
Net Heating Value (BTU/ft3) methane only	368.4	2.8	409.5	2.9		
Gross Heating Value (BTU/ft3) methane only	409.2	2.8	454.8	2.9		

Results normalized including non-methane hydrocarbons

BTU values based on D1946 analysis methane only

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:	Moll. for	Date 4
Contract of the second	Mark Johnson	1831
	Operations Manager	

Page 3 of 6

H033002

QC Batch No.: 160330GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method	Method Blank		LCS		CSD		
Date/Time Analyzed:	3/30/16 9:28		3/30/16 8:44		3/30/16 8:58			
Analyst Initials:	AS			AS		AS		
Datafile:	30ma	r006	30n	nar003	30mar004			
Dilution Factor:	1.	0		1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	95	70-130%	96	70-130%	1.2	<30
Carbon Dioxide	ND	0.010	96	70-130%	97	70-130%	1.0	<30
Oxygen/Argon	ND	0.50	105	70-130%	105	70-130%	0.3	<30
Nitrogen	ND	1.0	103	70-130%	103	70-130%	0.1	<30
Methane	ND	0.0010	124	70-130%	123	70-130%	0.9	<30
Carbon Monoxide	ND	0.0010	112	70-130%	111	70-130%	0.4	<30

ND = Not Detected (Below RL)

Reviewed/Approved By:	MM- L	Date: 4/1/4
	Mark J. Johnson	
	Operations Manager	

Page 5 of 6 Client: Republic Services H033002

Attn:

Nicholas Bauer

Project Name:

Bridgeton Landfill

Project No .:

NA

Date Received:

03/30/16

Matrix:

Air

Reporting Units: ppmv

EPA 15/16

Lab No.:	H03	300)2-01	Н0.	3300	02-02	H033002-03			H033002-04			
Client Sample I.D.:	0	Outlet A			Outlet B			NQ Outlet #1			NQ Outlet #2		
Date/Time Sampled:	3/29	3/29/16 15:32			3/29/16 15:41			3/29/16 14:58			3/29/16 15:07		
Date/Time Analyzed:	3/31	3/31/16 9:09			3/31/16 9:56			/16	10:34	3/31	/16	11:00	
QC Batch No.:	1603.	160331GC3A1			160331GC3A1			160331GC3A1			160331GC3A1		
Analyst Initials:		AS			AS			AS			AS		
Dilution Factor:		2.9			2.8			2.8			2.9		
ANALYTE	Resul		RL ppmv	Resu ppm		RL ppmv	Resu ppm		RL ppmv	Resul	100	RL ppmv	
Hydrogen Sulfide	16	d	5.8	25	d	5.6	32	d	5.6	50	d	5.8	
Carbonyl Sulfide	ND		0.58	ND		0.56	ND		0.56	ND		0.58	
Methyl Mercaptan	150	d	5.8	140	d	5.6	5.2		0.56	5.9		0.58	
Ethyl Mercaptan	1.9		0.58	2.0		0.56	ND		0.56	ND		0.58	
Dimethyl Sulfide	700	d	58.0	740	d	56.0	50	d	5.6	58	d	5.8	
Carbon Disulfide	ND		0.58	ND		0.56	ND		0.56	ND		0.58	
Dimethyl Disulfide	28		0.58	28		0.56	4.6		0.56	5.2		0.58	
Total Reduced Sulfur	920		0.58	970		0.56	97		0.56	120		0.58	

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary dilution

Reviewed/Approved By:	M/M-1
reviewed/approved by:	Mark Johnson
	Operations Manager

QC Batch No.:

160331GC3A1

Matrix: Units: Air ppmv Page 6 of 6 H033002

QC for Sulfur Compounds by EPA 15/16

Lab No.:	Method I	Blank	1	LCS		CSD		
Date/Time Analyzed:	3/31/16	3/31/16 8:57		16 8:18	3/31/	16 8:30		
Analyst Initials:	AS			AS		AS		
Datafile:	31mar0	31mar004		nar001	31r	nar002		
Dilution Factor:	1.0			1.0		1.0	%RPD	
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria		Criteria
Hydrogen Sulfide	ND	0.20	88	70-130%	87	70-130%	0.9	<30
Carbonyl Sulfide	ND	0.20	98	70-130%	95	70-130%	2.9	<30
Methyl Mercaptan	ND	0.20	82	70-130%	82 70-130%		0.4	<30
Ethyl Mercaptan	ND	0.20	107	70-130%	105	70-130%	2.2	<30
Dimethyl Sulfide	ND	0.20	82	70-130%	82	70-130%	0.7	<30
Carbon Disulfide	ND	0.20	85	70-130%	85	70-130%	0.6	<30
Dimethyl Disulfide	ND	0.20	91	70-130%	89	70-130%	2.1	<30

ND	=	Not	Detected	(Below	RL)
W 4 1850		* 1.45 %	The property of	I was many 11	A SHOW!

RL = Reporting Limit

Reviewed/Approved By:		MM.	1	Date: 4/1/16	
	Mark J. Johnson	100			

Bridgeton Landfill, LLC Weekly TRS Method 2C Event 55-12 03/23/2016

	PARAMETER	Blower Out
	SOUTH QUARRY LFG ONLY	
Date	Test Date	3/23/16
Start	Run Start Time Run Finish Time	7:45 8:44
	Net Traversing Points	8 (2 x 4)
Θ	Net Run Time, minutes	0:59:45
$C_{\mathbf{p}}$	Pitot Tube Coeficient	0.99
P _{Br}	Barometric Pressure, inches of Mercury	29.36
% H₂O	Moisture Content of LFG, %	1.74
% RH	Relative Humidity, %	58.10
M _{fd}	Dry Mole Fraction	0.983
%CH₄	Methane, %	7.90
%CO ₂	Carbon Dioxide, %	38.00
%O ₂	Oxygen, %	8.20
%Balance	Assumed as Nitorgen, %	33.20
%H ₂	Hydrogen, %	11.70
%CO	Carbon Monoxide, %	0.12
M _d	Dry Molecular Weight, lb/lb-Mole	30.18
M _s	Wet Molecular weight, lb/lb-Mole	29.97
P _q	Flue Gas Static Pressure, inches of H ₂ O	18.90
P _s	Absolute Flue Gas Pressure, inches of Mercury	30.71
ts	Average Stack Gas Temperature, °F	77
ΔP_{avg}	Average Velocity Head, inches of H ₂ O	0.209
V _s	Average LFG Velocity, feet/second	29.54
A _s	Stack Crossectional Area, square feet	1.35
Q_{sd}	Dry Volumetric Flow Rate, dry scfm	2,380
Qs	Standard Volumetric Flow Rate, scfm	2,422
\mathbf{Q}_{aw}	Actual Wet Volumetric Flue Gas Flow Rate, acfm	2,398
Q _{lb/hr}	Dry Air Flow Rate at Standard Conditions, lb/hr	11,186
NHV	Net Heating Value, Btu/scf	127
LFG _{CH4}	Methane, lb/hr	469.9
	Methane, grains/dscf	23.03
LFG _{CO2}	Carbon Dioxide, lb/hr Carbon Dioxide, grains/dscf	6,200.8 303.92
LFG ₀₂	Oxygen, lb/hr	972.9
Li 3 ₀₂	Oxygen, grains/dscf	47.69
LFG _{N2}	Balance gas as Nitrogen, lb/hr Balance gas as Nitrogen, grains/dscf	3,448.4 169.02
150	Hydrogen, Ib/hr	87.5
LFG _{H4}	Hydrogen, grains/dscf	4.29
LFG _{co}	Carbon Monoxide, lb/hr	10.4
	Carbon Monoxide, grains/dscf	0.51

		Outlet A	Outlet B
	Hydrogen Sulfide Concentration, ppmd	18.00	3
H ₂ S	Hydrogen Sulfide Rate, lb/hr	0.23	
	Hydrogen Sulfide Rate, grains/dscf	0.011	(
	Carbonyl Sulfide Concentration, ppmd	0.63	
cos	Carboynl Sulfide Rate, lb/hr	0.01	
	Carbonyl Sulfide Rate, grains/dscf	0.001	(
	Methyl Mercaptan Concentration, ppmd	160.00	16
CH₄S	Methyl Mercaptan Rate, lb/hr	2.85	
	Methyl Mercaptan Rate, grains/dscf	0.140	(
	Ethyl Mercaptan Concentration, ppmd	2.20	
C ₂ H ₆ S	Ethyl Mercaptan Rate, lb/hr	0.05	
	Ethyl Mercaptan Rate, grains/dscf	0.002	(
	Dimethyl Sulfide Concentration, ppmd	1,200.00	1,00
(CH ₃) ₂ S	Dimethyl Sulfide Rate, lb/hr	27.65	2
	Dimethyl Sulfide Rate, grains/dscf	1.355	•
	Carbon Disulfide Concentration, ppmd	0.63	
CS ₂	Carbon Disulfide Rate, lb/hr	0.02	
	Carbon Disulfide Rate, grains/dscf	0.001	(
	Dimethyl Disulfide Concentration, ppmd	82.00	6
$C_2H_6S_2$	Dimethyl Disulfide Rate, lb/hr	2.86	
	Dimethyl Disulfide Rate, grains/dscf	0.140	(
	TRS>SO2 Emission Concentration, ppmd	1,600.00	1,30
●E _{TRS-SO2}	TRS>SO2 Emission Rate, lb/hr	38.01	3
	TRS>SO2 Emission Rate, grains/dscf	1.863	

Wednesday, March 23, 2016

LOCATION	TIME	F	LOW -SCFM	Method 2	Method 2 vs	
200/111011		Method 2	FleetZoom	Kurz FM	Fleetzoom	Kurz
BLOWER OUT	7:45	2,422	2,413	2,388	0.4%	1.4%

Bridgeton Landfill, LLC Weekly TRS Method 2C Event 55-12 03/23/2016

	PARAMETER	Blower Out
	EP14 NORTH QUARRY LFG ONLY	2.0%01 Out
Date	Test Date	3/23/16
Start	Run Start Time	9:17
	Run Finish Time Net Traversing Points	10:37 8 (2 x 4)
Θ	Net Run Time, minutes	1:20:00
C _p	Pitot Tube Coeficient	0.99
P _{Br}	Barometric Pressure, inches of Mercury	29.36
% H₂O	Moisture Content of LFG, %	1.85
% RH	Relative Humidity, %	58.10
M _{fd}	Dry Mole Fraction	0.982
%CH₄	Methane, %	46.20
%CO ₂	Carbon Dioxide, %	36.40
%O ₂	Oxygen, %	2.70
%Balance	Assumed as Nitorgen, %	14.00
%H ₂	Hydrogen, %	0.57
%CO	Carbon Monoxide, %	0.00
M _d	Dry Molecular Weight, lb/lb-Mole	28.23
M _s	Wet Molecular weight, lb/lb-Mole	28.04
P_{g}	Flue Gas Static Pressure, inches of H ₂ O	1.84
Ps	Absolute Flue Gas Pressure, inches of Mercury	29.49
t _s	Average Stack Gas Temperature, °F	77
ΔP_{avg}	Average Velocity Head, inches of H ₂ O	0.018
v _s	Average LFG Velocity, feet/second	9.12
A_s	Stack Crossectional Area, square feet	0.55
Q_{sd}	Dry Volumetric Flow Rate, dry scfm	284
Qs	Standard Volumetric Flow Rate, scfm	289
Q_{aw}	Actual Wet Volumetric Flue Gas Flow Rate, acfm	298
Q _{lb/hr}	Dry Air Flow Rate at Standard Conditions, lb/hr	1,249
NHV	Net Heating Value, Btu/scf	420
LFG _{CH4}	Methane, lb/hr Methane, grains/dscf	328.1 134.69
LFG _{CO2}	Carbon Dioxide, Ib/hr	709.2
C _{CO2}	Carbon Dioxide, grains/dscf	291.13
LFG _{O2}	Oxygen, lb/hr Oxygen, grains/dscf	38.2 15.70
LEG	Balance gas as Nitrogen, lb/hr	173.6
LFG _{N2}	Balance gas as Nitrogen, grains/dscf	71.27
LFG _{H4}	Hydrogen, Ib/hr	0.5
	Hydrogen, grains/dscf Carbon Monoxide, lb/hr	0.20
LFG _{co}	Carbon Monoxide, grains/dscf	0.02

		Outlet A	Outlet B
	Hydrogen Sulfide Concentration, ppmd	40.00	
H ₂ S	Hydrogen Sulfide Rate, lb/hr	0.06	
	Hydrogen Sulfide Rate, grains/dscf	0.025	(
	Carbonyl Sulfide Concentration, ppmd	0.59	
cos	Carboynl Sulfide Rate, lb/hr	0.00	
	Carbonyl Sulfide Rate, grains/dscf	0.001	(
	Methyl Mercaptan Concentration, ppmd	9.70	
CH₄S	Methyl Mercaptan Rate, lb/hr	0.02	
	Methyl Mercaptan Rate, grains/dscf	0.008	(
	Ethyl Mercaptan Concentration, ppmd	0.59	
C ₂ H ₆ S	Ethyl Mercaptan Rate, lb/hr	0.00	
	Ethyl Mercaptan Rate, grains/dscf	0.001	(
	Dimethyl Sulfide Concentration, ppmd	80.00	7
(CH ₃) ₂ S	Dimethyl Sulfide Rate, lb/hr	0.22	
	Dimethyl Sulfide Rate, grains/dscf	0.090	(
	Carbon Disulfide Concentration, ppmd	0.59	
CS ₂	Carbon Disulfide Rate, lb/hr	0.00	
	Carbon Disulfide Rate, grains/dscf	0.001	(
	Dimethyl Disulfide Concentration, ppmd	8.30	•
$C_2H_6S_2$	Dimethyl Disulfide Rate, lb/hr	0.03	
	Dimethyl Disulfide Rate, grains/dscf	0.014	(
	TRS>SO2 Emission Concentration, ppmd	150.00	10
●E _{TRS-SO2}	TRS>SO2 Emission Rate, lb/hr	0.43	,
	TRS>SO2 Emission Rate, grains/dscf	0.175	(

Wednesday, March 23, 2016

LOCATION	TIME	FLOW	-SCFM	Method 2 vs.
LOCATION	TIME	Method 2	FleetZoom	Fleetzoom
EP14 NQ GAS	9:17	289	294	-1.5%

March 31, 2016

Republic Services

ATTN: Jim Getting

Bridgeton, MO 63044

13570 St. Charles Rock Rd.

ADE-1461 EPA Methods TO3, TO14A, TO15 SIM & SCAN ASTM D1946

TX Cert T104704450-14-6 EPA Methods T014A, T015

UT Cert CA0133332015-3 EPA Methods T03, T014A, T015, RSK-175

LABORATORY TEST RESULTS

Project Reference: Bridgeton Landfill Lab Number: H032401-01/04

Enclosed are results for sample(s) received 3/24/16 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the NELAC Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Jim Getting, Mike Lambrich, Ryan Ayer, Nicholas Bauer and David Randall, Weaver Consultants Group, on 3/25/16.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely.

Mark Johnson Operations Manager

MJohnson@AirTechLabs.com

Enclosures

			001/		18501 F G	ale Ave., Suite 130			CH	AIN (OF C	USTO	DY RE	CORD			
Air	IECH	HNOL	OGY		City of Indus	stry, CA 91748	TUR	NAROUN	ID TIME		DE	LIVERA	ABLES	PAGE:	1	OF	1
Project No.:	Labor	atories, Inc.			Ph: 626-964 Fx: 626-964		Standard Same Day 24 hours		48 hours 72 hours 96 hours			EDD EDF Level 3		Condition		ipt: Yes Yes	No 🔲
Project Name:	Bridgeton L	andfill					Other:	-	5 day			Level 4		1	Chilled		deg C
Report To:	Jim Getting				BILI	ING					ANALYSIS REQUEST						
Company:	Republic Se	ervices					P.O. No.:	PO486	2452							1	
Street:	13570 St. C	harles Rock Ro	d.				Bill to:		lic Servi	ces					*		
City/State/Zip:	Bridgeton ,	MO 63044					Attn: Jim Getting					ంర		8 F			
Phone& Fax:	314-683-39	21		13570 St.			_			8		CO & ONLY)*					
e-mail:	JGetting@	republicservic	es.com				Bridgeton,	MO 63	044			+ TRS	+H2+		5 X X		
LAB USE	ONLY	The second of th		1	SAMPLE IDENTIFICATION	SAMPLE	SAMPLE TIME	CONTAINER	MATRIX	PRESERVA- TION	EPA 15/16 + T	ASTM 1946 +F BTU/SCF		ASTM 1946 +H2 + BTU/SCF (by CH4 (
H03240	21-0	5988	-19.26	-3.87	-5	Blower Outlet 1	3/23/2016	755	С	LFG	NA	Х	X				
1	-02	1615	-19.35	-3.61	-4	Blower Outlet 2	3/23/2016	829	С	LFG	NA	х	х				
	-03	J1720	-19.25	-3.44	-4	EP14 NQ	3/23/2016	923	С	LFG	NA	Х			х		
1	-04	1532	-19.97	-3.49	-4	EP14 NQ-2	3/23/2016	1021	С	LFG	NA	Х			х		
	- 1																
	4																
AUTHORIZATION TO PE		ave Penoyer				COMPANY: Republic Services	DATE/TIME:		COMME EP14 N			NIIA		ed on CH	4, H2, C	O, and of	ther C.
SAMPLED BY: Ryan RELINQUISHED BY RELINQUISHED BY	7 1	jus Ex	3-6	23-/6	1400	COMPANY: Republic Services DATE RECEIVED BY DATE RECEIVED BY DATE RECEIVED BY	DATE/TIME DATE/TIME DATE/TIME GATE/TIME	709	EF 14 N	Q NHV	only C	,114.	* *				
METHOD OF TE	ANSPORT (ci	rcle one): Walk	In FodEv	LIDS CO	urior ATL1	Other											

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No .:

NA

Date Received:

03/24/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H032	401-01	H032	401-02	
Client Sample I.D.:	Blower Outlet 1		Blower Outlet 2		
Date/Time Sampled:	3/23/16 7:55		3/23/16 8:29		
Date/Time Analyzed:	3/24/16 10:57		3/24/16 11:12		
QC Batch No.:			1 160324GC8A1 AS		
Analyst Initials:					
Dilution Factor:			3	.0	
ANALYTE	Result % v/v	RL % v/v	Result % v/v	RL % v/v	
Hydrogen	11.7	3.2	11.7	3.0	
Carbon Dioxide	38.2	0.032	37.8	0.030	
Oxygen/Argon	8.1	1.6	8.2	1.5	
Nitrogen	32.9	3.2	33.4	3.0	
Methane	8.0	0.0032	7.8	0.0030	
Carbon Monoxide	0.12	0.0032	0.12	0.0030	
Net Heating Value (BTU/ft3)	128	3.2	126	3.0	
Gross Heating Value (BTU/ft3)	146	3.2	144	3.0	

Results normalized including non-methane hydrocarbons

BTU values based on D1946 analysis and non-methane analysis assumed as propane

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

Date 3.25-16

Page 2 of 7 H032401

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/24/16

Matrix:

Air

Reporting Units:

% v/v

ASTM D1946

Lab No.:	H03240	1-03	H03240	01-04			
Client Sample I.D.:	EP14 NQ		EP14 N	IQ-2			
Date/Time Sampled:	3/23/16 9:23		3/23/16	10:21			
Date/Time Analyzed:	3/24/16 12:17		3/24/16 12:31				
QC Batch No.:	160324G	C8A1	160324GC8A1				
Analyst Initials:	AS		AS				
Dilution Factor:	3.0		3.0	C. C.E.S			
ANALYTE	Result % v/v	RL % v/v	Result % v/v	RL % v/v			
Hydrogen	0.59 d	0.030	0.54 d	0.030			100
Carbon Dioxide	37.0	0.030	35.7	0.030			
Oxygen/Argon	2.4	1.5	3.0	1.5			
Nitrogen	13.0	3.0	15.0	3.0			
Methane	46.8	0.0030	45.5	0.0030			
Carbon Monoxide	0.0048	0.0030	0.0039	0.0030			/
Net Heating Value (BTU/ft3) methane only	425	3.0	413	3.0		1,	
Gross Heating Value (BTU/ft3) methane only	472	3.0	459	3.0			

Results normalized including non-methane hydrocarbons

BTU values based on D1946 analysis methane only

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from secondary analysis QC batch 160325GC8A1

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 3-25-16

Page 3 of 7

H032401

3-2516

QC Batch No.: 160324GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method	Blank	I	CS	L	CSD				
Date/Time Analyzed:	3/24/16	10:37	3/24/	16 9:53	3/24/	16 10:08				
Analyst Initials:	A	AS		AS		AS .				
Datafile:	24ma	24mar010		24mar010 24mar007				nar008		
Dilution Factor:	1.	0	1-1-2	1.0		1.0				
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria		
Hydrogen	ND	1.0	109	70-130%	97	70-130%	11.6	<30		
Carbon Dioxide	ND	0.010	99	70-130%	86	70-130%	13.3	<30		
Oxygen/Argon	ND	0.50	98	70-130%	86	70-130%	13.0	<30		
Nitrogen	ND	1.0	99	70-130%	87	70-130%	12.8	<30		
Methane	ND	0.0010	96	70-130%	95	70-130%	1.4	<30		
Carbon Monoxide	ND	0.0010	114	70-130%	113	70-130%	0.5	<30		

ND = Not Detected (Below RL)

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

The cover letter is an integral part of this analytical report.

AirTECHNOLOGY Laboratories, Inc.

QC Batch #

160325GC8A1

Matrix: Units: Air

% v/v

Page 5 of 7 H032401

Date: 3-25-16

QC for Low Level Hydrogen Analysis

Lab No.:	Blank 3/25/2016 10:14 MJ 1.0		LCS		L	CSD		
Date Analyzed:			3/25/20	16 10:05	3/25/20	16 10:09		
Analyst Initials:			N	1J	N	ИJ		
Dilution Factor:			1.0		1.0			
ANALYTE	Results	RL	%Rec	Criteria	%Rec	Criteria	RPD	Criteria
Hydrogen	ND	0.010	110	70-130	111	70-130	1.5	<20

ND = Not Detected (Below RL)

RL = PQL X Dilution Factor

Reviewed/Approved By:

Mark Johnson

Operations Manager

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/24/16

Matrix:

Air

Reporting Units: ppmv

EPA 15/16

Lab No.:	H03	240	1-01	H03	3240	01-02	H032401-03			H032401-04		
Client Sample LD.:	Blowe	Blower Outlet 1		Blower Outlet 2			EI	214	NQ	EP14 NQ-2		
Date/Time Sampled:	3/23	/16	7:55	3/23/16 8:29			3/23	3/16	9:23	3/23/16	10:21	
Date/Time Analyzed:	3/25/	3/25/16 10:11			3/25/16 10:23			/16	10:35	3/25/16	10:58	
QC Batch No.:	16032	160325GC3A1		160325GC3A1			1603	25G	C3A1	1603250	GC3A1	
Analyst Initials:		MJ		MJ			- 100	MJ		M	J	
Dilution Factor:		3.2		3.0			3.0			3.0		
ANALYTE	Result		RL ppmv	Resul	757	RL ppmv	Resu	-	RL ppmv	Result ppmv	RL ppmy	
Hydrogen Sulfide	18	d	6.3	31	d	5.9	40	d	5.9	ND	0.59	
Carbonyl Sulfide	ND		0.63	ND		0.59	ND		0.59	ND	0.59	
Methyl Mercaptan	160	d	6.3	160	d	5.9	9.7		0.59	0.85	0.59	
Ethyl Mercaptan	2.2		0.63	2.6		0.59	ND		0.59	ND	0.59	
Dimethyl Sulfide	1,200	d	63	1,000	d	59	80	d	5.9	76 d	5.9	
Carbon Disulfide	ND		0.63	ND		0.59	ND	4	0.59	ND	0.59	
Dimethyl Disulfide	82	d	6.3	63	d	5.9	8.3		0.59	12	0.59	
Total Reduced Sulfur	1,600		0.63	1,300		0.59	150		0.59	100	0.59	

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary dilution

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 3-25-16

Page 6 of 7 H032401 QC Batch No .:

160325GC3A1

Matrix: Units: Air ppmv Page 7 of 7 H032401

QC for Sulfur Compounds by EPA 15/16

Lab No.:	Method I	Blank	1	LCS	L	CSD		
Date/Time Analyzed:	3/25/16	9:58	3/25	16 9:36	3/25	/16 9:47		
Analyst Initials:	mj			mj		mj		
Datafile:	25mar0	25mar003		mar001	251	nar002		
Dilution Factor:	1.0			1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen Sulfide	ND	0.20	83	70-130%	81	70-130%	2.4	<30
Carbonyl Sulfide	ND	0.20	87	70-130%	87	70-130%	0.1	<30
Methyl Mercaptan	ND	0.20	83	70-130%	81	70-130%	1.6	<30
Ethyl Mercaptan	ND	0.20	85	70-130%	84	70-130%	0.6	<30
Dimethyl Sulfide	ND	0.20	85	70-130%	85	70-130%	0.0	<30
Carbon Disulfide	ND	0.20	86	70-130%	83	70-130%	4.2	<30
Dimethyl Disulfide	ND	0.20	89	70-130%	88	70-130%	0.3	<30

ND = Not Detected (Below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark J. Johnson Operations Manager Date: 3-25-16

	PARAMETER	Outlet A	Outlet B
Date	Test Date		3/15/16
Time	Start - Finish	14:24	14:32
%CH₄	Methane, %	11.00	11.50
%CO ₂	Carbon Dioxide, %	35.50	37.30
% O ₂	Oxygen, %	8.50	7.60
%Balance	Assumed as Nitorgen, %	34.80	32.00
%H ₂	Hydrogen, %	9.00	10.10
%CO	Carbon Monoxide, %	0.092	0.098
P_{g}	Flue Gas Static Pressure, inches of H ₂ O	44.08	44.08
t _s	Blower Outlet LFG Temperature, °F	122	122
\mathbf{Q}_{sd}	Dry Volumetric Flow Rate, dry scfm (assumes 5%H2O)	2,98	1
Q_s	Kurz FM, Standard Volumetric Flow Rate, scfm	3,13	8
NHV	Net Heating Value, Btu/scf	149.4	164.4
LFG _{CH4}	Methane, lb/hr	819.6	856.8
LI OCH4	Methane, grains/dscf	32.07	33.53
LFG _{CO2}	Carbon Dioxide, lb/hr	7,255.9	7,623.8
-: • C02	Carbon Dioxide, grains/dscf	283.93	298.33
LFG ₀₂	Oxygen, lb/hr	1,263.2	1,129.4
Li 3 ₀₂	Oxygen, grains/dscf	49.43	44.20
LFG _{N2}	Balance gas as Nitrogen, lb/hr	4,527.5	4,163.2
Li O _{N2}	Balance gas as Nitrogen, grains/dscf	177.17	162.91
LFG _{H4}	Hydrogen, lb/hr	84.3	94.6
Li O _{H4}	Hydrogen, grains/dscf	3.30	3.70
LFG _{co}	Carbon Monoxide, lb/hr	12.0	12.7
-i O _{CO}	Carbon Monoxide, grains/dscf	0.44	0.47

		Outlet A	Outlet B
	Hydrogen Sulfide Concentration, ppmd	0.61	0.
H ₂ S	Hydrogen Sulfide Rate, lb/hr	0.01	0.
	Hydrogen Sulfide Rate, grains/dscf	0.000	0.0
	Carbonyl Sulfide Concentration, ppmd	0.61	0
cos	Carboynl Sulfide Rate, lb/hr	0.02	0
	Carbonyl Sulfide Rate, grains/dscf	0.001	0.0
	Methyl Mercaptan Concentration, ppmd	110.00	140
CH ₄ S	Methyl Mercaptan Rate, lb/hr	2.46	3
	Methyl Mercaptan Rate, grains/dscf	0.096	0.
	Ethyl Mercaptan Concentration, ppmd	0.84	1
C ₂ H ₆ S	Ethyl Mercaptan Rate, lb/hr	0.02	C
	Ethyl Mercaptan Rate, grains/dscf	0.001	0.0
	Dimethyl Sulfide Concentration, ppmd	900.00	990
(CH ₃) ₂ S	Dimethyl Sulfide Rate, lb/hr	25.97	28
	Dimethyl Sulfide Rate, grains/dscf	1.016	1.
	Carbon Disulfide Concentration, ppmd	0.61	0
CS ₂	Carbon Disulfide Rate, lb/hr	0.02	C
	Carbon Disulfide Rate, grains/dscf	0.001	0.0
	Dimethyl Disulfide Concentration, ppmd	120.00	120
$C_2H_6S_2$	Dimethyl Disulfide Rate, lb/hr	5.25	5
	Dimethyl Disulfide Rate, grains/dscf	0.205	0.3
	TRS>SO2 Emission Concentration, ppmd	1,200.00	1,400
●E _{TRS-SO2}	TRS>SO2 Emission Rate, lb/hr	35.70	41
	TRS>SO2 Emission Rate, grains/dscf	1.397	1.6
	TPY =	156.38	182

March 21, 2016

ADE-1461 EPA Methods TO3, TO14A, TO15 SIM & SCAN ASTM D1946

TX Cert T104704450-14-6 EPA Methods T014A, T015

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

Republic Services ATTN: Jim Getting 13570 St. Charles Rock Rd. Bridgeton, MO 63044

LABORATORY TEST RESULTS

Project Reference: Bridgeton Landfill Lab Number: H031602-01/02

Enclosed are results for sample(s) received 3/16/16 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the NELAC Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Jim Getting, Mike Lambrich, Ryan Ayer, Nicholas Bauer and David Randall, Weaver Consultants Group, on 3/18/16.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely.

Mark Johnson

Operations Manager

MJohnson@AirTechLzbs.com

Enclosures

D-7-10	0-1-0				10E01 E C	ale Ave. Suite 120			CH	AIN (OF C	USTO	DY RE	CORD			
AIT	LECH	INOL	OGY			ale Ave., Suite 130 stry, CA 91748	TURN	IAROUN				LIVERA		PAGE:	1	OF	1
سلملا	Labor	atories, Inc.		-	Ph: 626-964 Fx: 626-964	1-4032	Standard Same Day		48 hours 72 hours	=				Condition	upon receip Sealed	pt: Yes 🔲	No 🗌
Project No.:							24 hours		96 hours			Level 3			Intact	Yes	No 🗌
Project Name:	Bridgeton La	andfill					Other:		5 day			Level 4		100	Chilled		deg C
Report To:	Jim Getting							BILL	ING				А	NALYSIS	REQUES	т	
Company:	Republic Se	rvices					P.O. No.:	PO554	4106			9					
Street:	13570 St. C	harles Rock Ro	d.				Bill to:	Republ	ic Servi	ces		1194					
City/State/Zip:	Bridgeton , I	MO 63044						Attn: Jir	m Gettir	ng		ASTM1946					
Phone& Fax:	314-683-39	21					13570 St. (Charles	Rock	Rd.		& A	SCF				
e-mail:	JGetting@	republicservi	ces.com				Bridgeton,	MO 63	044			+ TRS	BTU/SCF				
LAB USE	ONLY	Cani	ster Press	ures ("hg)		SAMPLE IDENTIFICATION	SAMPLE	SAMPLE	CONTAINER	MATRIX	PRESERVA- TION	EPA 15/16 + + H2+ CO	ASTM 1946,				
		Canister ID	Sample Start	Sample End	Lab Receive	The state of the s	SA O	SA	N E	W	PRE	EPA + H2	AST				
H03160	2-01	1612	-18.7	-3.5	-4.5	Outlet A	3/15/2016	1424	С	LFG	NA	х	х				
1	-02	J1725	-18.8	-3.5	-4.5	Outlet B	3/15/2016	1432	С	LFG	NA	Х	Х		1		
			1 - 1		-												
																7	
												-					
			-														
									1		-	4					
AUTHORIZATION TO PE	RFORM WORK: Da	ve Penoyer				COMPANY: Republic Services	DATE/TIME:		COMME	NTS							
SAMPLED BY: Ryan	Ayers					COMPANY: Republic Services	DATE/TIME										
RELINQUISHED BY	1		3-15-			DATE/ RECEIVED BY	DATE/TIME										
RELINQUISHED BY	-/14	T-V	3-13-	16 /	230	DATE/RECEIVED BY	DATE/TIME	~	¢		*	T					
RELINQUISHED BY	111					DATE/RECEIVED BY	DATE/TIME	57									
METHOD OF TR	ANSPORT (cir	cle one); Wall	In FodEv	LIPS Co.	rior ATLL	Other											

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/16/16

Matrix:

Air

Reporting Units:

% v/v

ASTM D1946

Lab No.:	H0310	602-01	H031602-02				
Client Sample I.D.:	Outlet A		Out	let B			
Date/Time Sampled:	3/15/16 14:24		3/15/16 14:32				
Date/Time Analyzed:	3/16/16 11:31		3/16/16 11:46				
QC Batch No.:	160316GC8A1		160316GC8A1				
Analyst Initials:	A	AS		AS			
Dilution Factor:	3.1		3.1				
ANALYTE	Result	RL % v/v	Result % v/v	RL % v/v			
Hydrogen	9.0	3.1	10.1	3.1			
Carbon Dioxide	35.5	0.031	37.3	0.031			
Oxygen/Argon	8.5	1.5	7.6	1.5			
Nitrogen	34.8	3.1	32.0	3.1			
Methane	11.0	0.0031	11.5	0.0031			
Carbon Monoxide	0.092	0.0031	0.098	0.0031		0.0	
Net Heating Value (BTU/ft3)	149.4	3.1	164.4	3.1			
Gross Heating Value (BTU/ft3)	168.7	3.1	185.7	3.1			

Results normalized including non-methane hydrocarbons

BTU values based on D1946 analysis and non-methane analysis assumed as propane

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

1,1,1

Date 5-18-16

Page 2 of 5

H031602

3-18-16

Date:

QC Batch No.: 160316GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method	Method Blank		CS	L	CSD		
Date/Time Analyzed:	3/16/16	11:15	3/16/1	16 10:29	3/16/	16 10:44		
Analyst Initials:	A	AS		AS		AS		
Datafile:	16ma	16mar.ru 16mar.ru		16n	nar001			
Dilution Factor:	1.	0		1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	98	70-130%	98	70-130%	0.1	<30
Carbon Dioxide	ND	0.010	98	70-130%	98	70-130%	0.1	<30
Oxygen/Argon	ND	0.50	102	70-130%	102	70-130%	0.1	<30
Nitrogen	ND	1.0	102	70-130%	102	70-130%	0.1	<30
Methane	ND	0.0010	122	70-130%	122	70-130%	0.0	<30
Carbon Monoxide	ND	0.0010	119	70-130%	119	70-130%	0.2	<30

ND = Not Detected (Below RL)

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No .:

NA

Date Received:

03/16/16

Matrix:

Air

Reporting Units: ppmv

EPA 15/16

Lab No.:	H03	160	02-01	H03	3160	02-02			
Client Sample I.D.:	Ot	ıtle	t A	0	utle	t B			
Date/Time Sampled:	3/15/	3/15/16 14		3/15/16 14:32		14:32			
Date/Time Analyzed:	3/16/	3/16/16 13:59		3/16/16 14:37					
QC Batch No.:	16031	160316GC3A1		160316GC3A1				1/1	
Analyst Initials:		AS		AS				11	
Dilution Factor:		AS 3.1		3.1					
ANALYTE	Resul		RL ppmv	Resul		RL ppmv			
Hydrogen Sulfide	ND	10000	0.61	ND		0.61			
Carbonyl Sulfide	ND		0.61	ND		0.61			
Methyl Mercaptan	110	d	6.1	140	d	6.1			
Ethyl Mercaptan	0.84		0.61	1.2		0.61			
Dimethyl Sulfide	900	d	61.0	990	d	61.0			
Carbon Disulfide	ND		0.61	ND		0.61	= -1		
Dimethyl Disulfide	120	d	6.1	120	d	6.I			П
Total Reduced Sulfur	1,200		0.61	1,400		0.61			

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary dilution

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Page 4 of 5

H031602

QC Batch No.:

160316GC3A1

Matrix: Units: Air ppmv

QC for Sulfur Compounds by EPA 15/16

Lab No.:	Method Blank		LCS		L	CSD		
Date/Time Analyzed:	3/16/16 13:30		3/16/16 13:05		3/16/	16 13:18		
Analyst Initials:	AS 16mar004			AS		AS		
Datafile:			161	nar002	16r	nar003	ř.	
Dilution Factor:	1.0			1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen Sulfide	ND	0.20	89	70-130%	90	70-130%	1.1	<30
Carbonyl Sulfide	ND	0.20	109	70-130%	107	70-130%	1.4	<30
Methyl Mercaptan	ND	0.20	85	70-130%	86	70-130%	0.2	<30
Ethyl Mercaptan	ND	0.20	107	70-130%	111	70-130%	3.0	<30
Dimethyl Sulfide	ND	0.20	92	70-130%	91	70-130%	0.2	<30
Carbon Disulfide	ND	0.20	95	70-130%	94	70-130%	1.7	<30
Dimethyl Disulfide	ND	0.20	108	70-130%	107	70-130%	1.0	<30

ND = Not Detected (Below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark J. Johnson Operations Manager Date: 3-18-16

PARAMETER Blower Out Date **Test Date** 3/8/16 Run Start Time 8:04 Start 10:08 Run Finish Time Net Traversing Points 8 (2 x 4) Θ Net Run Time, minutes 2:03:41 C_p Pitot Tube Coeficient 0.99 P_{Br} Barometric Pressure, inches of Mercury 29.45 % H₂O Moisture Content of LFG, % 2.37 % RH Relative Humidity, % 61.90 M_{fd} Dry Mole Fraction 0.976 %CH₄ Methane, % 11.00 %CO₂ Carbon Dioxide, % 36.50 %O₂ 8.50 Oxygen, % %Balance Assumed as Nitorgen, % 34.00 %H₂Hydrogen, % 9.10 %CO Carbon Monoxide, % 0.10 M_{d} Dry Molecular Weight, lb/lb-Mole 30.28 $M_{\rm s}$ 29.99 Wet Molecular weight, lb/lb-Mole P_{q} Flue Gas Static Pressure, inches of H₂O 30.22 P_s Absolute Flue Gas Pressure, inches of Mercury 31.86 91 ts Average Stack Gas Temperature, °F ΔP_{avg} Average Velocity Head, inches of H₂O 0.337 Average LFG Velocity, feet/second 37.31 $\mathbf{v}_{\mathbf{s}}$ $\mathbf{A}_{\mathbf{s}}$ Stack Crossectional Area, square feet 1.35 Q_{sd} Dry Volumetric Flow Rate, dry scfm 3,017 \mathbf{Q}_{s} Standard Volumetric Flow Rate, scfm 3,089 \mathbf{Q}_{aw} Actual Wet Volumetric Flue Gas Flow Rate, acfm 3,029 $\mathbf{Q}_{\mathrm{lb/hr}}$ Dry Air Flow Rate at Standard Conditions, lb/hr 14,228 NHV Net Heating Value, Btu/scf 151 Methane, lb/hr 829.4 $\mathbf{LFG}_{\mathrm{CH4}}$ Methane, grains/dscf 32.07 Carbon Dioxide, lb/hr 7,549.6 LFG_{CO2}

Carbon Dioxide, grains/dscf

Balance gas as Nitrogen, lb/hr

Carbon Monoxide, grains/dscf

Balance gas as Nitrogen, grains/dscf

Oxygen, lb/hr

Hydrogen, lb/hr

Oxygen, grains/dscf

Hydrogen, grains/dscf

Carbon Monoxide, lb/hr

LFG₀₂

LFG_{N2}

 $\mathsf{LFG}_{\mathsf{H4}}$

LFG_{co}

Bridgeton Landfill, LLC Weekly TRS Monthly Method 2C Event 53-10 03/08/2016

		Outlet A	Outlet B	Outlet C
	Hydrogen Sulfide Concentration, ppmd	26.00	11.00	(
H ₂ S	Hydrogen Sulfide Rate, lb/hr	0.42	0.18	(
	Hydrogen Sulfide Rate, grains/dscf	0.016	0.007	0
	Carbonyl Sulfide Concentration, ppmd	0.51	0.53	
cos	Carboynl Sulfide Rate, lb/hr	0.01	0.01	
	Carbonyl Sulfide Rate, grains/dscf	0.001	0.001	0
	Methyl Mercaptan Concentration, ppmd	190.00	190.00	15
CH₄S	Methyl Mercaptan Rate, lb/hr	4.30	4.30	
	Methyl Mercaptan Rate, grains/dscf	0.166	0.166	0
	Ethyl Mercaptan Concentration, ppmd	2.30	2.30	
C ₂ H ₆ S	Ethyl Mercaptan Rate, lb/hr	0.07	0.07	
	Ethyl Mercaptan Rate, grains/dscf	0.003	0.003	0
	Dimethyl Sulfide Concentration, ppmd	960.00	910.00	86
(CH ₃) ₂ S	Dimethyl Sulfide Rate, lb/hr	28.03	26.57	2
	Dimethyl Sulfide Rate, grains/dscf	1.084	1.028	0
	Carbon Disulfide Concentration, ppmd	0.51	0.53	
CS ₂	Carbon Disulfide Rate, lb/hr	0.02	0.02	
	Carbon Disulfide Rate, grains/dscf	0.001	0.001	0
	Dimethyl Disulfide Concentration, ppmd	25.00	26.00	3
$C_2H_6S_2$	Dimethyl Disulfide Rate, lb/hr	1.11	0.93	
	Dimethyl Disulfide Rate, grains/dscf	0.043	0.036	0
		1,000,001	1 000 63	4
●E _{TRS-SO2}	TRS>SO2 Emission Concentration, ppmd TRS>SO2 Emission Rate. lb/hr	1,200.00 36.13	1,200.00 36.13	1,10
→ TRS-SO2	TRS>SO2 Emission Rate, ib/iii TRS>SO2 Emission Rate, grains/dscf	1.397	1.397	3 1

291.93 1278.3

49.43

4,476.4

173.09

86.2

3.33

12.5

0.48

Tuesday, March 08, 2016

LOCATION	TIME	F	LOW -SCFM	Method 2	Method 2	
200/111011		Method 2	FleetZoom	Kurz FM	Fleetzoom	Kurz
BLOWER OUT	8:04	3,089	3,142	2,934	-1.7%	5.0%

March 14, 2016

Republic Services

ATTN: Jim Getting

Bridgeton, MO 63044

13570 St. Charles Rock Rd.

ADE-1461 EPA Methods TO3, TO14A, TO15 SIM & SCAN ASTM D1946

TX Cert T104704450-14-6 EPA Methods T014A, T015

UT Cert CA0133332015-3 EPA Methods T03, T014A, T015, RSK-175

LABORATORY TEST RESULTS

Project Reference: Lab Number:

Bridgeton Landfill H030901-01/07

Enclosed are results for sample(s) received 3/09/16 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the NELAC Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Jim Getting, Mike Lambrich, Ryan Ayer, Nicholas Bauer and David Randall, Weaver Consultants Group, on 3/11/16.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely,

Mark Johnson Operations Manager

MJohnson@AirTechLabs.com

Enclosures

To average	1	2.2.2.2	18501 E. Gale Ave., Suite 130			ala Ava Suita 120	CHAIN O				OF C	CUSTODY RECORD						
Air	TECH	INOL	OGY			stry, CA 91748	TUR	NAROUN	D TIME	100	DE	LIVERA	BLES	PAGE:	1	OF	1	
NAA.	Labora	tories, Inc.			Ph: 626-964 Fx: 626-964		Standard		48 hours		-			Condition	upon rece	ipt:		
- I - I - I					FX: 020-904	-5632	Same Day		72 hours						Sealed	Yes	No 🗌	
Project No.:							24 hours		96 hours						Intact	Yes	No 🗌	
Project Name:	Bridgeton La	ndfill					Other:		5 day			Level 4			30,000		deg C	
Report To:	Jim Getting										ANALYSIS REQUEST							
Company:	Republic Ser	vices					P.O. No.: PO48624525544160											
Street:	13570 St. Ch	arles Rock R	d.				Bill to: Republic Services											
City/State/Zip:	Bridgeton , M	10 63044							_	-			مة 0					
Phone& Fax:	314-683-392							1 - 1		Rd.	_		ŏ +	200				
e-mail:	JGetting@r	epublicservi	ces.com				Bridgeton,	MO 63	044			TRS	두 무	1 25C				
LAB USE	ONLY	Canister ID	ister Press			SAMPLE IDENTIFICATION	SAMPLE	All All										
40309	101-01	5948	-19.69	-2.75	1" 467	Blower Outlet 1	3/8/2016	859	С	LFG		Х						
(S. 27)	-02	1613	-20.14	-3.75	2" 1	Blower Outlet 2	3/8/2016	930	С	LFG	NA	Х	х	Х				
- 24	-03	1620	-18.74	-3.5	5"	Blower Outlet 3	3/8/2016	1132	С	LFG	NA	Х	х	Х				
	-04	5959	-23.09	-3.91	111111111111111111111111111111111111111	Blower Outlet 4 903/4/16	3/8/2016	1345	С	LFG	NA	х	х	Х				
	-05	5962	-20.43	-3.69	4"	North Quarry	3/8/2016	856		1		-	х	X				
	1-06	5976	-19.77	-3.9	4"	LFG CSU EP14	3/1/2016			7 700			-					
4	-07	5936	-20.73	-3.67	24 V	North Quarry #1	3/1/2016			7.4	1.77	X		х				
										10.11	-		P =			1		
AUTHORIZATION TO P	ERFORM WORK: Da	ve Penoyer				COMPANY; Republic Services	DATE/TIME:				- 50	1000		.(0)	- 4			
SAMPLED BY: Ryan	Ayers					COMPANY: Republic Services	DATE/TIME		* CAN	CHAN	TIL O	~ man	I form	N OUGH	A 101 4	all a		
RELINQUISHED BY	Zan Ac	(ev)	3-8	-16 13	000	DATE/RECEIVED BY	DATE/TIME							- DRan	aut s/	1104		
RELINQUISHED BY		3-916	10:3		0,5-	DATE/RECEIVED BY	DATE/TIME DATE/TIME	25										
METHOD OF T	RANSPORT (cir	cle one): Wa	lk-In FedEx	UPS Co	urier ATLI	Other												

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No .:

NA

Date Received:

03/09/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H030901-01 Blower Outlet 1		H0309	901-02	H0309	901-03	H030901-04 South Quarry GCCS		
Client Sample I.D.:			Blower	Outlet 2	Blower	Outlet 3			
Date/Time Sampled:	3/8/16 8:59		3/8/16 9:30		3/8/16	11:32	3/8/16 13:45		
Date/Time Analyzed:	3/9/16	14:12	3/9/16 15:00		3/9/16	15:30	3/9/16 15:4		
QC Batch No.:	160309	GC8A1	160309GC8A1		160309	GC8A1	160309GC8A1		
Analyst Initials:	A	S	A	AS		S	AS		
Dilution Factor:	2.5		2.7		3	.2	2.5		
ANALYTE	Result % v/v	RL % v/v	Result	RL % v/v	Result	RL % v/v	Result	RL % v/v	
Hydrogen	8.5	2.5	9.3	2.7	9.4	3.2	11	2.5	
Carbon Dioxide	37	0.025	36	0.027	36	0.032	37	0.025	
Oxygen/Argon	8.7	1.3	8.5	1.3	8.4	1.6	8.7	1.3	
Nitrogen	34	2.5	34	2.7	34	3.2	35	2.5	
Methane	11	0.0025	11	0.0027	11	0.0032	7.2	0.0025	
Carbon Monoxide	0.093	0.0025	0.095	0.0027	0.093	0.0032	0.11	0.0025	
Net Heating Value (BTU/ft3)	146	2.5	152	2.7	154	3.2	127	2.5	
Gross Heating Value (BTU/ft3)	165	2.5	172	2.7	174	3.2	144	2.5	

Results normalized including non-methane hydrocarbons

BTU values based on D1946 analysis and non-methane analysis assumed as propane

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Operations Manager

The cover letter is an integral part of this analytical report

Page 2 of 8

H030901

Client: Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/09/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H0309	901-05	H0309	901-06	H0309	901-07	
Client Sample I.D.:	North	Quarry	LFG CS	SU EP14	17, 177, 177, 177, 177, 177, 177, 177,	Quarry 1	
Date/Time Sampled:	3/8/10	6 8:56	3/1/10	6 7:43	3/1/10	6 8:45	
Date/Time Analyzed:	3/9/16	16:13	3/9/16	16:42	3/9/16	16:27	
QC Batch No.:	160309	GC8A1	160309	GC8A1	160309	GC8A1	
Analyst Initials:	A	S	A	S	A	S	
Dilution Factor:	3	.0	3	.0	2.	.7	
ANALYTE	Result RL Result RL Resu		Result	RL % v/v			
Hydrogen	ND	3.0	10	3.0	ND	2.7	
Carbon Dioxide	33	0.030	31	0.030	31	0.027	
Oxygen/Argon	4.1	1.5	10	1.5	4.6	1.3	
Nitrogen	19	3.0	41	3.0	21	2.7	
Methane	43	0.0030	6.3	0.0030	42	0.0027	
Carbon Monoxide	ND	0.0030	0.087	0.0030	ND	0.0027	
Net Heating Value (BTU/ft3)	402	3.0	107	3.0	385	2,7	
Gross Heating Value (BTU/ft3)	447	3.0	122	3.0	428	2.7	

Results normalized including non-methane hydrocarbons

BTU values based on D1946 analysis and non-methane analysis assumed as propane

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Page 3 of 8

H030901

QC Batch No.: 160309GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Method	Blank	1	CS	L	CSD		
3/9/16	13:54	3/9/1	6 13:10	3/9/1	6 13:25		
A	S		AS		AS		
09ma	r014	09n	nar011	09n	nar012		
1.	0		1.0	,	1.0		
Results	RL	% Rec.	Criteria	% Rec. Criteria		%RPD	Criteria
ND	1.0	103	70-130%	103	70-130%	0.1	<30
ND	0.010	101	70-130%	100	70-130%	0.5	<30
ND	0.50	102	70-130%	102	70-130%	0.1	<30
ND	1.0	101	70-130%	102	70-130%	0.5	<30
ND	0.0010	100	70-130%	100	70-130%	0.1	<30
ND	0.0010	111	70-130%	111	70-130%	0.0	<30
	3/9/16 A 09ma 1. Results ND ND ND ND ND ND	ND 1.0 ND 0.010 ND 0.50 ND 1.0 ND 0.0010	3/9/16 13:54 3/9/1 AS 09mar014 09m 1.0 Results RL % Rec. ND 1.0 103 ND 0.010 101 ND 0.50 102 ND 1.0 101 ND 0.0010 101	3/9/16 13:54 3/9/16 13:10 AS AS 09mar014 09mar011 1.0 1.0 Results RL % Rec. Criteria ND 1.0 103 70-130% ND 0.010 101 70-130% ND 0.50 102 70-130% ND 1.0 101 70-130% ND 0.0010 100 70-130% ND 0.0010 100 70-130%	3/9/16 13:54 3/9/16 13:10 3/9/1 AS AS 09mar014 09mar011 09mar011 1.0 1.0 Results RL % Rec. Criteria % Rec. ND 1.0 103 70-130% 103 ND 0.010 101 70-130% 100 ND 0.50 102 70-130% 102 ND 1.0 101 70-130% 102 ND 0.0010 100 70-130% 100 ND 0.0010 100 70-130% 100	3/9/16 13:54 3/9/16 13:10 3/9/16 13:25 AS AS AS 09mar014 09mar011 09mar012 1.0 1.0 1.0 Results RL % Rec. Criteria % Rec. Criteria ND 1.0 103 70-130% 103 70-130% ND 0.010 101 70-130% 100 70-130% ND 0.50 102 70-130% 102 70-130% ND 1.0 101 70-130% 102 70-130% ND 0.0010 100 70-130% 100 70-130% ND 0.0010 100 70-130% 100 70-130%	3/9/16 13:54 3/9/16 13:10 3/9/16 13:25 AS AS AS 09mar014 09mar011 09mar012 1.0 1.0 1.0 Results RL % Rec. Criteria % Rec. Criteria % RPD ND 1.0 103 70-130% 103 70-130% 0.1 ND 0.010 101 70-130% 100 70-130% 0.5 ND 0.50 102 70-130% 102 70-130% 0.1 ND 1.0 101 70-130% 102 70-130% 0.5 ND 0.0010 100 70-130% 100 70-130% 0.1

ND = Not Detected (Below RL)

Reviewed/Approved By:	11/2/	Date: 3/u/16
	Mark J. Johnson	
	Operations Manager	

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project Number: Date Received: NA 3/9/2016

Date Receive Matrix:

Vapor

TNMOC by EPA METHOD 25C

	Lab Number:	H03090	1-01	H03090	1-02	H03090	1-03	H03090	1-04	H03090	1-05
Cli	ent Sample ID:	Blower O	itlet 1	Blower O	utlet 2	Blower O	utlet 3	South Qu GCC	100000	North Q	uarry
Date/	Time Collected:	3/8/16 8	:59	3/8/16 9	9:30	3/8/16 1	1:32	3/8/16 1	3:45	3/8/16	8:56
Date/	Time Analyzed:	3/9/16 13	7:11	3/9/16 1	8:09	3/9/16 1	9:07	3/9/16 2	0:06	3/9/16 2	3:00
-	Analyst Initials:	AS		AS		AS		AS		AS	
	QC Batch:	160309GC	C8A1	160309G	C8A1	160309G	C8A1	160309G	C8A1	160309G	C8A1
1	Dilution Factor:	13		13		16		13		3.0	
ANALYTE	Units	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
INMOC	ppmv C	72,000	130	68,000	130	65,000	160	68,000	130	12,000	30
TNMOC uncorr*	ppmv C	35,000	130	34,000	130	34,000	160	35,000	130	8,800	30

ND = Not detected at or above reporting limit.

TNMOC = Total Non-Methane Organic Carbon.

TNMOC uncorr* = TNMOC concentration in sample without nitrogen/moisture correction.

NA = Nitrogen/moisture correction causes division by zero.

Reviewed/Approved By:

Mark Johnson Operations Manager Date: 3-14-16

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project Number: NA

Date Received: 3/9/2016

Matrix:

Vapor

TNMOC by EPA METHOD 25C

	Lab Number:	H03090	1-07				
Cli	ent Sample ID:	North Qua	rry #1				
Date/T	ime Collected:	3/1/16 8	:45				
Date/I	ime Analyzed:	3/10/16 2	3:59				
A	nalyst Initials:	AS					
	QC Batch:	160309GC	28A1				
מ	ilution Factor:	2.7					
ANALYTE	Units	Result	RL				
TNMOC	ррту С	6,800	27				
FNMOC uncorr*	ppmv C	4,700	27				

ND = Not detected at or above reporting limit.

TNMOC = Total Non-Methane Organic Carbon.

TNMOC uncorr* = TNMOC concentration in sample without nitrogen/moisture correction.

Operations Manager

NA = Nitrogen/moisture correction causes division by zero.

Reviewed/Approved By:	MACH- 1	Date:	3/4/16	
	phason	0.000		

Page 7 of 8 H030901

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No .:

NA

Date Received:

03/09/16

Matrix:

Air

Reporting Units: ppmv

EPA 15/16

Lab No.:	H03	090	1-01	H03	3090)1-02	H03	3090)1-03	H03	3090	1-04
Client Sample I.D.:	Blowe	r O	utlet 1	Blowe	er Ç	utlet 2	Blowe	er C	outlet 3		h Q	uarry CS
Date/Time Sampled:	3/8/	16	8:59	3/8	/16	9:30	3/8/	16	11:32	3/8/	16 1	3:45
Date/Time Analyzed:	3/10	/16	9:10	3/10)/16	9:47	3/10	/16	10:24	3/10	/16	11:00
QC Batch No.:	1603	10G	C3A1	1603	10C	C3A1	1603	10G	C3A1	1603	10G	C3A1
Analyst Initials:		AS			AS			AS	3		AS	
Dilution Factor:		2.5			2.7			3.2		-	2.5	
ANALYTE	Resul	2	RL ppmy	Resu	S 1	RL ppmv	Resul	, T	RL ppmv	Resul		RL ppmv
Hydrogen Sulfide	26	d	5.1	11		0.53	ND		0.63	30	d	5.1
Carbonyl Sulfide	ND		0.51	ND		0.53	ND		0.63	ND		0.51
Methyl Mercaptan	190	d	5.1	190	d	5.3	150	d	6.3	210	d	5.1
Ethyl Mercaptan	2.3		0.51	2.3		0.53	1.7		0.63	2.4		0.51
Dimethyl Sulfide	960	d	51.0	910	d	53.0	860	d	63.0	980	d	51.0
Carbon Disulfide	ND		0.51	ND		0.53	ND		0.63	0.52		0.51
Dimethyl Disulfide	25		0.51	26		0.53	31		0.63	25		0.51
Total Reduced Sulfur	1,200		0.51	1,200		0.53	1,100		0.63	1,300		0.51

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary dilution

Reviewed/Approved By:

Operations Manager

QC Batch No.:

160310GC3A1

Matrix: Units: Air ppmv Page 8 of 8 H030901

QC for Sulfur Compounds by EPA 15/16

Lab No.:	Method I	Blank	I	LCS	L	CSD		
Date/Time Analyzed:	3/10/16	8:58	3/10/	16 8:34	3/10/	16 8:46		
Analyst Initials:	AS			AS		AS		
Datafile:	10mar0	003	101	nar001	101	nar002		
Dilution Factor:	1.0			1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen Sulfide	ND	0.20	78	70-130%	78	70-130%	0.5	<30
Carbonyl Sulfide	ND	0.20	99	70-130%	98	70-130%	0.5	<30
Methyl Mercaptan	ND	0.20	74	70-130%	74	70-130%	0.7	<30
Ethyl Mercaptan	ND	0.20	97	70-130%	99	70-130%	1.4	<30
Dimethyl Sulfide	ND	0.20	84	70-130%	84	70-130%	0.1	<30
Carbon Disulfide	ND	0.20	81	70-130%	81	70-130%	0.1	<30
Dimethyl Disulfide	ND	0.20	95	70-130%	94	70-130%	0.5	<30

ND = Not Detected (Below RL)

RL = Reporting Limit

Reviewed/Approved By:	M/loll.	Date:
	Mark J. Johnson Operations Manager	4 ***

Sample results on 3/2/2016 for Blower Outlet A were void due to acetone in the sample train. Calculations were performed for the representative sample for Blower Outlet B. Lab data is attached below.

Additionally, EPA Test Method TO15 was performed to confirm the acetone contamination. Those lab results are also attached below.

Sample results void from sample No. H030302- $\Delta = 5.3\%$ 01 for **Outlet A** due to apparent cross contamination with acetone in sample train.

	PARAMETER	Outlet A	Outlet B
Date	Test Date		3/2/1
Time	Start - Finish		14:5
%CH₄	Methane, %		10.7
%CO ₂	Carbon Dioxide, %		34.6
%O ₂	Oxygen, %		8.8
%Balance	Assumed as Nitorgen, %		35.3
%H ₂	Hydrogen, %		9.6
%CO	Carbon Monoxide, %		0.09
P_g	Flue Gas Static Pressure, inches of H ₂ O		30.8
t _s	Blower Outlet LFG Temperature, °F		
Q_{sd}	Dry Volumetric Flow Rate, dry scfm (assumes 5%H2O)	2,908	
Q_s	Kurz FM, Standard Volumetric Flow Rate, scfm	3,061	
NHV	Net Heating Value, Btu/scf		145.0
LFG _{CH4}	Methane, lb/hr	0.0	777
LI O _{CH4}	Methane, grains/dscf	0.00	31.2
LFG _{CO2}	Carbon Dioxide, lb/hr	0.0	6,896
LI G _{CO2}	Carbon Dioxide, grains/dscf	0.00	276.
LFG _{O2}	Oxygen, lb/hr	0.0	1,275
LI G ₀₂	Oxygen, grains/dscf	0.00	51.
LFG _{N2}	Balance gas as Nitrogen, lb/hr	0.0	4,478
LI G _{N2}	Balance gas as Nitrogen, grains/dscf	0.00	179.7
LFG _{H4}	Hydrogen, lb/hr	0.0	87
LI G _{H4}	Hydrogen, grains/dscf	0.00	3.5
LEC	Carbon Monoxide, lb/hr	0.0	11
LFG _{CO}	Carbon Monoxide, grains/dscf	0.00	0.4

		Outlet A	Outlet B
	Hydrogen Sulfide Concentration, ppmd		42
H ₂ S	Hydrogen Sulfide Rate, lb/hr	0.00	(
	Hydrogen Sulfide Rate, grains/dscf	0.000	0.
	Carbonyl Sulfide Concentration, ppmd		(
cos	Carboynl Sulfide Rate, lb/hr	0.00	(
	Carbonyl Sulfide Rate, grains/dscf	0.000	0.
	Methyl Mercaptan Concentration, ppmd		180
CH ₄ S	Methyl Mercaptan Rate, lb/hr	0.00	3
	Methyl Mercaptan Rate, grains/dscf	0.000	0.
	Ethyl Mercaptan Concentration, ppmd		2
C ₂ H ₆ S	Ethyl Mercaptan Rate, lb/hr	0.00	(
	Ethyl Mercaptan Rate, grains/dscf	0.000	0.
	Dimethyl Sulfide Concentration, ppmd		910
(CH ₃) ₂ S	Dimethyl Sulfide Rate, lb/hr	0.00	25
	Dimethyl Sulfide Rate, grains/dscf	0.000	1.0
	Carbon Disulfide Concentration, ppmd		C
CS ₂	Carbon Disulfide Rate, lb/hr	0.00	(
	Carbon Disulfide Rate, grains/dscf	0.000	0.
	Dimethyl Disulfide Concentration, ppmd		74
$C_2H_6S_2$	Dimethyl Disulfide Rate, lb/hr	0.00	3
	Dimethyl Disulfide Rate, grains/dscf	0.000	0.
	TRS>SO2 Emission Concentration, ppmd		1,300
●E _{TRS-SO2}	TRS>SO2 Emission Rate, lb/hr	0.00	37
	TRS>SO2 Emission Rate, grains/dscf	0.000	1.
	TPY =	0.00	165

March 15, 2016

Republic Services

ATTN: Jim Getting

ADE-1461 EPA Methods TO3, TO14A, TO15 SIM & SCAN

TX Cert T104704450-14-6 EPA Methods TO14A, TO15

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

13570 St. Charles Rock Rd. Bridgeton, MO 63044

LABORATORY TEST RESULTS

Project Reference: Bridgeton Landfill

Lab Number:

H030302-01/02

Enclosed are results for sample(s) received 3/03/16 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the NELAC Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Jim Getting, Mike Lambrich, Ryan Ayer, Nicholas Bauer and David Randall, Weaver Consultants Group, on 3/07/16 and 3/14/16 (EPA TO15).

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

Enclosures

H 030302-01/02

				18501 F G	le Ave Suite 130			CHA	N OF	CHAIN OF CUSTODY RECORD	RECO	RD		
	JIECHNOLOGY	250		City of Industry,	City of Industry, CA 91748	TUR	TURNAROUND TIME	TIME		DELIVERABLES	П	PAGE:	1 OF	1
Labe	Laboratories, Inc.			Ph. 626-964-4032	-4032	Standard		48 hours			Con	Condition upon receipt:	eipt:	
727				FX: 626-964	-5832	Same Day		72 hours	П			Seale	Sealed Yes	 ≥
Project No.:						24 hours	°°	96 hours		Level 3		Inta	Intact Yes	 ≥
Project Name: Bridgeton Landfill	Landfill					Other:	5	5 day	П	Level 4		Chilled		O ded C
Report To: Jim Getting	ıg						BILLING	S)			ANAL	ANALYSIS REQUEST	EST	
Company: Republic Services	Services					P.O. No.:	PO5544106	901		91				
Street: 13570 St.	13570 St. Charles Rock Rd.	T.				Bill to:	Republic Services	Service	,,	76 L L				
City/State/Zip: Bridgeton	Bridgeton , MO 63044						Attn: Jim Getting	Getting		NTS				
Phone& Fax: 314-683-3921	3921					13570 St. (Charles Rock Rd	Rock Ro		A &	SCE			
e-mail: JGetting(JGetting@republicservices.com	ses.com				Bridgeton, MO 63044	MO 630	44		SA.				
										 +				
I AB IISE ON! Y	Cani	Canister Pressures ("hg)	ıres ("hç	(SAMPI E IDENTIEICATION	3191 3T.	IPLE	АІИЕЯ ТҮРЕ	TRIX -AVA- NO	+ CO 12/18	9461 N	51-6		
	Canister ID	Sample Start	Sample End	Lab Receive					PRESI	AGE		2/		
H030302-01	1614	-20.3	-3.5	-3" Hg	Outlet A	3/2/2016	1445	o	LFG NA	×	^ ×	χ		
1002	1540	-20.1	-3.5	-3 ", fa	Outlet B	3/2/2016	1455	U U	LFG NA	×	×	×		
	100 7795.2400)										
	DARKE STI SKA													
	22.24 miles													
AUTHORIZATION TO PERFORM WORK: Dave Penoyer	Dave Penoyer				COMPANY: Republic Services	DATE/TIME:		COMMENTS	2				1	
SAMPLED BY: Ryan Ayers					COMPANY: Republic Services	DATE/TIME		ANN TO-15	70	7 21 P	my h	N Bayer		3-10-16
RELINQUISHED BY	ueu	3-2-16	100	1600		DATE/TIME								1
RELINQUISHED BY PER EX "	3.	91-2-16	0	01:6	2 les	3-3-16	9:10							
RELINQUISHED BY					DATE/RECEIVĖD BY	DATE/TIME								
METHOD OF TRANSPORT (circle one):	circle one): Walk-In	<-lu FedEx	UPS Co	Courier ATLI	Other									
DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy	ow - Lab Copies / F	ink - Custome	r Copy			Preservat	on: H=HC	N=None	/ Contair	Preservation: H=HCI N=None / Container: B=Bag C=Can V=VOA O=Other	=Can V=V	OA O=Othe		Rev. 03 - 5/7/09

DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy

Page 2 of 10 H030302

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/03/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	770202	302-01	11020	302-02			
Lau ivo.:	11030.	302-01	HU30.	302-02			
Client Sample I.D.:	Outlet A		Out	let B			
Date/Time Sampled:	3/2/16	14:45	3/2/16	14:55			
Date/Time Analyzed:	3/4/16	11:47	3/4/16	12:07			
QC Batch No.:	160304	GC8A1	160304	GC8A1			
Analyst Initials:	A	S	A	S			
Dilution Factor:	2	.8	2.8				
	Result	RL	Result	RL			
ANALYTE	% v/v	% v/v	% v/v	% V/V		CALL DO SERVICE DE LA CONTRACTOR DE LA C	
Hydrogen	8.8	2.8	9.6	2.8			
Carbon Dioxide	31.1	0.028	34.6	0.028			
Oxygen/Argon	9.0	1.4	8.8	1.4			
Nitrogen	35.5	2.8	35.3	2.8			
Methane	9.5	0.0028	10.7	0.0028			
Carbon Monoxide	0.081	0.0028	0.091	0.0028			
Net Heating Value (BTU/ft3)	et Heating Value (BTU/ft3) 255.4 2.8		145.0	2.8		NO Addition	
Gross Heating Value (BTU/ft3)	283.5	2.8	164.1	2.8		CALIFORNIA	

Results normalized including non-methane hydrocarbons

BTU values based on D1946 analysis and non-methane analysis assumed as propane

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 3-7-16

Date: 3-7-16

QC Batch No.: 160304GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method	Blank	L	CS	L	CSD		
Date/Time Analyzed:	3/4/16	10:17	3/4/16 9:33		3/4/16 9:48			
Analyst Initials:	AS		_	AS		AS		
Datafile:	04ma	r009	04n	nar006	04n	nar007		
Dilution Factor:	1.0	0		1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	92	70-130%	92	70-130%	1.0	<30
Carbon Dioxide	ND	0.010	95	70-130%	96	70-130%	1.4	<30
Oxygen/Argon	ND	0.50	102	70-130%	103	70-130%	1.2	<30
Nitrogen	ND	1.0	101	70-130%	102	70-130%	1.0	<30
Methane	ND	0.0010	108	70-130%	108	70-130%	0.2	<30
Carbon Monoxide	Monoxide ND 0.0010 110		110	70-130%	110	70-130%	0.7	<30

ND = Not Detected (Below RL)

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

The cover letter is an integral part of this analytical report.

AirTECHNOLOGY Laboratories, Inc. -

Page 4 of 10 H030302

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/03/16

Matrix:

Air

Reporting Units: ppmv

EPA 15/16

Lab No.:	H0303	H030302-01		3030	02-02		3	Ī	
Client Sample I.D.:		Outlet A			et B				
Date/Time Sampled:	3/2/16	14:45	3/2/	/16	14:55		2		
Date/Time Analyzed:	3/3/16	11:21	3/3/	/16	11:58				
QC Batch No.:	160303	GC3A1	1603	030	GC3A1				
Analyst Initials:	A	S		AS	5				
Dilution Factor:	2.	8	2.8						
ANALYTE	Result ppmv	RL ppmv	Resu ppm		RL ppmv				
Hydrogen Sulfide	34 0	5.6	42	d	5.6				ALEXA SPACERIES SCAR ALLO CARRO MED
Carbonyl Sulfide	ND	0.56	ND		0.56				
Methyl Mercaptan	160 d	5.6	180	d	5.6				
Ethyl Mercaptan	2.2	0.56	2.4		0.56	7	6		
Dimethyl Sulfide	860 d	56.0	910	d	56.0				
Carbon Disulfide	ND	0.56	ND		0.56			11	
Dimethyl Disulfide	56 d	5.6	74	d	5.6	,			
Total Reduced Sulfur	1,200	0.56	1,300		0.56				

ND =	Not I	etected)	(below	RL)	

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 3-7-16

RL = Reporting Limit

d = Reported from a secondary dilution

QC Batch No.:

160303GC3A1

Matrix: Units: Air ppmv Page 5 of 10 H030302

QC for Sulfur Compounds by EPA 15/16

Lab No.:	Method 1	Blank]	LCS	L	CSD		
Date/Time Analyzed:	3/3/16 1	0:58	3/3/1	3/3/16 10:33		3/3/16 10:45		
Analyst Initials:	AS			AS		AS		8
Datafile:	03MAR004 03MAR00		IAR002	03MAR003			540	
Dilution Factor:	1.0	50 50		1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	% Rec. Criteria		Criteria
Hydrogen Sulfide	ND	0.20	95	70-130%	95	70-130%	0.3	<30
Carbonyl Sulfide	ND	0.20	115	70-130%	114	70-130%	1.2	<30
Methyl Mercaptan	ND	0.20	89	70-130%	89	70-130%	0	<30
Ethyl Mercaptan	ND	0.20	114	70-130%	113	70-130%	0.6	<30
Dimethyl Sulfide	ND	0.20	97	70-130%	97	70-130%	0.9	<30
Carbon Disulfide	ND	0.20	100	70-130%	100	70-130%	0.3	<30
Dimethyl Disulfide	ND	0.20	114	70-130%	108	70-130%	5.4	<30

ND = Not Detected (Below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark J. Johnson Operations Manager Date: 3-7-16

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/03/16

Matrix:

Air

Reporting Units: ppbv

EPA Method TO15

Lab No.:	H030302	-01	H0303	02-02				
Client Sample I.D.:	Outlet	A	Outle	Outlet B				
Date/Time Sampled:	3/2/16 14:45		3/2/16	14:55		***************************************		
Date/Time Analyzed:	3/11/16 1:	5:09	3/11/16	14:29				
QC Batch No.:	160311MS	S2A1	1603111	MS2A1				
Analyst Initials:	DT		D'	Γ				
Dilution Factor:	200,00	0	2,80	00				
ANALYTE	Result ppbv	RL ppbv	Result ppbv	RL ppbv				
Dichlorodifluoromethane (12)	ND	200,000	ND	2,800	entropy and another transfer and another control of the control of	MATERIAL VIEW NEWS OF SECTION	THE PROPERTY OF A STANFARD PROPERTY OF	narial resolution and a second and a
Chloromethane	ND	390,000	NĎ	5,600				
1,2-Cl-1,1,2,2-F ethane (114)	ND	200,000	ND	2,800				
Vinyl Chloride	ND	200,000	ND	2,800				
Bromomethane	ND	200,000	ND	2,800				
Chloroethane	ND	200,000	ND ·	2,800				1
Trichlorofluoromethane (11)	ND	200,000	ND	2,800				
1,1-Dichloroethene	ND	200,000	ND	2,800				
Carbon Disulfide	ND	980,000	ND	14,000				
1,1,2-Cl 1,2,2-F ethane (113)	ND	200,000	ND	2,800				
Acetone	32,000,000	980,000	450,000	14,000				
Methylene Chloride	ND	200,000	ND	2,800				
t-1,2-Dichloroethene	ND	200,000	ND	2,800				,
1,1-Dichloroethane	ND	200,000	ND	2,800				
Vinyl Acetate	ND	980,000	ND	14,000				
c-1,2-Dichloroethene	ND	200,000	ND	2,800				
2-Butanone	250,000	200,000	350,000	2,800			No.	
t-Butyl Methyl Ether (MTBE)	ND	200,000	ND	2,800				
Chloroform	ND	200,000	ND	2,800				
1,1,1-Trichloroethane	ND	200,000	ND	2,800				
Carbon Tetrachloride	ND	200,000	ND	2,800				
Benzene	230,000	200,000	190,000	2,800				
1,2-Dichloroethane	ND .	200,000	ND	2,800				
Trichloroethene	ND	200,000	ND	2,800	***************************************			
1,2-Dichloropropane	ND	200,000	ND	2,800		-		
Bromodichloromethane	ND	200,000	ND	2,800				
c-1,3-Dichloropropene	ND	200,000	ND	2,800				
4-Methyl-2-Pentanone	ND	200,000	9,600	2,800				
Toluene	ND	200,000	34,000	2,800			· ·	
t-1,3-Dichloropropene	ND	200,000	ND	2,800				

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/03/16

Matrix:

Air

Reporting Units: ppbv

EPA Method TO15

		I A WICCH	00 1013					
Lab No.:	H030302	2-01	H03030	02-02			1	
Client Sample I.D.:	Outlet A		Outle	Outlet B			The state of the s	
Date/Time Sampled:	3/2/16 14:45		3/2/16	14:55				-
Date/Time Analyzed:	3/11/16 1	5:09	3/11/16	14:29				
QC Batch No.:	160311M	S2A1	160311N	VIS2A1				
Analyst Initials:	DT		D	r				
Dilution Factor:	200,0	00	2,80	00				
ANALYTE	Result ppbv	Result RL		RL ppbv			OF A STATE	
1,1,2-Trichloroethane	ND	200,000	ND	2,800				- DESCRIPTION OF THE PROPERTY
Tetrachloroethene	ND	200,000	ND	2,800				
2-Hexanone	ND	200,000	4,600	2,800				
Dibromochloromethane	ND	200,000	ND	2,800				
1,2-Dibromoethane	ND	200,000	ND	2,800				
Chlorobenzene	ND	200,000	ND	2,800				
Ethylbenzene	ND	200,000	14,000	2,800				
p,&m-Xylene	ND	200,000	21,000	2,800				
o-Xylene	ND	200,000	9,000	2,800				
Styrene	ND	200,000	ND	2,800				
Bromoform	ND	200,000	ND	2,800				
1,1,2,2-Tetrachloroethane	ND	390,000	ND .	5,600				
Benzyl Chloride	ND	200,000	ND	2,800				
4-Ethyl Toluene	ND	200,000	3,600	2,800				
1,3,5-Trimethylbenzene	ND	390,000	ND	5,600		7		
1,2,4-Trimethylbenzene	ND	390,000	ND	5,600				
1,3-Dichlorobenzene	ND	200,000	ND	2,800				
1,4-Dichlorobenzene	ND	200,000	ND	2,800				
1,2-Dichlorobenzene	ND	200,000	ND	2;800				
1,2,4-Trichlorobenzene	ND	390,000	ND	5,600				
Hexachlorobutadiene	ND	200,000	ND	2,800				

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson Operations Manager Date 3-14-16

The cover letter is an integral part of this analytical report

AirTECHNOLOGY Laboratories, Inc.

page 2 of 2

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/03/16

Matrix:

Air

Reporting Units: ppbv

EPA Method TO15

Lab No.:	METHO	D BLANK					- Canada	
Client Sample I.D.:	A CONTRACTOR AND A CONT	-			THE REAL PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDR			
Date/Time Sampled:		-					The state of the s	
Date/Γime Analyzed:	3/11/1	6 13:47						
QC Batch No.:	160311	IMS2A1				COMMISSION CONTRACTOR		The Paris of the State of the S
Analyst Initials:	I)T		***************************************				
Dilution Factor:	0	.20						M Paris No. of the State of the Control of the Cont
	Result	RL			The second secon			
ANALYTE	ppbv	ppbv			The state of the s			
Dichlorodifluoromethane (12)	ND	0.20	PROBLEM STORMS	CONTRACTOR OF THE SECTION	Many uncome passes or to call to	AND DESCRIPTION OF THE STREET,	CONTRACTOR	THE CO. P. LEWIS CO. LANS.
Chloromethane	ND	0.40						
1,2-Cl-1,1,2,2-F ethane (114)	ND	0.20						
Vinyl Chloride	ND	0.20						
Bromomethane	ND	0.20						
Chloroethane	ND	0.20						
Trichlorofluoromethane (11)	ND	0.20						
1,1-Dichloroethene	ND	0.20						
Carbon Disulfide	ND	1.0						
1,1,2-Cl 1,2,2-F ethane (113)	ND	0.20						۸.
Acetone	ND	1.0						
Methylene Chloride	ND	0.20						
t-1,2-Dichloroethene	ND	0.20						
1,1-Dichloroethane	ND	0.20						
Vinyl Acetate	· ND	1.0						
c-1,2-Dichloroethene	ND	0.20						
2-Butanone	ND	0.20						
t-Butyl Methyl Ether (MTBE)	ND ·	0.20						
Chloroform	ND	0.20						
1,1,1-Trichloroethane	ND	0.20						
Carbon Tetrachloride	ND	0.20						
Benzene	ND	0.20					4.	
1,2-Dichloroethane	ND	0.20						
Trichloroethene	ND	0.20						0.0
1,2-Dichloropropane	ND	0.20						
Bromodichloromethane	ND	0.20						
c-1,3-Dichloropropene	ND	0.20						
4-Methyl-2-Pentanone	ND	0.20						
Toluene	ND	0.20						
t-1,3-Dichloropropene	ND	0.20						

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No .:

NA

Date Received:

03/03/16

Matrix:

Air

Reporting Units: ppbv

EPA Method TO15

DITT NAMED A TOLD											
Lab No.:	МЕТНО	D BLANK					District of the Control of the Contr				
Client Sample I.D.:		-									
Date/Time Sampled:											
Date/Time Analyzed:	3/11/1	6 13:47			The state of the s						
QC Batch No.:	160311	MS2A1		A CORPORATION OF A PROPERTY OF							
Analyst Initials:	I	T			Control of the Contro						
Dilution Factor:	0	.20		***************************************							
ANALYTE	Result ppbv	RL ppbv									
1,1,2-Trichloroethane	ND	0.20									
Tetrachloroethene	ND .	0.20									
2-Hexanone	ND	0.20									
Dibromochloromethane	ND	0.20									
1,2-Dibromoethane	ND	0.20									
Chlorobenzene	ND	0.20									
Ethylbenzene	ND	0.20									
p,&m-Xylene	ND	0.20									
o-Xylene	ND	0.20									
Styrene	.ND	0.20									
Bromoform	ND	0.20									
1,1,2,2-Tetrachloroethane	ND	0.40									
Benzyl Chloride	ND	0.20									
4-Ethyl Toluene	ND	0.20									
1,3,5-Trimethylbenzene	ND	0.40									
1,2,4-Trimethylbenzene	ND	0.40									
1,3-Dichlorobenzene	ND	0.20									
1,4-Dichlorobenzene	ND	0.20									
1,2-Dichlorobenzene	ND	0.20									
1,2,4-Trichlorobenzene	ND	0.40									
Hexachlorobutadiene	ND	0.20			-						

ND = Not Detected (below RL)

RL = Reporting Limit

Mark Johnson Operations Manager cover letter is an integral part of this analytical report

AirTECHNOLOGY Laboratories, Inc.

page 2 of 2

QC Batch #: 160311MS2A1

Matrix: Air

	EPA Method TO-14/TO-15												
Lab No:	Method Blank		L	CS	LC	SD		AND DESCRIPTION OF THE PARTY.	od Park uch della		3		
Date/Time Analyzed:	3/11/16 13:47		3/11/1	6 10:29	3/11/1	6 11:08							
Data File ID:	11MAR014.D		11MA	R009.D	11MA	R010.D							
Analyst Initials:	DT		DT DT					nativa niternativani					
Dilution Factor:	0.2		1.0 1.0					Limits					
ANALYTE	Result ppbv	Spike Amount	Result ppbv	% Rec	Result ppbv	% Rec	RPD	Low %Rec	High %Rec	Max. RPD	Pass/ Fail		
1,1-Dichloroethene	0.0	10.0	9.8	98	9.9	99	1.5	70	130	30	Pass		
Methylene Chloride	0.0	10.0	9.7	97	9.8	98	1.5	70	130	30	Pass		
Trichloroethene	0.0	10.0	10.0	100.	10.2	102	1.5	70	130	30	Pass		
Toluene	0.1	10.0	9.8	97	10.0	99	2.2	70	130	30	Pass		
1,1,2,2-Tetrachloroethane	0.0	10.0	11.1	111	10.9	109	1.6	70	130	30	Pass		

RPD = Relative Percent Difference

Reviewed/Approved By:

Mark Johnson Operations Manager

The cover letter is an integral part of this analytical report

Date: 3-/

Hydrogen Data Map - March 2016 - Bridgeton Landfill

Carbon Monoxide Data Map - March 2016 - Bridgeton Landfill

Initial Temperature Maximums - March 2016 - Bridgeton Landfill

Well Name	Date Sampled	Methane	CO ₂	O ₂ /Argon	Nitrogen	Hydrogen	Carbon Monoxide	Comments
				(%)			(ppm)	
				North Quarry				
GEW-002	11/13/2015	54	43	ND	ND	ND	ND	
GEW-002	12/14/2015	41	32	3.2	23	ND	35	See Note 3
GEW-002	12/31/2015	53	40	ND	5.7	0.1	ND	Resample
GEW-002	1/14/2016	55	43	ND	ND	ND	ND	
GEW-002	2/15/2016	52	41	1.7	5.8	ND	ND	See Note 3
GEW-002	3/7/2016	56	42	ND	ND	0.04	ND	
GEW-003	11/10/2015	50	40	ND	8.7	0.1	ND	
GEW-003	12/14/2015	42	37	ND	20	ND	ND	
GEW-003	1/14/2016	52	39	ND	6.7	0.1	ND	
GEW-003	2/15/2016	56	42	ND	ND	0.1	ND	
GEW-003	3/7/2016	54	40	ND	5	0.1	ND	
GEW-004	11/10/2015	49	40	ND	10	0.1	ND	
GEW-004	12/14/2015	45	37	ND	16	ND	ND	
GEW-004	1/14/2016	52	40	ND	6.7	0.1	ND	
GEW-004	2/15/2016	52	41	1.7	5.8	ND	ND	
GEW-004	3/7/2016	56	41	ND	ND	0.1	ND	
GEW-005	11/10/2015	44	36	ND	19	0.03	ND	
GEW-005	12/15/2015	41	34	ND	23	ND	ND	
GEW-005	1/14/2016	42	34	ND	24	ND	ND	
GEW-005	2/15/2016	54	38	ND	7.6	0.07	ND	
GEW-005	3/7/2016	53	38	ND	8	0.07	ND	
GEW-005	11/10/2015	51	40	ND ND	8.1	ND	ND ND	
GEW-006	1/14/2016	52	37	ND ND	10	ND	ND	
GEW-006	3/7/2016	56	38	ND	5.4	ND	ND	
GEW-000	11/11/2015	56	41	ND	ND	ND	ND	
GEW-007	1/11/2015	57	41	ND ND	ND	ND ND	ND ND	
GEW-007	1/27/2016	56	39	ND ND	4	ND ND	ND	
GEW-007	3/7/2016	57	41	ND ND	ND	ND ND	ND ND	
GEW-007	11/11/2015	49		ND ND	ND	2.1	ND	
GEW-008	12/15/2015	49	47 42	1.8	8.6	1.4	ND ND	See Note 3
								See Note 3
GEW-008 GEW-008	1/27/2016	50	47 47	ND ND	ND	1.6	ND ND	
	2/15/2016	50			ND	0.7		
GEW-008	3/7/2016	49	47	ND	ND	1.6	ND	One Nete 4 and
GEW-009	11/11/2015	46	39	2	12	0.4	ND	See Note 1 and 3
GEW-009	12/15/2015	39	40	ND	19	0.3	ND	
GEW-009	1/27/2016	51	41	ND	6.7	0.5	ND	
GEW-009	2/17/2016	54	43	ND	ND	0.7	ND	
GEW-009	3/7/2016	54	43	ND	ND	0.9	ND	
GEW-040	11/10/2015	52	37	2.4	8.5	ND	ND	See Note 1 and 3
GEW-040	12/14/2015	54	38	1.9	6.6	ND	ND	See Note 3
GEW-040	1/14/2016	57	41	ND	ND	ND	ND	
GEW-040	2/15/2016	55	38	1.4	5.2	ND	ND	See Note 3
GEW-040	3/7/2016	55	38	ND	5	ND	ND	555 11010 5
GEW-041R	11/10/2015	47	37	1.6	15	ND	ND	See Note 3
GEW-041R	1/14/2016	56	42	ND	ND	ND	ND	
GEW-041R	3/7/2016	57	41	ND	ND	ND	ND	

Well Name	Date Sampled	Methane	CO ₂	O ₂ /Argon	Nitrogen	Hydrogen	Carbon Monoxide	Comments
			I.	(%)	1		(ppm)	
GEW-042R	11/10/2015	42	35	5	18	ND	ND	See Note 1 and
GEW-042R	12/14/2015	49	40	2.3	8.3	ND	ND	See Note 3
GEW-042R	1/14/2016	55	42	ND	ND	ND	ND	
GEW-042R	2/15/2016	56	41	ND	ND	0.04	ND	
GEW-042R	3/7/2016	56	42	ND	ND	ND	ND	
GEW-043R	11/11/2015	53	44	ND	ND	ND	ND	
GEW-043R	1/14/2016	55	43	ND	ND	0.2	ND	
GEW-043R	3/7/2016	55	43	ND	ND	0.05	ND	
GEW-044	11/10/2015	47	37	ND	15	ND	ND	
GEW-044	1/14/2016	56	40	ND	ND	ND	ND	
GEW-044	3/7/2016	58	40	ND	ND	ND	ND	
GEW-045R	11/10/2015	58	39	ND	ND	ND	ND	
GEW-045R	12/14/2015	57	38	ND	3.9	ND	ND	
GEW-045R	1/14/2016	56	43	ND	ND	ND	ND	
GEW-045R	2/15/2016	57	39	ND	ND	ND	ND	
GEW-045R	3/7/2016	58	40	ND	ND	ND	ND	
GEW-046R	11/10/2015	53	41	ND	4.7	0.1	ND	
GEW-046R	12/14/2015	47	39	ND	13	ND	ND	
GEW-046R	1/14/2016	54	41	ND	4.7	0.1	ND	
GEW-046R	2/15/2016	55	40	ND	4.3	0.1	ND	
GEW-046R	3/7/2016	55	40	ND	4.4	0.1	ND	
GEW-047R	11/10/2015	41	37	ND	21	0.1	ND	
GEW-047R	12/14/2015	37	33	ND	29	ND	ND	
GEW-047R	1/14/2016	40	35	ND	24	0.05	ND	
GEW-047R	2/15/2016	50	38	ND	11	0.2	ND	
GEW-047R	3/7/2016	52	39	ND	8.1	0.1	ND	
GEW-048	11/10/2015	53	40	ND	5.7	ND	ND	
GEW-048	12/15/2015	49	38	ND	12	ND	ND	
GEW-048	1/14/2016	52	39	ND	8.4	ND	ND	
GEW-048	2/15/2016	56	40	ND	3.8	0.03	ND	
GEW-048	3/7/2016	57	40	ND	ND	ND	ND	
GEW-049	11/10/2015	46	37	ND	15	0.1	ND	
GEW-049	12/15/2015	46	37	ND	16	ND	ND	
GEW-049	1/27/2016	45	34	ND	20	0.1	ND	
GEW-049	2/15/2016	55	37	ND	6.3	0.1	ND	
GEW-049	3/7/2016	57	40	ND ND	ND	0.1	ND	
GEW-050	11/10/2015	48	37	ND	13	ND	ND	
GEW-050	1/14/2016	53	39	ND	7.9	0.1	ND	
GEW-050	3/7/2016	56	39	ND	4.6	0.1	ND	
GEW-050	11/10/2015	53	42	ND	3.3	1	ND	
GEW-051	1/27/2016	55	41	ND ND	ND	1	ND	+
GEW-051	3/7/2016	55	42	ND ND	ND	1.2	ND ND	+
GEW-052	11/11/2015	43	37	1.7	18	0.04	ND	See Note 1 and
GEW-052	1/14/2016	45	36	ND	19	0.04	ND	3
GEW-052	3/7/2016	53	38	ND	8.9	0.04	ND	
GEW-052 GEW-053	11/11/2015	49	42	ND ND	3.3	4.8	55	
GEW-053	12/15/2015	49	42	ND ND	4.8	4.5	51	+
GEW-053	1/27/2016	50	41	ND ND	3.9	4.5	49	+
							_	+
GEW-053	2/15/2016	50	41	ND	ND	5.8	57	
GEW-053	3/7/2016	49	41	ND	ND	5.7	65	

Well Name	Date Sampled	Methane	CO ₂	O ₂ /Argon	Nitrogen	Hydrogen	Carbon Monoxide	Comments
				(%)			(ppm)	
GEW-054	11/11/2015	52	43	ND	ND	2.6	ND	
GEW-054	12/15/2015	50	42	ND	ND	5.1	39	
GEW-054	1/27/2016	53	42	ND	ND	4.0	ND	
GEW-054	2/15/2016	51	41	ND	3.4	4.3	ND	
GEW-054	3/7/2016	53	43	ND	ND	3.1	34	
GEW-055	11/11/2015	52	43	ND	3.2	1.2	ND	
GEW-055	12/15/2015	51	41	ND	5.8	1.8	ND	
GEW-055	1/27/2016	54	42	ND	ND	1.0	ND	
GEW-055	2/15/2016	54	43	ND	ND	1.4	ND	
GEW-055	3/7/2016	54	43	ND	ND	1.1	ND	

Notes: (1) Based on the comparison of field to laboratory readings, oxygen to balance gas ratios, and historical concentrations, the sample was determined to be suspect due to oxygen introduction which likely occurred during sample collection or laboratory analytical methods. (2) MDNR also collected duplicate LFG samples at these locations during this sampling period. (3) Based on the oxygen verification readings taken with an Envision meter, it was determined there is a sample train leak. (4) Based on the oxygen verification readings taken with an Envision meter, it was determined that the readings are accurate. (5) Flare station gas concentration data is an average of FL-100, FL-120, and FL-140. (6) Flare station gas concentration data is an average of Outlets 1 & 2. (7) Flare station gas concentration based on data from Outlet B.

Well Name	Date Sampled	Methane	CO ₂	O₂/Argon	Nitrogen	Hydrogen	Carbon Monoxide	Comments
				(%)	•	•	(ppm)	1
				South Quarry				
GEW-010	11/11/2015	53	42	ND	3.9	0.6	50	
GEW-010	12/16/2015	54	40	ND	4.4	ND	35	
GEW-010	1/26/2016	53	43	ND	3.0	0.2	ND	
GEW-010	2/16/2016	50	41	1.6	6.5	0.2	31	See Note 4
GEW-010	3/3/2016	38	50	ND	9.2	1.7	130	
GEW-022R	11/12/2015	0.8	65	ND	ND	30	4,800	
GEW-022R	3/9/2016	0.7	65	ND	ND	30	4,300	
GEW-028R	11/13/2015	0.1	59	ND	4.9	34	3,600	
GEW-028R	1/26/2016	0.1	60	1.5	5.1	33	3,600	
GEW-028R	3/9/2016	0.1	61	ND	ND	34	4,300	
GEW-038	11/11/2015	0.2	33	9.8	35	21	2,100	
GEW-038	12/16/2015	0.2	33	10	36	20	2,100	See Note 4
GEW-038	1/26/2016	0.3	56	2.2	8	33	3,200	
GEW-038	2/16/2016	0.3	44	6.6	24	25	2,600	See Note 4
GEW-038	3/3/2016	0.3	44	7.4	27	21	2,500	
GEW-039	11/11/2015	39	55	ND	ND	2.7	170	
GEW-039	12/16/2015	37	54	ND	4.5	3.3	150	
GEW-039	1/26/2016	42	56	ND	ND	0.7	52	
GEW-039	2/16/2016	42	55	ND	ND	0.9	75	
GEW-039	3/3/2016	39	56	ND	ND	2	160	
GEW-056R	11/11/2015	14	42	ND	24	18	1,100	
GEW-056R	12/16/2015	1.8	54	ND	5.8	37	2,000	
GEW-056R	1/26/2016	16	39	ND	31	13	700	
GEW-056R	2/16/2016	20	38	ND	30	10	620	
GEW-056R	3/3/2016	17	39	ND	32	11	610	
GEW-057R	11/11/2015	0.5	53	ND	3.8	40	2,800	
GEW-057R	1/14/2016	0.4	54	ND	ND	40	2,200	
GEW-058	11/11/2015	3.5	48	3.6	14	30	2,100	See Note 3
GEW-058	1/14/2016	3.8	54	ND	5.5	35	2,100	
GEW-058A	11/11/2015	0.4	49	3.3	12	35	2,500	
GEW-058A	1/14/2016	0.3	51	2	7.1	39	2,500	
GEW-058A	3/9/2016	0.5	43	4.9	18	33	2,100	
GEW-059R	11/11/2015	0.8	51	ND	4.4	41	1,800	
GEW-059R	1/14/2016	0.9	48	1.9	6.9	41	1,900	See Note 3
GEW-059R	3/9/2016	1.3	50	ND	4.4	42	2,000	
GEW-065A	11/12/2015	0.4	58	ND	ND	37	3,200	
GEW-065A	1/14/2016	0.4	58	ND	ND	36	2,900	
GEW-082R	11/12/2015	0.9	55	ND	ND	40	2,300	
GEW-082R	1/14/2016	0.8	56	ND	ND	40	2,000	
GEW-082R	3/9/2016	0.8	54	ND	ND	40	2,000	
GEW-086	11/12/2015	10	34	8.7	44	2.7	430	
GEW-090	11/12/2015	5.5	49	ND	3.6	40	2,200	
GEW-090	1/26/2016	5	50	ND	ND	42	1,900	
GEW-090	3/9/2016	7.3	49	ND	ND	39	2,100	
GEW-102	11/13/2015	2.1	59	ND	3.3	34	2,100	
GEW-102	1/14/2016	2.3	60	ND	ND	34	1,700	
GEW-102	3/9/2016	1.3	56	ND	3.4	36	1,400	
GEW-104	11/13/2015	0.4	43	5.7	21	29	1,500	
GEW-109	11/11/2015	5.6	60	ND	ND	31	2,400	
GEW-109	12/16/2015	3.6	42	5	24	25	1,500	See Note 3
GEW-109	1/26/2016	2.3	36	7.9	34	19	1,300	See Note 4
GEW-109	2/16/2016	3.4	63	ND	ND	32	2,300	000 11010 4
GEW-109	3/3/2016	11	46	2.9	21	19	1,100	
GEW-109	11/11/2015	7.8	43	4.1	23	22	1,100	
OF 44-110	11/11/2013	1.0	+3	4.1	23		1,400	1

Well Name	Date Sampled	Methane	CO ₂	O ₂ /Argon	Nitrogen	Hydrogen	Carbon Monoxide	Comments
			l	(%)	1		(ppm)	1
GEW-110	1/26/2016	4.2	23	11	51	11	630	See Note 4
GEW-110	2/16/2016	7	34	9	36	14	810	See Note 4
GEW-110	3/3/2016	2	36	8	32	21	1,200	
GEW-116	11/12/2015	2.8	50	6.2	22	17	1,800	
GEW-117	11/12/2015	3.7	66	ND	4.8	22	2,600	
GEW-120	11/12/2015	7.6	68	ND	ND	21	2,100	
GEW-120	1/14/2016	15	69	ND	ND	11	880	
GEW-120	3/2/2016	13	60	1.6	14	11	950	
GEW-121	11/12/2015	2.3	46	5	18	28	2,200	See Note 3
GEW-121	1/14/2016	3.8	60	ND	ND	33	2,600	
GEW-121	3/2/2016	4.5	61	ND	ND	31	2,600	
GEW-122	11/12/2015	5.3	55	ND	ND	35	2,800	
GEW-122	1/14/2016	3.5	57	ND	ND	37	3,000	
GEW-122	3/2/2016	5.2	56	ND	3.1	34	2,900	
GEW-123	11/12/2015	1.6	51	4.9	17	24	3,200	See Note 3
GEW-124	11/13/2015	7	61	ND	ND	28	2,100	
GEW-124	1/15/2016	,	62	ND	ND	27	1,900	
GEW-124	3/2/2016	7.2	63	ND	2.9	26	1,800	
GEW-125	11/12/2015	0.5	59	ND	ND	36	3,600	
GEW-126	11/12/2015	8.2	54	ND	ND	33	3,300	
GEW-126	1/14/2016	6.2	54	ND	ND	36	3,500	
GEW-126	3/2/2016	10	56	ND	ND	30	3,200	
GEW-127	11/13/2015	0.4	62	ND	ND	33	4,100	
GEW-127	1/14/2016	0.3	65	ND	ND	32	4,400	
GEW-127	3/2/2016	1.3	61	1.6	5.6	29	4,100	
GEW-128	11/13/2015	0.7	61	ND	ND	34	3,800	
GEW-128	1/14/2016	0.9	64	ND	ND	32	3,600	
GEW-128	3/2/2016	6.5	66	ND	ND	25	2,800	
GEW-129	11/13/2015	0.7	58	ND	3.3	36	3,400	
GEW-129	1/14/2016	1.0	62	ND	ND	34	3,300	
GEW-129	3/2/2016	5.4	59	ND	ND	32	3,000	
GEW-131	11/12/2015	20	47	ND	4.6	26	1,700	
GEW-131	1/26/2016	15	51	ND	ND	31	2,100	
GEW-131	3/2/2016	10	47	3.4	12	27	2,200	
GEW-132	11/12/2015	6.9	43	5.9	26	17	1,200	See Note 4
GEW-132	1/14/2016	8.7	50	2.9	15	23	1,700	
GEW-132	3/2/2016	7.4	49	3.4	19	20	1,700	
GEW-133	11/12/2015	0.4	53	3	11	32	3,800	
GEW-134	11/12/2015	11	43	5.8	28	11	770	See Note 1 and 3
GEW-134	1/14/2016	17	58	ND	13	11	750	
GEW-135	11/13/2015	4.8	47	4.2	15	28	1,500	See Note 3
GEW-137	11/12/2015	11	29	6.6	52	0.6	71	See Note 3
GEW-137	1/14/2016	13	36	ND	49	0.3	36	
GEW-137	3/4/2016	14	44	ND	39	1	ND	
GEW-138	11/12/2015	2.8	23	10	56	8	670	
GEW-138	1/15/2016	13	50	2.2	25	9.2	730	See Note 4
GEW-138	3/4/2016	14	65	ND	7.8	12	1,300	
GEW-139	11/13/2015	0.9	47	4	19	29	3,300	
GEW-139	1/14/2016	1.4	54	1.8	6.6	35	3,600	
GEW-139	3/4/2016	1	60	ND	ND	35	4,000	
GEW-140	1/15/2016	1.7	60	ND	ND	35	3,300	
GEW-140	3/4/2016	9.4	58	ND	3.7	28	2,000	
GEW-141	11/13/2015	1.7	60	1.6	5.5	30	3,500	See Note 1 and 3
GEW-141	1/14/2016	1.1	60	ND	ND	33	3,300	
GEW-141	3/4/2016	1.3	62	ND	ND	32	3,900	

Well Name	Date Sampled	Methane	CO ₂	O₂/Argon	Nitrogen	Hydrogen	Carbon Monoxide	Comments
	•		l	(%)			(ppm)	
GEW-142	11/13/2015	0.2	51	4.1	15	29	3,500	
GEW-143	11/13/2015	0.2	49	3.3	12	35	3,200	
GEW-144	11/13/2015	0.8	56	1.9	6.6	33	3,500	
GEW-145	11/13/2015	1.7	52	2.9	10	32	2,700	See Note 3
GEW-145	3/4/2016	4	56	ND	3.5	35	2,400	
GEW-146	11/12/2015	3.1	18	13	64	2	220	
GEW-147	11/13/2015	5.1	51	ND	3.6	38	2,300	
GEW-147	1/15/2016	4.9	54	ND	3.5	36	2,000	
GEW-147	3/9/2016	10	49	ND	6.8	32	1,900	
GEW-149	11/12/2015	9.6	55	2.4	14	18	1,600	See Note 1
GEW-149	3/9/2016	6.8	35	8.5	38	11	970	See Note 4
GEW-149 GEW-150	11/13/2015	9	60	2	7.9	20	1,600	See Note 4
GEW-150	1/14/2016	4	63	1.9	6.6	23	1,700	See Note 3
GEW-150	3/9/2016	4	27	1.9	45	11	830	See Note 3
GEW-151	11/12/2015	11	56	ND	ND	28	2,200	Coo Note 4 =: 1
GEW-152	11/13/2015	4.1	49	2.3	8.2	35	2,900	See Note 1 and 3
GEW-152	3/9/2016	6.2	47	2.2	7.9	35	2,800	
GEW-153	11/13/2015	20	45	ND	19	15	580	
GEW-153	3/9/2016	23	45	ND	12	18	810	
GEW-154	1/15/2016	21	33	ND	20	24	850	
GEW-154	3/9/2016	14	24	11	45	5.7	270	
GEW-155	3/9/2016	7.9	37	8.9	41	4.8	430	
GEW-156	11/12/2015	4.6	37	9.1	40	9.4	1,100	
GEW-159	3/9/2016	13	43	ND	35	7.8	660	
GIW-01	11/13/2015	2.6	66	ND	4.4	25	2,700	
GIW-01	12/9/2015	2.5	68	ND	ND	26	2,500	
GIW-01	1/26/2016	0.5	16	17	60	6.6	580	See Note 4
GIW-01	2/16/2016	1.7	61	2.7	9.8	24	2,500	See Note 4
GIW-01	3/3/2016	2.3	70	ND	ND	23	2,500	
GIW-02	11/13/2015	4.7	22	12	55	5.8	370	See Note 1
GIW-02	12/10/2015	5.7	33	9	44	8.5	610	See Note 4
GIW-02	1/26/2016	6.4	28	9.7	47	8.3	510	See Note 4
GIW-02	2/17/2016	8	40	7.8	33	10	620	See Note 4
GIW-02	3/3/2016	6.3	30	11	48	3.9	290	
GIW-03	11/13/2015	0.2	38	8.3	30	23	2,200	
GIW-03	12/10/2015	0.1	24	13	47	14	1,300	See Note 4
GIW-03	1/26/2016	0.4	48	4.7	17	29	2,500	See Note 4
GIW-03	2/17/2016	0.3	36	9.3	33	21	2,100	See Note 4
GIW-03	3/3/2016	0.1	8.2	19	69	2.9	460	
GIW-04	11/13/2015	0.5	41	5	18	35	2,200	
GIW-04	12/10/2015	0.5	35	6.9	25	32	1,900	See Note 4
GIW-04	1/26/2016	0.5	50	1.8	6.3	41	2,300	See Note 4
GIW-04	2/17/2016	0.6	43	4.2	15	36	2,300	See Note 3
GIW-04	3/3/2016	0.4	42	3.5	12	41	1,700	See Note 3
GIW-05	11/13/2015	2.6	58	ND	ND	37	1,900	
GIW-05	12/9/2015	2.3	51	2.3	8.2		1,700	See Note 3
GIW-05	1/26/2016	1.7	56	1.7	5.9	35 34	1,700	See Note 3
GIW-05 GIW-05							-	See Note 4
	2/16/2016	2.2	57 56	ND	4.7	34	1,700	
GIW-05	3/3/2016	2.8	56	1.5	5.4	33	1,500	
GIW-06	11/13/2015	0.9	56	1.8	6.2	34	1,700	0- 11 - 1
GIW-06	12/10/2015	1	56	1.8	6.3	34	1,600	See Note 4
GIW-06	1/27/2016	1	59	ND	ND	36	1,500	
GIW-06	2/17/2016	1.1	59	ND	ND	36	1,500	
GIW-06	3/2/2016	1.1	61	ND	4.1	31	1,500	
GIW-07	11/13/2015	30	53	2.2	7.9	6.9	660	

Well Name	Date Sampled	Methane	CO ₂	O₂/Argon	Nitrogen	Hydrogen	Carbon Monoxide	Comments
			•	(%)	•		(ppm)	
GIW-07	12/10/2015	26	58	ND	4.5	9.6	870	
GIW-07	1/27/2016	29	59	ND	3	8.6	660	
GIW-07	2/17/2016	15	68	ND	ND	15	1,500	
GIW-07	3/2/2016	19	42	6.9	25	7.2	710	
GIW-08	11/13/2015	19	56	4	15	5.4	740	
GIW-08	12/9/2015	24	59	2	10	4.7	570	
GIW-08	12/10/2015	24	63	ND	4.9	6.7	860	See Note 2
GIW-08	1/27/2016	26	59	ND	13	2.2	320	
GIW-08	2/17/2016	25	62	ND	10	2.2	360	
GIW-08	3/2/2016	19	66	ND	12	1.7	290	
GIW-09	11/13/2015	3.9	13	16	64	2.4	220	
GIW-09	12/10/2015	5	21	14	55	5.4	340	See Note 4
GIW-09	1/27/2016	11	31	9.3	40	8.9	590	See Note 4
GIW-09	2/17/2016	6.2	17	14	57	4.9	320	See Note 4
GIW-09	3/2/2016	2.4	17	15	60	5.4	400	
GIW-10	11/13/2015	1.3	50	ND	4.5	42	3,200	
GIW-10	12/10/2015	0.4	42	5.1	18	34	2,500	See Note 1
GIW-10	1/26/2016	0.3	31	7.7	28	32	2,100	See Note 4
GIW-10	2/17/2016	0.4	53	ND	ND	44	3,200	
GIW-10	3/3/2016	5.6	47	ND	15	31	1,700	
GIW-11	11/13/2015	3.2	48	4.2	17	27	2,500	
GIW-11	12/9/2015	2.4	53	2.7	12	29	2,500	See Note 4
GIW-11	1/26/2016	4	46	4.1	19	27	1,900	See Note 4
GIW-11	2/16/2016	4.4	39	6	29	21	1,700	See Note 4
GIW-11	3/3/2016	5.7	40	5.2	34	15	1,600	
GIW-12	11/13/2015	4.3	21	12	56	6.5	530	
GIW-12	12/9/2015	4.2	24	10	55	6.5	470	See Note 4
GIW-12	1/26/2016	4.2	20	11	61	4.9	320	See Note 4
GIW-12	2/16/2016	5.3	20	12	60	2.6	240	See Note 4
GIW-12	3/3/2016	8	25	8.5	54	4.3	340	
GIW-13	11/13/2015	4.3	63	ND	3.2	28	2,500	
GIW-13	12/9/2015	10	58	ND	5.7	25	1,700	
GIW-13	1/26/2016	11	58	ND	6.8	22	1,500	
GIW-13	2/16/2016	13	58	ND	7.6	21	1,500	
GIW-13	3/3/2016	8.7	62	ND	7.6	21	1,700	
Flare Station ²	11/3/2015	10.7	37.3	8	32.0	10.7	1,100	See Note 5
Flare Station ²	12/1/2015	10.6	36.2	8.1	33.6	10.5	1000	See Note 6
Flare Station ²	1/5/2016	11.2	37.6	7.7	32.1	10.7	1,000	See Note 6
Flare Station ²	2/2/2016	11.8	37.7	7.8	31.0	10.9	1,050	See Note 6
Flare Station ²	3/2/2016							

Notes: (1) Based on the comparison of field to laboratory readings, oxygen to balance gas ratios, and historical concentrations, the sample was determined to be suspect due to oxygen introduction which likely occurred during sample collection or laboratory analytical methods. (2) MDNR also collected duplicate LFG samples at these locations during this sampling period. (3) Based on the oxygen verification readings taken with an Envision meter, it was determined there is a sample train leak. (4) Based on the oxygen verification readings taken with an Envision meter, it was determined that the readings are accurate. (5) Flare station gas concentration data is an average of FL-100, FL-120, and FL-140. (6) Flare station gas concentration data is an average of Outlets 1 & 2. (7) Flare station gas concentration based on data from Outlet B.

ND = Analyte not detected in sample.

² = Flare Station Inlet measured at EPA Method 2 flow port (blower outlet)

March 23, 2016

Republic Services

ATTN: Jim Getting

Bridgeton, MO 63044

13570 St. Charles Rock Rd.

ADE-1461 EPA Methods TO3, TO14A, TO15 SIM & SCAN **ASTM D1946**

TX Cert T104704450-14-6 EPA Methods TO14A, TO15

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

LABORATORY TEST RESULTS

Project Reference: Bridgeton Landfill

Lab Number:

H031105-01/74

Enclosed are results for sample(s) received 3/11/16 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the NELAC Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Jim Getting, Mike Lambrich, Ryan Ayer, Nicholas Bauer and David Randall, Weaver Consultants Group, on 3/22/16.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

Enclosures

		10141	200		18501 E. Ga	le Ave., Suite 130			CHA	NO.	CHAIN OF CUSTODY RECORD	ECORD.		
	こうロー	ALLI ECHNOLOGY	トラつ		City of Indus	City of Industry, CA 91748	TUR	TURNAROUND TIME	TIME	1	DELIVERABLES	PAGE:	1 OF	6
To the second	Labora	Laboratories, Inc.			Ph: 626-964-4032	4032	Standard		48 hours			Condition upon receipt:	on receipt:	
777				1/01	FX: 626-964-5832	5832	Same Day		72 hours				Sealed Yes	□ 8
Project No.:							24 hours		96 hours		Level 3		Intact Yes	□ %
Project Name:	Bridgeton Landfill	ındfill					Other:		5 day		Level 4		Chilled	O geb —
Report To:	Jim Getting							BILLING	NG			ANALYSIS REQUEST	EQUEST	
Company:	Republic Services	rvices					P.O. No.:	PO4862452	452					
Street:	13570 St. CI	13570 St. Charles Rock Rd.	8			O.	Bill to:	Republi	Republic Services	SS				
City/State/Zip:	Bridgeton, MO 63044	AO 63044						Attn: Jin	Attn: Jim Getting					
Phone& Fax:	314-683-3921	11					13570 St.	Charles Rock Rd	Rock R	ď.				
e-mail:	JGetting@	JGetting@republicservices.com	ss.com				Bridgeton, MO 63044	MO 63(144		71-			
											1 '0			
I AB IISE ONI V	> INC	Canis	Canister Pressures ("hg)	res ("hg)		SAMPI E IDENTIFICATION	alqi at,	NE Ibre	AINER TYPE	TRIX -AVA=	О + 9°			
		Canister ID	Sample Start	Sample End	Lab Receive		NAS 4₫			0.0000	IT.			
H0311C	10-50	A7805	-20.7	-5	-3.5	GEW-121	3/2/2016	837	၁	LFG N	NA X			
	-02	4 655 FV	-20.8	-5	-2.9	GEW-127	3/2/2016	1025	v	LFG N	X NA			
	-03	3156	-20.5	-5	-3.5	GEW-129	3/2/2016	1049	C	LFG 1	X NA			
	ho-	A7648	-20.6	-Ş	-4	GIW-6	3/2/2016	1552	ပ	LFG	X X			
	50-	A8057	-20.4	-5	-4	GIW-7	3/2/2016	1606	O	LFG	X ×			
	90-	A7814	-20.4	ç	4-	GIW-8	3/2/2016	1619	ပ	LFG	X X			
	Lo-	A8078	-20.4	-5	-4	GIW-9	3/2/2016	1630	O	LFG	X X			
	80-	5816	-20.8	τĊ	-4	GEW-120	3/2/2016	832	O	LFG	X AN			
7	8	A7819	-20.7	ယှ	-3.5	GEW-122	3/2/2016	850	O	LFG	NA X		-	
AUTHORIZATION TO PERFORM WORK: Dave Penoyer	ветови мовк. Ва	ve Penoyer				COMPANY: Republic Services	DATE/TIME:		COMMENTS	VTS				
SAMPLED BY: Ryan Ayers	Ayers					COMPANY: Republic Services	DATE/TIME							
RELINQUISHED BY	The same	Closh		3-10-16	80		DATE/TIME							
RELINQUISHED BY	(Pal	X				6 40	DATETIME	3952						
RELINQUISHED BY		1				DATE/RECEIVED BY	DATE/TIME							
METHOD OF TR	RANSPORT (cir	METHOD OF TRANSPORT (circle one): Walk-In	In FedEx	UPS Cot	Courier ATLI	Other			V					
DISTRIBUTION:	White & Yellow	DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy	nk - Customer	Copy			Preserva	tion: H=H	N=Nor	ie / Cont	Preservation: H=HCI N=None / Container: B=Bag C=Can V=VOA O=Other	n V=VOA 0		Rev. 03 - 5/7/09

- X X		0 1014			18501 E. Ga	18501 E. Gale Ave., Suite 130			CHA	NO.	CHAIN OF CUSTODY RECORD	DY RE	CORD			
7	ニルピニ	THE ECHNOLOGY	とりつ		City of Indus	City of Industry, CA 91748	TUR	TURNAROUND TIME) TIME		DELIVERABLES	ABLES	PAGE:	2	OF	6
	Labora	Laboratories, Inc.			Ph: 626-964-4032	4032	Standard		48 hours		EDD		Condition upon receipt:	on receip		
Š				12/	Fx: 626-964-5832	5832	Same Day		72 hours		EDF			Sealed Yes	П	□ 8
roject No.:	8						24 hours		96 hours		Level 3			Intact Yes	_	□ ≗
roject Name:	Bridgeton Landfill	ndfill					Other:		5 day		Level 4			Chilled .		deg (
eport To:	Jim Getting							BILLING	NG			A	ANALYSIS REQUEST	EQUES	_	
ompany:	Republic Services	vices					P.O. No.:	PO4862452	2452							
treet:	13570 St. Ch	13570 St. Charles Rock Rd.					Bill to:	Republi	Republic Services	ss	_					
ity/State/Zip:	Bridgeton, MO 63044	10 63044						Attn: Jir	Attn: Jim Getting	1400						
hone& Fax:	314-683-3921	7					13570 St. Charles Rock Rd.	Charles	Rock R	d.						
-mail:	JGetting@r	JGetting@republicservices.com	S.com	A .			Bridgeton, MO 63044	MO 630)44		12					
											1,0					
I AB IISE ONI Y	F ONI Y	Canist	Canister Pressures ("hg)	res ("hg)		SAMPI E IDENTIFICATION	alqn at/	MPLE	AINER /TYPE	XIAT	tе + с ои					
		Canister ID	Sample Start	Sample End	Lab Receive		NAS \Q		CONT		II.					
403110	031105-10	A7764	-20.9	-5	-3	GEW-124	3/2/2016	1005	S	LFG 1	NA X					
	- 11 -	A7809	-20.7	5-	-4	GEW-126	3/2/2016	1014	O	LFG	NA ×					
	71-	5833	-20.5	-5	-4	GEW-128	3/2/2016	1026	O	LFG	X X					
	-13	A7770	-20.4	-5	-3.5	GEW-131	3/2/2016	1048	O	LFG	NA X					
	h1 -	A7761	-20.9	-5	-4	GEW-132	3/2/2016	1116	S	LFG	X X					
	51-	5320	-20.2	-5	5-	GEW-39	3/3/2016	935	O	LFG	X X					
	91-	3129	-19.3	-5	+-	GEW-109	3/3/2016	944	ပ	LFG	NA X					
	41-	A7815	-20.7	-5	-4	GIW-10	3/3/2016	744	ပ	LFG	NA X					
7	81-	5305	-20.5	-5	-4	GIW-5	3/3/2016	756	ပ	LFG	NA ×					
OT MORTANDOUR	Dave Penover	ve Penover				COMPANY: Republic Services	DATE/TIME:		COMMENTS	VTS						

AUTHORIZATION TO PERFORM WORK: Dave Penoyer			company: Republic Services	DATE/TIME:	COMMENTS	
SAMPLED BY: Ryan Ayers			COMPANY: Republic Services	DATE/TIME		
RELINQUISHED BY 12	3-10-16	3-10-16 800	DATE/RECEIVED BY	DATE/TIME		
RELINGUISHED BY THE CONTROL OF THE C			DATE RECEIVED BY	WIK OTSZ		
RELINQUISHED BY			DATE/RECEIVED BY	DATE/TIME		
METHOD OF TRANSPORT (circle one): Walk-In FedEx UPS Courier ATLI	FedEx UPS	Courier ATLI	Other			
DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy	- Customer Copy			Preservation: H=H	Preservation: H=HCI N=None / Container: B=Bag C=Can V=VOA O=Other Rev. 03 - 5/7/09	Rev. 03 - 5/7/09

DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy

					18501 E Co	18501 E. Cole Ave. Suite 130			CH	ONI	F CUS	CHAIN OF CUSTODY RECORD	CORD			
	TECT	TECHNOLOGY	767		City of Indus	City of Industry, CA 91748	TUR	TURNAROUND TIME	D TIME	Г	DELIVE	DELIVERABLES	PAGE:	3	OF	6
	Labor	Laboratories, Inc.			Ph: 626-964-4032	-4032	Standard		48 hours		EDD		Condition upon receipt:	oon receip	#	
3				24	Fx: 626-964-5832	-5832	Same Day		72 hours		EDF			Sealed Yes	√es□	□ 8
Project No.:							24 hours		96 hours		Level 3	_3 		Intact	Intact Yes	□ 8
Project Name:	Bridgeton Landfill	andfill					Other:		5 day		Level 4	4		Chilled		— deg C
Report To:	Jim Getting							BILLING	ING		Н	٨	ANALYSIS REQUEST	REQUES	T	
Company:	Republic Services	rvices					P.O. No.:	PO4862452	2452					1		
Street:	13570 St. C	13570 St. Charles Rock Rd.					Bill to:	Republ	Republic Services	es						
City/State/Zip:	Bridgeton, MO 63044	MO 63044						Attn: Jir	Attn: Jim Getting			_				
Phone& Fax:	314-683-3921	21					13570 St. Charles Rock Rd.	Charles	Rock R	.p						
e-mail:	JGetting@	JGetting@republicservices.com	s.com				Bridgeton, MO 63044	MO 63	044		- CI	71				
												1.'0				
LAB USE ONLY	ONLY	Canist	Canister Pressures ("hg)	ires ("hg)		SAMPLE IDENTIFICATION	∃J9M ∃TA	.IME Wbre	A3NIAT 39YT\\	XIATA	SERVA- NOI	de + C				
		Canister ID	Sample Start	Sample End	Lab Receive		AS a	AS T			L	61.0				
HOSIJOS	b+ 5	5907	-20.4	-5	15-	GIW-11	3/3/2016	833	ပ	LFG	NA	×			П	
	07-	6131	-20.5	-5	-4.5	GIW-12	3/3/2016	843	O	LFG	NA)	×				
	-11	A7776	-20.3	-5	-4	GIW-13	3/3/2016	851	ပ	LFG	NA)	×				
	<i>11</i> -	A7792	-20.3	-5	5-	GIW-1	3/3/2016	206	С	LFG	NA)	×				
	52-	5832	-20.7	-5	-4	GEW-38	3/3/2016	924	၁	LFG	NA	×				
	h2-	A7807	-20.3	-5	-4	GEW-56R	3/3/2016	1403	၁	LFG	NA	×				
	-25	6152	-20.1	-5	- 5	GEW-10	3/3/2016	1427	O	LFG	NA	×				
	-26	5929	-20.1	-5	- 5	GEW-110	3/3/2016	1439	O	LFG	NA V	×				
>	12-	6146	-20.1	ç	-5	GIW-4	3/3/2016	1506	ပ	LFG	NA	×				
AUTHORIZATION TO PERFORM WORK: Dave Penoyer	RFORM WORK: Da	ave Penoyer				company: Republic Services	DATE/TIME:		COMMENTS	NTS						

DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy

METHOD OF TRANSPORT (circle one): Walk-In FedEx UPS Courier ATLI

Other

Preservation: H=HCI N=None / Container: B=Bag C=Can V=VOA O=Other Rev. 03 - 5/7/09

DATE/TIME DATE/TIME

COMPANY: Republic Services

DATE/RECEIVED BY

800

3-10-16

AMPLED BY: Ryan Ayers
FELINGUISHED BY
FELINGUISHED BY
FELINGUISHED BY

					18501 F Gale	Ave Suite 130			CHA	ō Z	CHAIN OF CUSTODY RECORD	RECORD			
	I ECT	ILECHNOLOGY	人 () ()		City of Indus	stry, CA 91748	TUR	TURNAROUND TIME	TIME	T	DELIVERABLES	PAGE:	4	OF	o
E	Labora	Laboratories, Inc.			Ph: 626-964	Ph: 626-964-4032	Standard		48 hours		EDD	Condition	Condition upon receipt:	ft.	
3					Fx: 626-964-5832	-5832	Same Day		72 hours		EDF		Sealed Yes	_	□ 8
roject No.:							24 hours		96 hours		Level 3		Intact	Intact Yes	□ %
roject Name:	Bridgeton Landfill	ındfill					Other:	4,	5 day		Level 4		Chilled _		deg C
eport To:	Jim Getting							BILLING	NG			ANALYSIS REQUEST	REQUES	T	
ompany:	Republic Services	rvices					P.O. No.:	PO4862452	452		_				
treet:	13570 St. CI	13570 St. Charles Rock Rd.					Bill to:	Republic	Republic Services	SS					
ity/State/Zip:	Bridgeton, MO 63044	AO 63044						Attn: Jin	Attn: Jim Getting						
hone& Fax:	314-683-3921	11					13570 St. Charles Rock Rd.	Charles	Rock R	d.					
mail:	JGetting@r	JGetting@republicservices.com	s.com				Bridgeton, MO 63044	MO 630	144		ZI				
											н 'c				
LAB USE ONLY	E ONLY	Canist	Canister Pressures ("hg)	res ("hg)		SAMPLE IDENTIFICATION	∃J9M ∃TA	MPLE	ABNIAT AYTYPE	SERVA-	1 € + С				
		Canister ID	Sample Start	Sample End	Lab Receive		AS a	A2 T	CON		L	1			
HOSILOS	5 -28	5268	-20	-5	5-	GIW-3	3/3/2016	1517	၁	LFG	NA X				
	- 29	A8090	-20.2	-5	h -	GIW-2	3/3/2016	1529	၁	LFG	X AN				
	-30	5840 FV	-20.7	-5	-3.5	GEW-140	3/4/2016	922	C	LFG	X X				
	-31	A7651	-20.7	-5	h-	GEW-145	3/4/2016	1016	S	LFG	NA X				
	-32	A7802	-20.6	-5	h-	GEW-137	3/4/2016	839	S	LFG	X AN				
	-33	6160	-21	-5	h-	GEW-138	3/4/2016	911	S	LFG	X AN	_			
	-34	A8059	-20.6	-5	-4.5	GEW-139	3/4/2016	920	O	LFG	NA X				
	-35	A7793	-20.7	-5	h -	GEW-141	3/4/2016	935	O	LFG	X NA				
>	-36	A8098	-19.5	ç	01	GEW-7	3/7/2016	1355	O	LFG	NA X	-			
JTHORIZATION TO	лнояідатіом то рекғоли work: Dave Penoyer	ve Penoyer				COMPANY: Republic Services	DATE/TIME:		COMMENTS	VTS					

METHOD OF TRANSPORT (circle one): Walk-In FedEx UPS Courier ATLI DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy

Other

Preservation: H=HCI N=None / Container: B=Bag C=Can V=VOA 0=Other Rev. 03 - 5/7/09

DATE/TIME

COMPANY: Republic Services

AMPLED BY: Ryan Ayers

RELINQUISHED BY

DATE/RECEIVED BY

		9 : 0 : 4:			18501 F Ga	e Ave Suite 130			핑	O N	CHAIN OF CUSTODY RECORD	DY REC	ÖRD			7
	ことに	JI ECHNOLOGY)GY	-	City of Industry,	City of Industry, CA 91748	TUR	TURNAROUND TIME) TIME	٦	DELIVERABLES	BLES	PAGE:	5 OF	Р.	
	Labora	Laboratories, Inc.			Ph: 626-964-4032	4032	Standard		48 hours		EDD		Condition upon receipt:	n receipt:		
3				AL II	Fx: 626-964-5832	5832	Same Day		72 hours		EDF			Sealed Yes	2 □	
roject No.:							24 hours		96 hours		Level 3			Intact Yes	□ [®]	П
roject Name:	Bridgeton Landfill	ındfill					Other:		5 day		Level 4		2000	Chilled	ep	deg C
eport To:	Jim Getting							BILLING	ING			AN	ANALYSIS REQUEST	QUEST		
ompany:	Republic Services	vices					P.O. No.:	PO4862452	2452					_		
treet:	13570 St. CI	13570 St. Charles Rock Rd.					Bill to:	Republi	Republic Services	es				_		
ity/State/Zip:	Bridgeton, MO 63044	AO 63044						Attn: Jir	Attn: Jim Getting	-				_		
hone& Fax:	314-683-3921	7.					13570 St.	Charles Rock Rd	Rock F	.jq			_			
-mail:	JGetting@r	JGetting@republicservices.com	s.com				Bridgeton, MO 63044	MO 63(744		-15			_		
											1,0			_		
LAB USE ONLY	ONLY	Canist	Canister Pressures ("hg)	res ("hg)	92/1	SAMPLE IDENTIFICATION	∃J9M ∃TA	.IME 'Mbl'E	TAINER 39YT/YPE	XIATA	46 + C					
		Canister ID	Sample Start	Sample End	Lab Receive					2004Y	T					
H031105	-37	5906	-19.5	-5	9-	GEW-8	3/7/2016	1409	C	LFG	NA X					
	-38	5936	-19.8	-5	-65	GEW-9	3/7/2016	1420	C	LFG	NA X				_	
	-34	6143	-19.6	-5	9 -	GEW-55	3/7/2016	1433	С	LFG	NA X				_	
313	-40	A8065	-19.5	-5	9-	GEW-54	3/7/2016	1449	C	LFG	NA X				_	
	-41	6137	-19.3	-5	9-	GEW-53	3/7/2016	1512	C	LFG	NA X					
	24-	3834	-19.3	-5	-5.5	GEW-51	3/7/2016	1525	С	LFG	NA X					
	-43	A8097	-19.55	-5	-6	GEW-49	3/7/2016	1535	C	LFG	NA X					
	hh-	5304	-19.4	-5	-5	GEW-52	3/7/2016	1600	C	LFG	NA X					
>	54-	5269	-19.5	-5	5-	GEW-40	3/7/2016	902	C	LFG	NA X					
UTHORIZATION TO PE	тновідатіом то ревговім мовк; Dave Penoyer	ve Penoyer				COMPANY: Republic Services	DATE/TIME:		COMMENTS	NTS	-					
AMPLED BY: Ryan Ayers	Ayers					COMPANY: Republic Services	DATE/TIME									
ELINQUISHED BY	4-4	NOAD	S	3-10-16	800	DATE/RECEIVED BY	DATE/TIME									
ELINQUISHED BY	NEXT OF	D				DATE/RECEIVED BY	DATE/TIME	1982								
ELINQUISHED BY						DATE/RECEIVED BY	DATE/TIME									
METHOD OF TR	AETHOD OF TRANSPORT (circle one):	cle one): Walk-In	FedEx	UPS Cou	Courier ATLI	Other										\neg
DISTRIBUTION:	White & Yellow	JISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy	ık - Customer	Copy			Preserva	tion: H=H	CI N=No	ne / Cor	Preservation: H=HCl N=None / Container: B=Bag C=Can V=VOA 0=Other	g C=Can	V=VOA 0		Rev. 03 - 5/7/09	60

			1		18501 E. Ga	e Ave Suite 130			CH	N OF	CHAIN OF CUSTODY RECORD	RECORD		1	П
V	JI ECHNOLOGY	000	5		City of Industry,	City of Industry, CA 91748	TUR	TURNAROUND TIME	TIME	1	DELIVERABLES	PAGE:	9	OF 9	
	Laboratories, Inc.	es, Inc.			Ph: 626-964-4032	4032	Standard		48 hours		EDD	Condition	Condition upon receipt:		
3					Fx: 626-964-5832	5832	Same Day		72 hours		ED.		Sealed Yes	2 □	П
Project No.:							24 hours		96 hours		Level 3	_	Intact Yes	□ % □	П
Project Name:	Bridgeton Landfill						Other:		5 day		Level 4		Chilled	Ď	deg C
Report To:	Jim Getting							BILLING	NG			ANALYSIS	ANALYSIS REQUEST		
Company:	Republic Services	"					P.O. No.:	PO4862452	452						
Street:	13570 St. Charles Rock Rd.	s Rock Rd.					Bill to:	Republi	Republic Services	Se					
City/State/Zip:	Bridgeton, MO 63044	3044						Attn: Jin	Attn: Jim Getting						
Phone& Fax:	314-683-3921						13570 St. Charles Rock Rd	Charles	Rock R	d.					
e-mail:	JGetting@republicservices.com	olicservices.	com				Bridgeton, MO 63044	MO 630	44		21-				
											1,0			_	
		Caniste	Canister Pressures ("hg)	es ("hg)						300.00	N				
LAB USE ONLY		Canister ID	Sample Start	Sample End	Lab Receive	SAMPLE IDENTIFICATION	IMAS FAG	rmas Mit	CONTA NYTQ	ITAM BSBA9	оіт 94 6 10				
HOSILOS	-46	6158	-19.8	ς	5-	GEW-41R	3/7/2016	925	ပ	LFG	X ×			Н	
	A CY-	A7791	-19.7	ç	-5	GEW-42R	3/7/2016	935	O	LFG	NA X			-	
	84-	3126	-19.7	-5	-5	GEW-43R	3/7/2016	947	C	LFG N	NA X	ĸ			
	249	5813	-19.6	ç	5	GEW-44	3/7/2016	1000	ပ	LFG N	NA X				
	-50	6144	-19.6	5	5	GEW-45R	3/7/2016	1018	ပ	LFG	X X				
	-51	A8064	-19.8	ç	-5	GEW-46R	3/7/2016	1027	v	LFG	X X				
	-52 A	A8086	-19.5	ç	-55	GEW-2	3/7/2016	1339	ပ	LFG	NA X				
	-53	5916	-19	ç	-5.5	GEW-3	3/7/2016	1349	U	LFG	NA X				
>	HS-	4658	-19.2	-5	5.5	GEW-4	3/7/2016	1404	ပ	LFG	X X				
AUTHORIZATION TO PERFORM WORK:	ERFORM WORK: Dave Penoyer	noyer				company: Republic Services	DATE/TIME:		COMMENTS	NTS					
SAMPLED BY: Ryan Ayers	Ayers					COMPANY: Republic Services	DATE/TIME								
RELINQUISHED BY	2- Harris	A	3-10-16	110	800	DATE/RECEIVED BY	DATE/TIME								
RELINQUISHED BY	阳一	7				DATE RECEIVED BY 3	DATÉ/TIME	25							
RELINQUISHED BY						DATE/RECEIVED BY	DATE/TIME								
METHOD OF TR	METHOD OF TRANSPORT (circle one):	ne): Walk-In	FedEx	UPS Courier	rier ATLI	Other									
DISTRIBUTION:	DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy	Copies / Pink	- Customer	Copy			Preservat	ion: H=H(N=Nor	ie / Cont	Preservation: H=HCl N=None / Container: B=Bag C=Can V=VOA O=Other	an V=VOA	322.5	Rev. 03 - 5/7/09	60%

					18501 F G	18501 F Gale Ave Strife 130			CHAIN	N OF (OF CUSTODY RECORD	ECORD		
	TECH TECH	ATTECHNOLOGY) G Y		City of Industry,	try, CA 91748	TURN	TURNAROUND TIME	TIME	_	DELIVERABLES	PAGE:	7 OF	6
	Labora	Laboratories, Inc.			Ph: 626-964-4032	4032	Standard	3	48 hours		E00	Condition upon receipt:	on receipt:	
					Fx: 626-964-5832	5832	Same Day	77	72 hours		EDF		Sealed Yes	□ %
Project No.:							24 hours		96 hours		Level 3		Intact Yes	□ ºN
Project Name:	Bridgeton Landfill	ındfill					Other:	2	5 day	_	Level 4		Chilled	C deg C
Report To:	Jim Getting							BILLING	9			ANALYSIS REQUEST	EQUEST	
Company:	Republic Services	rvices				*	P.O. No.:	PO4862452	52					
Street:	13570 St. CI	13570 St. Charles Rock Rd.					Bill to:	Republic Services	Services					
City/State/Zip:	Bridgeton , MO 63044	MO 63044						Attn: Jim Getting	Getting					
Phone& Fax:	314-683-3921	n					13570 St. (Charles Rock Rd	ock Rd					
e-mail:	JGetting@	JGetting@republicservices.com	S.com				Bridgeton, MO 63044	MO 6304	4		ZH 'C			
	X	Canisi	Canister Pressures ("hg)	res ("hg		T I I I I I I I I I I I I I I I I I I I			.XPE	-AVA:	9 + C			
LAB USE ONLY	= ONLY	Canister ID	Sample Start	Sample End	Lab Receive	SAMPLE IDENTIFICATION	IMAS 'AQ	IMA2 MIT	CONTA	ITAM BRBARA DIT				
HOSILOS	5-55	4657	-19.6	ç	9 -	GEW-47R	3/7/2016	1418	C	LFG NA	×			
	95-	3128	-19.3	-5	9-	GEW-5	3/7/2016	1431	C	LFG NA	×			
	-57	A7813	-19.5	-5	-5.5	GEW-48	3/7/2016	1504	C	LFG NA	×			
	-58	A7646	-19.2	\$	5-	GEW-6	3/7/2016	1513	C	LFG NA	×			
	-59	5309	-19.3	Ą.	-6	GEW-50	3/7/2016	1524	C	LFG NA	×			
	-60	3826	-19.5	ς	5-	GEW-147	3/9/2016	1004	C	LFG NA	×			
	19.	A7665	-19.7	ç	5	GEW-149	3/9/2016	1112	C	LFG NA	×			
	-62	A7643	-19.3	5	-5	GEW-150	3/9/2016	1130	C	LFG NA	×			
7	-63	A7767	-19.7	-5	9-	GEW-155	3/9/2016	1146	C	LFG NA	×			
AUTHORIZATION TO P.	AUTHORIZATION TO PERFORM WORK: Dave Penoyer	ive Penoyer				COMPANY: Republic Services	DATE/TIME:	0	COMMENTS	ည				
SAMPLED BY: Ryan Ayers	1 Ayers					COMPANY: Republic Services	DATE/TIME							
RELINQUISHED BY	S	Aven	N	3-10-16	800	DATE/RECEIVED BY	DATE/TIME							
RELINQUISHED BY	The the	\delta \d				DATE/RECEIVED BY	PATERTIME 199	184						
RELINQUISHED BY)				DATE/ RECBIVED BY	рателлие							
METHOD OF T	RANSPORT (cir	METHOD OF TRANSPORT (circle one): Walk-In	In FedEx	UPS Co	Courier ATLI	Other		П					- 1	
DISTRIBUTION	I: White & Yellow	DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy	nk - Customer	Copy			Preservat	on: H=HCl	N=None	/ Contair	Preservation: H=HCl N=None / Container: B=Bag C=Can V=VOA O=Other	IN V=VOA O		Rev. 03 - 5/7/09

			1		18501 E. Ga	18501 E. Gale Ave Suite 130			CHAI	NOFC	CHAIN OF CUSTODY RECORD	ECORD		
	一下の丁	A I ECHNOLOGY	という		City of Indus	City of Industry, CA 91748	TURN	TURNAROUND TIME	TIME	ā	DELIVERABLES	PAGE:	8 OF	6
	Labora	Laboratories, Inc.			Ph: 626-964-4032	4032	Standard	□ 4	48 hours	_	E00	Condition upon receipt:	on receipt:	
		Tages		[A1	Fx: 626-964-5832	5832	Same Day		72 hours		EDF		Sealed Yes	□ %
Project No.:							24 hours	» —	96 hours		Level 3		Intact Yes	□ §
Project Name:	Bridgeton Landfill	Ililli					Other:	5	5 day	_	Level 4		Chilled	deg C
Report To:	Jim Getting							BILLING	16			ANALYSIS REQUEST	EQUEST	
Company:	Republic Services	rvices					P.O. No.:	PO4862452	52					
Street:	13570 St. CI	13570 St. Charles Rock Rd.					Bill to:	Republic Services	Services	1941				
City/State/Zip:	Bridgeton, MO 63044	MO 63044						Attn: Jim Getting	Getting					
Phone& Fax:	314-683-3921	21					13570 St. C	Charles Rock Rd	Rock Rd	197-1-1				
e-mail:	JGetting@	JGetting@republicservices.com	ss.com				Bridgeton, MO 63044	MO 6304	14		ZH			
											0'		_	
LAB USE ONLY	ONLY	Canis	Canister Pressures ("hg)	res ("hg)	100	SAMPLE IDENTIFICATION	3J9MA2 3TAQ	BJAMA2 BMIT	SONTAINER QTY/TYPE XIGTAM	XIRTAM -AVA323F	1946 + C			
E Military		Canister ID	Sample Start	Sample End	Lab Receive		•			dd	.a		1	
H031105	49-1	5835	-19.4	-5	-5	GEW-154	3/9/2016	1214	O	LFG NA	×			
	-65	5821	-19.5	ç	5-	GEW-153	3/9/2016	1229	C	LFG NA	×			
	99-	A7810	-19	-5	-45	GEW-152	3/9/2016	1351	C	LFG NA	×			
は、大きなので	L9-	A7771	-19.8	-5	15	GEW-22R	3/9/2016	935	C	LFG NA	×			
	29-	A7816	-19.9	-5	5-	GEW-28R	3/9/2016	926	C	LFG NA	×			
	69-	A7762	-19.4	-5	5-	GEW-58A	3/9/2016	1018	C	LFG NA	×			
	01-	3827	-19.7	-5	-5	GEW-59R	3/9/2016	1027	C	LFG NA	×			7
,	16	A7778	-20	-5	-5	GEW-82R	3/9/2016	1046	S)	LFG NA	×			
>	-72	A8075	-19.6	-5	5-		3/9/2016	1150	C	LFG NA	×			
AUTHORIZATION TO PERFORM WORK: Dave Penoyer	вговы мовк. Da	ive Penoyer				COMPANY: Republic Services	DATE/TIME:	0	COMMENTS	မ				
SAMPLED BY: Ryan Ayers	Ayers					COMPANY: Republic Services	DATE/TIME							
RELINQUISHED BY	The state of	Jests	100	3-10-16	800	DATE/RECEIVED BY	DATE/TIME							
RELINGUISHED BY	Tr ()	X				DATE/RECENED BY 3/10	PATENTINE D	757						
RELINQUISHED BY	4					DATE/RECEIVED BY	DATE/TIME							
METHOD OF TRANSPORT (circle one):	VANSPORT (cir	rcle one): Walk-In	In FedEx	UPS Cou	Courier ATLI	Other		П						
DISTRIBUTION:	White & Yellow	DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy	nk - Customer	Copy	3		Preservati	ion: H=HC	N=None	/ Containe	Preservation: H=HCl N=None / Container: B=Bag C=Can V=VOA O=Other	n V=VOA 0=		Rev. 03 - 5/7/09

		()			18501 F G	le Ave Suite 130			CHA	NOF	CHAIN OF CUSTODY RECORD	ECORD		
	ATTI ECHNOLOGY		JG Y		City of Indus	City of Industry, CA 91748	TUR	TURNAROUND TIME	TIME	۵	DELIVERABLES	PAGE:	9 OF	6
	Labora	Laboratories, Inc.			Ph: 626-964-4032	4032	Standard		48 hours			Condition upon receipt:	in receipt:	
3				125	Fx: 626-964-5832	-5832	Same Day		72 hours				Sealed Yes	□ %
Project No.:							24 hours	。	96 hours		Level 3		Intact Yes	□ %
Project Name:	Bridgeton Landfill	ndfill					Other:	3	5 day		Level 4		Chilled	deg C
Report To:	Jim Getting							BILLING	NG.			ANALYSIS REQUEST	EQUEST	
Company:	Republic Services	vices					P.O. No.:	PO4862452	452					
Street:	13570 St. Ch	13570 St. Charles Rock Rd.					Bill to:	Republic	Republic Services					
City/State/Zip:	Bridgeton, MO 63044	IO 63044						Attn: Jim Getting	Getting					
Phone& Fax:	314-683-3921	1			*		13570 St.	Charles Rock Rd	Rock Rd	4				
e-mail:	JGetting@r	JGetting@republicservices.com	ss.com				Bridgeton, MO 63044	MO 630	44		21-			
											1 '0			
		Canis	Canister Pressures ("hg)	res ("hg)	1.00				3d.	-AV5	o +			
LAB USE ONLY	ONLY	Canister ID	Sample Start	Sample End	Lab Receive	SAMPLE IDENTIFICATION	qmas Itaq	IAMAS BMIT	CONTAIN VT/YTD	ATAM RBSBA9 ROIT	9 1 849			
Hosilos	S -73	A8068	-19.9	ç	5-	GEW-102	3/9/2016	1207	C	LFG NA	×			
→	ht-	3839	-19.3	-5	5-	GEW-159	3/9/2016	1359	C	LFG NA	×			
										_				
					9									
					,									
AUTHORIZATION TO PE	AUTHORIZATION TO PERFORM WORK: Dave Penoyer	ve Penoyer				COMPANY: Republic Services	DATE/TIME:		COMMENTS	હ				
SAMPLED BY: Ryan Ayers	Ayers					COMPANY: Republic Services	DATE/TIME							
RELINQUISHED BY	4 12	Carlo		3-10-16	0000	DATE/RECEIVED BY	DATE/TIME							
RELINQUISHED BY	1 /Pel	X				DATE RECEIVED BY 3 14	ATECTIME &	15%						
RELINQUISHED BY						DATE/RECEIVED BY	рателіме							
METHOD OF TR	METHOD OF TRANSPORT (circle one): Walk-In	cle one): Walk-	In FedEx	UPS Cou	Courier ATLI	Other	-							
DISTRIBUTION:	DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy	- Lab Copies / Pi	nk - Customer	. Copy			Preserva	tion: H=HC	I N=None	/ Contain	Preservation: H=HCI N=None / Container: B=Bag C=Can V=VOA O=Other	n V=VOA 0=		Rev. 03 - 5/7/09

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/11/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H031	105-01	H031	105-02	H031	105-03	H031	105-04
Client Sample I.D.:	GEV	V-121	GEV	V-127	GEV	V-129	GIV	W-6
Date/Time Sampled:	3/2/10	68:37	3/2/16	10:25	3/2/16	10:49	3/2/16	15:52
Date/Time Analyzed:	3/16/10	5 12:59	3/16/10	6 13:13	3/16/10	5 13:28	3/16/16	5 13:43
QC Batch No.:	160316	GC8A1	160316	GC8A1	160316	GC8A1	160316	GC8A1
Analyst Initials:	. A	S	A	S	A	S	A	S
Dilution Factor:	2	.9	2	.7	2	.9	3.	.0
ANALYTE	Result	RL % v/v	Result % v/v	RL % v/v	Result	RL % v/v	Result % v/v	RL % v/v
Hydrogen	31	2.9	29	2.7	32	2.9	31	3.0
Carbon Dioxide	61	0.029	61	0.027	59	0.029	61	0.030
Oxygen/Argon	ND	1.4	1.6	1.4	ND	1.4	ND	1.5
Nitrogen	ND	2.9	5.6	2.7	ND	2.9	4.1	3.0
Methane	4.5	0.0029	1.3	0.0027	5.4	0.0029	1.1	0.0030
Carbon Monoxide	0.26	0.0029	0.41	0.0027	0.30	0.0029	0.15	0.0030

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 3.22-16

Page 2 of 29

H031105

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/11/16

Matrix:

Air

Reporting Units:

% v/v

ASTM D1946

Lab No.:	H031	105-05	H03110)5-06	H031	105-07	H031	105-08
Client Sample I.D.:	GIV	₩-7	GIW	7-8	GI	W-9	GEV	V-120
Date/Time Sampled:	3/2/16	16:06	3/2/16	16:19	3/2/16	16:30	3/2/10	6 8:32
Date/Time Analyzed:	3/16/10	6 13:57	3/16/16	14:12	3/16/1	5 14:26	3/16/10	6 14:41
QC Batch No.:	160316	GC8A1	160316G	C8A1	160316	GC8A1	160316	GC8A1
Analyst Initials:	A	S	AS		A	S	A	S
Dilution Factor:	3.	.0	3.0		3	.0	3	.0
ANALYTE	Result	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v
Hydrogen	7.2	3.0	1.7 d	0.030	5.4	3.0	11	3.0
Carbon Dioxide	42	0.030	66	0.030	17	0.030	60	0.030
Oxygen/Argon	6.9	1.5	ND	1.5	15	1.5	1.6	1.5
Nitrogen	25	3.0	12	3.0	60	3.0	14	3.0
Methane	19	0.0030	19	0.0030	2.4	0.0030	13	0.0030
Carbon Monoxide	0.071	0.0030	0.029	0.0030	0.040	0.0030	0.095	0.0030

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch 160318GC8A2

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 3.22-16

Page 3 of 29

H031105

Page 4 of 29 H031105

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/11/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H031	105-09	H031	105-10	H031	105-11	H0311	105-12
Client Sample I.D.:	GEV	V-122	GEV	V-124	GEV	V-126	GEV	V-128
Date/Time Sampled:	3/2/10	6 8:50	3/2/16	10:05	3/2/16	10:14	3/2/16	10:26
Date/Time Analyzed:	3/21/10	5 18:10	3/21/10	6 18:24	3/21/10	6 18:39	3/21/10	5 15:43
QC Batch No.:	160321	GC8A1	160321	GC8A1	160321	GC8A1	160321	GC8A1
Analyst Initials:	A	S	A	S	A	S	A	S
Dilution Factor:	2	.9	2	.8	3.	.0	3.	.0
ANALYTE	Result % v/v	RL % v/v						
Hydrogen	34	2.9	26	2.8	30	3.0	25	3.0
Carbon Dioxide	56	0.029	63	0.028	56	0.030	66	0.030
Oxygen/Argon	ND	1.4	ND	1.4	ND	1.5	ND	1.5
Nitrogen	3.1	2.9	2.9	2.8	ND	3.0	ND	3.0
Methane	5.2	0.0029	7.2	0.0028	10	0.0030	6.5	0.0030
Carbon Monoxide	0.29	0.0029	0.18	0.0028	0.32	0.0030	0.28	0.0030

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date _ 3-22-16

Page 5 of 29 H031105

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/11/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H0311	105-13	H031	105-14	H0311	05-15	H0311	105-16
Client Sample I.D.:	GEW	V-131	GEV	V-132	GEW	-39	GEV	V-109
Date/Time Sampled:	3/2/16	10:48	3/2/16	11:16	3/3/16	9:35	3/3/10	59:44
Date/Time Analyzed:	3/21/10	5 18:53	3/21/1	6 19:08	3/21/16	12:44	3/21/10	5 19:22
QC Batch No.:	160321	GC8A1	160321	GC8A1	1603210	C8A1	160321	GC8A1
Analyst Initials:	A	S	A	S	AS		A	.S
Dilution Factor:	2.	.9	3	.0	3.2	?	3.	.0
ANALYTE	Result	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v
Hydrogen	27	2.9	20	3.0	2.0 d	0.032	19	3.0
Carbon Dioxide	47	0.029	49	0.030	56	0.032	46	0.030
Oxygen/Argon	3.4	1.4	3.4	1.5	ND	1.6	2.9	1.5
Nitrogen	12	2.9	19	3.0	ND	3.2	21	3.0
Methane	10.0	0.0029	7.4	0.0030	39	0.0032	11	0.0030
Carbon Monoxide	0.22	0.0029	0.17	0.0030	0.016	0.0032	0.11	0.0030

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch 160322GC8A1

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 3.22-16

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/11/16

Matrix:

Air

Reporting Units:

% v/v

ASTM D1946

Lab No.:	H031	105-17	H031	105-18	H031	105-19	H0311	105-20
Client Sample I.D.:	GIV	V-10	GI	W-5	GIV	V-11	GIV	V-12
Date/Time Sampled:	3/3/10	6 7:44	3/3/1	6 7:56	3/3/10	6 8:33	3/3/10	5 8:43
Date/Time Analyzed:	3/21/10	6 19:37	3/21/1	6 19:51	3/21/10	5 20:06	3/21/10	5 20:20
QC Batch No.:	160321	GC8A1	160321	GC8A1	160321	GC8A1	160321	GC8A1
Analyst Initials:	A	S	A	S	A	S	A	S
Dilution Factor:	3	.0	3	.0	3	.2	3.	.1
ANALYTE	Result	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v
Hydrogen	31	3.0	33	3.0	15	3.2	4.3	3.1
Carbon Dioxide	47	0.030	56	0.030	40	0.032	25	0.031
Oxygen/Argon	ND	1.5	1.5	1.5	5.2	1.6	8.5	1.5
Nitrogen	15	3.0	5.4	3.0	34	3.2	54	3.1
Methane	5.6	0.0030	2.8	0.0030	5.7	0.0032	8.0	0.0031
Carbon Monoxide	0.17	0.0030	0.15	0.0030	0.16	0.0032	0.034	0.0031

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 3.22-16

Page 6 of 29

H031105

Page 7 of 29 H031105

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/11/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H031	105-21	H031	105-22	H031	105-23	H031105-24		
Client Sample I.D.:	GIW-13		GI	W-1	GEV	W-38	GEW-56R		
Date/Time Sampled:	3/3/16 8:51		3/3/10	6 9:07	3/3/10	5 9:24	3/3/16	14:03	
Date/Time Analyzed:	3/21/16 20:35		3/21/10	6 12:29	3/21/10	6 11:55	3/21/10	6 12:09	
QC Batch No.:	160321GC8A1		160321	GC8A1	160321	GC8A1	160321	GC8A1	
Analyst Initials:	AS		A	iS .	A	S	A	AS	
Dilution Factor:	3.0		3	.2	3.0		3.	.0	
ANALYTE	Result	RL % v/v	Result	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v	
Hydrogen	21	3.0	23	3.2	21	3.0	11	3.0	
Carbon Dioxide	62	0.030	70	0.032	44	0.030	39	0.030	
Oxygen/Argon	ND	1.5	ND	1.6	7.4	1.5	ND	1.5	
Nitrogen	7.6	3.0	ND	3.2	27	3.0	32	3.0	
Methane	8.7	0.0030	2.3	0.0032	0.27	0.0030	17	0.0030	
Carbon Monoxide	0.17	0.0030	0.25	0.0032	0.25	0.0030	0.061	0.0030	

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

Date 3.22-16

Page 8 of 29 H031105

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No .:

NA

Date Received:

03/11/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H03110)5-25	H031	105-26	H031	105-27	H03110	5-28			
Client Sample L.D.:	GEW-10		GEV	V-110	GI	W-4	GIW	-3			
Date/Time Sampled:	3/3/16 14:27		3/3/16	14:39	3/3/16	15:06	3/3/16 1	5:17			
Date/Time Analyzed:	3/17/16 8:16		3/17/1	6 8:31	3/17/1	6 8:45	3/17/16	9:00			
QC Batch No.;	160316GC8A2		160316	GC8A2	160316	GC8A2	160316G	C8A2			
Analyst Initials:	AS		Α	S	A	S	AS				
Dilution Factor:	3.2		3.2		3	3.2		3.2		3.2	
ANALYTE	Result % v/v	RL % v/v									
Hydrogen	1.7 d	0.032	21	3.2	41	3.2	2.9 d	0.032			
Carbon Dioxide	50	0.032	36	0.032	42	0.032	8.2	0.032			
Oxygen/Argon	ND	1.6	8.0	1.6	3.5	1.6	19	1.6			
Nitrogen	9.2	3.2	32	3.2	12	3.2	69	3.2			
Methane	38	0.0032	2.0	0.0032	0.43	0.0032	0.081	0.0032			
Carbon Monoxide	0.013	0.0032	0.12	0.0032	0.17	0.0032	0.046	0.0032			

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch 160318GC8A2

Reviewed/Approved By

Mark Johnson Operations Manager

The cover letter is an integral part of this analytical report

Date 3-22-16

Page 9 of 29 H031105

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No .:

NA

Date Received:

03/11/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H0311	105-29	H031	105-30	H0311	105-31	H031105-32	
Client Sample I.D.:	GIW-2		GEV	V-140	GEW-145		GEW-	137
Date/Time Sampled:	3/3/16 15:29		3/4/1	6 9:22	3/4/16	10:16	3/4/16	8:39
Date/Time Analyzed:	3/17/16 11:00		3/17/10	6 11:15	3/17/10	5 11:29	3/17/16	11:44
QC Batch No.:	160317GC8A1		160317	GC8A1	160317	GC8A1	160317G	C8A1
Analyst Initials:	AS.		A	S	А	S	AS	
Dilution Factor:	3.0		2	.9	3	.0	3.0	
ANALYTE	Result	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v
Hydrogen	3.9	3.0	28	2.9	35	3.0	0.98 d	0.030
Carbon Dioxide	30	0.030	58	0.029	56	0.030	44	0.030
Oxygen/Argon	11	1.5	ND	1.4	ND	1.5	ND	1.5
Nitrogen	48	3.0	3.7	2.9	3.5	3.0	39	3.0
Methane	6.3	0.0030	9.4	0.0029	4.0	0.0030	14	0.0030
Carbon Monoxide	0.029	0.0030	0.20	0.0029	0.24	0.0030	ND	0.0030

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch 160318GC8A2

Reviewed/Approved By

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 3.22-16

Page 10 of 29 H031105

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/11/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H031	105-33	H031	105-34	H031	105-35	H03110	5-36
Client Sample I.D.:	GEW-138		GEV	V-139	GEW-141		GEW	7-7
Date/Time Sampled:	3/4/10	3/4/16 9:11		6 9:20	3/4/10	6 9:35	3/7/16 1	3:55
Date/Time Analyzed:	3/17/16 11:59		3/17/10	6 12:13	3/17/10	5 12:28	3/17/16	12:42
QC Batch No.:	160317GC8A1		160317	GC8A1	160317	GC8A1	160317G	C8A1
Analyst Initials:	AS		A	S	A	S	AS	
Dilution Factor:	3.0		3.0 3.1 3.0		3.4			
ANALYTE	Result	RL % v/v	Result % v/v	RL % v/v	Result	RL % v/v	Result % v/v	RL % v/v
Hydrogen	12	3.0	35	3.1	32	3.0	ND d	0.034
Carbon Dioxide	65	0.030	60	0.031	62	0.030	41	0.034
Oxygen/Argon	ND	1.5	ND	1.5	ND	1.5	ND	1.7
Nitrogen	7.8	3.0	ND	3.1	ND	3.0	ND	3.4
Methane	14	0.0030	0.98	0.0031	1.3	0.0030	57	0.0034
Carbon Monoxide	0.13	0.0030	0.40	0.0031	0.39	0.0030	ND	0.0034

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch 160318GC8A2

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

AirTECHNOLOGY Laboratories, Inc.

page 1 of 1

Date 3.22-16

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No .:

NA

Date Received:

03/11/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H03110)5-37	H03110	05-38	H03110	5-39	H03110)5-40		
Client Sample I.D.:	GEW-8		GEV	V-9	GEW	V-55 GI		-54		
Date/Time Sampled:	3/7/16 14:09		3/7/16	14:20	3/7/16 1	4:33	3/7/16 1	4:49		
Date/Time Analyzed:	3/17/16 12:57		3/17/16	13:12	3/17/16	13:26	3/17/16	13:41		
QC Batch No.:	160317GC8A1		1603176	C8A1	160317G	C8A1	160317G	C8A1		
Analyst Initials:	AS		AS		AS		AS			
Dilution Factor:	3.4		3.4		3.5		3.4		3.4	
ANALYTE	Result % v/v	RL % v/v	Result	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v		
Hydrogen	1.6 d	0.034	0.88 d	0.035	1.1 d	0.034	3.1 d	0.034		
Carbon Dioxide	47	0.034	43	0.035	43	0.034	43	0.034		
Oxygen/Argon	ND	1.7	ND	1.7	ND	1.7	ND	1.7		
Nitrogen	ND	3.4	ND	3.5	ND	3.4	ND	3.4		
Methane	49	0.0034	54	0.0035	54	0.0034	53	0.0034		
Carbon Monoxide	ND	0.0034	ND	0.0035	ND	0.0034	0.0034	0.0034		

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch 160318GC8A2

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date_ 3.2216

Page 12 of 29 H031105

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/11/16

Matrix:

Air

Reporting Units:

% v/v

ASTM D1946

Lab No.:	H0311	05-41	H03110)5-42	H03110	5-43	H03110	5-44
Client Sample I.D.:	GEW-53		GEW	-51	GEW	-49	GEW-52	
Date/Time Sampled:	3/7/16	3/7/16 15:12		15:25	3/7/16 1	5:35	3/7/16 1	6:00
Date/Time Analyzed:	3/17/10	3/17/16 13:55		14:10	3/17/16	16:36	3/17/16	16:50
QC Batch No.:	160317	160317GC8A1		C8A1	160317G	C8A2	160317G	C8A2
Analyst Initials:	AS		AS		AS		AS	
Dilution Factor:	3.4		3.3	3.3			3.2	
ANALYTE	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v
Hydrogen	5.7	3.4	1.2 d	0.033	0.12 d	0.034	0.077 d	0.032
Carbon Dioxide	41	0.034	42	0.033	40	0.034	38	0.032
Oxygen/Argon	ND	1.7	ND	1.6	ND	1.7	ND	1.6
Nitrogen	ND	3.4	ND	3.3	ND	3.4	8.9	3.2
Methane	49	0.0034	55	0.0033	57	0.0034	53	0.0032
Carbon Monoxide	0.0065	0.0034	ND	0.0033	ND	0.0034	ND	0.0032

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch 160318GC8A2

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 3-27-16

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No .:

NA

Date Received:

03/11/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H03110)5-45	H03110	05-46	H03110)5-47	H031105-48			
Client Sample I.D.:	GEW-40		GEW-	41R	GEW-	42R	GEW-	43R		
Date/Time Sampled:	3/7/16	3/7/16 9:02		9:25	3/7/16	9:35	3/7/16	9:47		
Date/Time Analyzed:	3/17/16 17:05		3/17/16	17:19	3/17/16	17:34	3/17/16	17:49		
QC Batch No.:	160317GC8A2		160317G	C8A2	160317G	C8A2	160317G	C8A2		
Analyst Initials:	AS		AS		AS		AS			
Dilution Factor:	3.2		3.2		3.2		3.2		3.2	
ANALYTE	Result % v/v	RL % v/v								
Hydrogen	ND d	0.032	ND d	0.032	ND d	0.032	0.048 d	0.032		
Carbon Dioxide	38	0.032	41	0.032	42	0.032	43	0.032		
Oxygen/Argon	ND	1.6	ND	1.6	ND	1.6	ND	1.6		
Nitrogen	5.0	3.2	ND	3.2	ND	3.2	ND	3.2		
Methane	55	0.0032	57	0.0032	56	0.0032	55	0.0032		
Carbon Monoxide	ND	0.0032	ND	0.0032	ND	0.0032	ND	0.0032		

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch 160318GC8A2

Reviewed/Approved By:

Mark Johnson Operations Manager

The cover letter is an integral part of this analytical report

3-22-16

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No .:

NA

Date Received:

03/11/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H03110)5-49	H03110)5-50	H03110	05-51	H03110)5-52		
Client Sample I.D.:	GEW-44		GEW-	45R	GEW-	46R	GEV	V-2		
Date/Time Sampled:	3/7/16 10:00		3/7/16 1	10:18	3/7/16 1	10:27	3/7/16	13:39		
Date/Time Analyzed:	3/17/16 18:03		3/17/16	18:18	3/17/16	18:32	3/17/16	18:47		
QC Batch No.:	160317GC8A2		160317G	C8A2	160317G	C8A2	160317GC8A2			
Analyst Initials:	AS		AS		AS	AS				
Dilution Factor:	3.2		3.2		3.2		3.2		3.3	
ANALYTE	Result % v/v	RL % v/v	Result	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v		
Hydrogen	ND d	0.032	ND d	0.032	0.096 d	0.032	0.041 d	0.033		
Carbon Dioxide	40	0.032	40	0.032	40	0.032	42	0.033		
Oxygen/Argon	ND	1.6	ND	1.6	ND	1.6	ND	1.6		
Nitrogen	ND	3.2	ND	3.2	4.4	3.2	ND	3.3		
Methane	58	0.0032	58	0.0032	55	0.0032	56	0.0033		
Carbon Monoxide	ND	0.0032	ND	0.0032	ND	0.0032	ND	0.0033		

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch 160318GC8A2, 160319GC8A1

Reviewed/Approved By:

Operations Manager

Mark Johnson

Date 3.22-16

Client: -

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/11/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H03110)5-53	H03110)5-54	H03110)5-55	H03110)5-56		
Client Sample I.D.:	GEW-3		GEV	V-4	GEW-	47R	GEW	7-5		
Date/Time Sampled:	3/7/16 13:49		3/7/16	14:04	3/7/16	4:18	3/7/16 1	14:31		
Date/Time Analyzed:	3/17/16 19:01		3/17/16	19:16	3/17/16	19:31	3/17/16	19:45		
QC Batch No.:	160317GC8A2		160317G	C8A2	160317G	C8A2	160317G	C8A2		
Analyst Initials:	AS		AS		AS		AS			
Dilution Factor:	3.3		3.3		3.3	3.3			3.4	
ANALYTE	Result % v/v	RL % v/v								
Hydrogen	0.13 d	0.033	0.091 d	0.033	0.082 d	0.034	0.052 d	0.034		
Carbon Dioxide	40	0.033	41	0.033	39	0.034	38	0.034		
Oxygen/Argon	ND	1.6	ND	1.6	ND	1.7	ND	1.7		
Nitrogen	5.0	3.3	ND	3.3	8.1	3.4	8.0	3.4		
Methane	54	0.0033	56	0.0033	52	0.0034	53	0.0034		
Carbon Monoxide	ND	0.0033	ND	0.0033	ND	0.0034	ND	0.0034		

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch 160319GC8A1

Reviewed/Approved By:

Mark Johnson

Operations Manager

Date 3-22-76

Page 16 of 29 H031105

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No .:

NA

Date Received:

03/11/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H03110)5-57	H03110)5-58	H03110)5-59	H031105-60			
Client Sample I.D.:	GEW-48		GEW	7-6	GEW	-50	GEV	V-147		
Date/Time Sampled:	3/7/16 15:04		3/7/16 1	5:13	3/7/16 1	5:24	3/9/16	10:04		
Date/Time Analyzed:	3/17/16 20:00		3/17/16	20:14	3/17/16	20:29	3/17/10	6 20:44		
QC Batch No.:	160317GC8A2		160317G	C8A2	160317G	C8A2	160317	GC8A2		
Analyst Initials:	AS		AS		AS		A	S		
Dilution Factor:	3.3		3.3		3.2		3.4		3.2	
ANALYTE	Result % v/v	RL % v/v								
Hydrogen	ND d	0.033	ND d	0.032	0.087 d	0.034	32	3.2		
Carbon Dioxide	40	0.033	38	0.032	39	0.034	49	0.032		
Oxygen/Argon	ND	1.6	ND	1.6	ND	1.7	ND	1.6		
Nitrogen	ND	3.3	5.4	3.2	4.6	3.4	6.8	3.2		
Methane	57	0.0033	56	0.0032	56	0.0034	10	0.0032		
Carbon Monoxide	. ND	0.0033	ND	0.0032	ND	0.0034	0.19	0.0032		

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch 160319GC8A1

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 3-22-16

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/11/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H031	105-61	H031	105-62	H031	105-63	H031105-64			
Client Sample I.D.:	GEW-149		GEV	V-150	GEV	V-155	GEW-154			
Date/Time Sampled:	3/9/16 11:12		3/9/16	11:30	3/9/16	11:46	3/9/16	12:14		
Date/Time Analyzed:	3/17/16 20:58		3/17/10	6 21:13	3/18/1	69:21	3/18/1	69:35		
QC Batch No.:	160317GC8A2		160317	GC8A2	160318	GC8A1	160318	GC8A1		
Analyst Initials:	AS		A	S	A	S	A	.S		
Dilution Factor:	3.2		3.2		3.2		3.2		3.2	
ANALYTE	Result	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v		
Hydrogen	11	3.2	11	3.2	4.8	3.2	5.7	3.2		
Carbon Dioxide	35	-0.032	27	0.032	37	0.032	24	0.032		
Oxygen/Argon	8.5	1.6	12	1.6	8.9	1.6	11	1.6		
Nitrogen	38	3.2	45	3.2	41	3.2	45	3.2		
Methane	6.8	0.0032	4.0	0.0032	7.9	0.0032	14	0.0032		
Carbon Monoxide	0.097	0.0032	0.083	0.0032	0.043	0.0032	0.027	0.0032		

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 3-22-16

Page 17 of 29

H031105

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No .:

NA

Date Received:

03/11/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H031	105-65	H031	105-66	H031	105-67	H031	H031105-68	
Client Sample I.D.:	GEW-153		GEV	V-152	GEW-22R		GEW-281		
Date/Time Sampled:	3/9/16 12:29		3/9/16	13:51	3/9/10	6 9:35	3/9/10	5 9:56	
Date/Time Analyzed:	3/18/16 9:50		3/18/1	6 10:05	3/18/10	6 10:19	3/18/10	5 10:34	
QC Batch No.:	160318GC8A1		160318	GC8A1	160318	GC8A1	160318	GC8A1	
Analyst Initials:	AS		A	S	A	S	А	S	
Dilution Factor:	3.2		3.2 3.1 3.2		3.2				
ANALYTE	Result	RL % v/v	Result	RL % v/v	Result % v/v	RL % v/v	Result	RL % v/v	
Hydrogen	18	3.2	35	3.1	30	3.2	34	3.2	
Carbon Dioxide	45	0.032	47	0.031	65	0.032	61	0.032	
Oxygen/Argon	ND	1.6	2.2	1.5	ND	1.6	ND	1.6	
Nitrogen	12	3.2	7.9	3.1	ND	3.2	ND	3.2	
Methane	23	0.0032	6.2	0.0031	0.67	0.0032	0.13	0.0032	
Carbon Monoxide	0.081	0.0032	0.28	0.0031	0.43	0.0032	0.43	0.0032	

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson Operations Manager

3-22-16

Page 18 of 29

H031105

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No .:

NA

Date Received:

03/11/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H031	105-69	H031	105-70	H031	105-71	H031	105-72
Client Sample I.D.:	GEW	7-58A	GEW	V-59R	GEW-82R		GEW-90	
Date/Time Sampled:	3/9/16	10:18	3/9/16	10:27	3/9/16	10:46	3/9/16	11:50
Date/Time Analyzed:	3/18/10	5 10:49	3/18/1	6 11:03	3/18/1	6 11:18	3/18/10	5 11:32
QC Batch No.:	160318	GC8A1	160318	GC8A1	160318	GC8A1	160318	GC8A1
Analyst Initials:	AS AS AS		A	.S				
Dilution Factor:	3	.2	3	3.2 3.2		3.2		
ANALYTE	Result	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result	RL % v/v
Hydrogen	33	3.2	42	3.2	40	3.2	39	3.2
Carbon Dioxide	43	0.032	50	0.032	54	0.032	49	0.032
Oxygen/Argon	4.9	1.6	ND	1.6	ND	1.6	ND	1.6
Nitrogen	18	3.2	4.4	3.2	ND	3.2	ND	3.2
Methane	0.46	0.0032	1.3	0.0032	0.82	0.0032	7.3	0.0032
Carbon Monoxide	0.21	0.0032	0.20	0.0032	0.20	0.0032	0.21	0.0032

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

AirTECHNOLOGY Laboratories, Inc. -

page 1 of 1

Date 3-22-16

Page 19 of 29

H031105

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No .:

NA

Date Received:

03/11/16

Matrix:

Air

Reporting Units: % v/v

AS	T	M	DI	9	4	6

Lab No.:	H031	105-73	H031	105-74		
Client Sample I.D.:	GEV	V-102	GEV	V-159		
Date/Time Sampled:	3/9/16	12:07	3/9/16	13:59		
Date/Time Analyzed:	3/18/10	6 11:47	3/18/1	6 12:01		
QC Batch No.:	160318	GC8A1	160318	GC8A1		
Analyst Initials:	A	S	Α	\S		
Dilution Factor:	3	.2	3.2			
ANALYTE	Result	RL % v/v	Result % v/v	RL % v/v		-
Hydrogen	36	3.2	7.8	3.2	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN COLUMN	SERVICE STREET, SERVICE STREET
Carbon Dioxide	56	0.032	43	0.032		
Oxygen/Argon	ND	1.6	ND	1.6		
Nitrogen	3.4	3.2	35	3.2		
Methane	1.3	0.0032	13	0.0032		
Carbon Monoxide	0.14	0.0032	0.066	0.0032		

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date_3.22-16

Page 20 of 29

H031105

QC Batch No.: 160316GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method	Blank	I	LCS	L	CSD		-
Date/Time Analyzed:	3/16/16	11:15	3/16/	16 10:29	3/16/	16 10:44		
Analyst Initials:	A	S		AS		AS	9	
Datafile:	16mar003		16mar.ru		16mar001			
Dilution Factor:	1.	0		1.0	10.	1.0		2 1
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	98	70-130%	98	70-130%	0.1	<30
Carbon Dioxide	ND	0.010	98	70-130%	98	70-130%	0.1	<30
Oxygen/Argon	ND	0.50	102	70-130%	102	70-130%	0.1	<30
Nitrogen	ND	1.0	102	70-130%	102	70-130%	0.1	<30
Methane	ND	0.0010	122	70-130%	122	70-130%	0.0	<30
Carbon Monoxide	ND	0.0010	119	70-130%	119	70-130%	0.2	<30

ND = Not Detected (Below RL)

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

Date: 3-22-16

QC Batch No.: 160316GC8A2

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method	Blank	L	CS	L	CSD		
Date/Time Analyzed:	3/16/16	16:23	3/16/1	16 15:39	3/16/16 15:54			
Analyst Initials:	A	S	AS		AS			
Datafile:	16ma	r024	16n	nar021	16mar022			30.7-20.7-200-2044442
Dilution Factor:	1.	0		1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	97	70-130%	97	70-130%	0.5	<30
Carbon Dioxide	ND	0.010	99	70-130%	98	70-130%	0.5	<30
Oxygen/Argon	ND	0.50	103	70-130%	103	70-130%	0.3	<30
Nitrogen	ND	1.0	102	70-130%	102	70-130%	0.0	<30
Methane	ND	0.0010	124	70-130%	123	70-130%	0.7	<30
Carbon Monoxide	ND	0.0010	123	70-130%	122	70-130%	0.8	<30

ND = Not Detected (Below RL)

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

Date: 3-22-16

QC Batch No.: 160317GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method	Blank	L	CS .	· L	CSD		
Date/Time Analyzed:	3/17/16	10:43	3/17/	16 9:59	3/17/16 10:14			
Analyst Initials:	A	AS		AS		AS		
Datafile:	17ma	r006	17m	nar003	17mar004			5 M 10 M 55 M 10 M 10 M 10 M 10 M 10 M 1
Dilution Factor:	1.	0		1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	92	70-130%	93	70-130%	0.3	<30
Carbon Dioxide	ND	0.010	96	70-130%	99	70-130%	2.5	<30
Oxygen/Argon	ND	0.50	104	70-130%	105	70-130%	1.1	<30
Nitrogen	ND	1.0	102	70-130%	103	70-130%	0.8	<30
Methane	ND	0.0010	126	70-130%	125	70-130%	1.3	<30
Carbon Monoxide	ND	0.0010	123	70-130%	122	70-130%	0.6	<30

ND = Not Detected (Below RL)

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

3-22-16

QC Batch No.: 160317GC8A2

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Method	Blank	I	CS	L	CSD		
3/17/16	16:20	3/18/16 7:08		3/18/16 7:23			
A	S	S AS		AS			
17ma	r027	17mar050		17mar051			
1.	0		1.0		1.0		
Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
ND	1.0	113	70-130%	112	70-130%	1.1	<30
ND	0.010	100	70-130%	98	70-130%	1.3	<30
ND	0.50	98	70-130%	97	70-130%	1.0	<30
ND	1.0	99	70-130%	99	70-130%	0.7	<30
ND	0.0010	98 .	70-130%	97	70-130%	0.7	<30
ND	0.0010	118	70-130%	117	70-130%	1.6	<30
	3/17/16 A 17ma 1. Results ND ND ND ND ND ND	ND 1.0 ND 0.010 ND 0.50 ND 1.0 ND 0.0010	3/17/16 16:20 3/18/ AS 17mar027 17m 1.0 Results RL % Rec. ND 1.0 113 ND 0.010 100 ND 0.50 98 ND 1.0 99 ND 0.0010 98	3/17/16 16:20 3/18/16 7:08 AS AS 17mar027 17mar050 1.0 1.0 Results RL % Rec. Criteria ND 1.0 113 70-130% ND 0.010 100 70-130% ND 0.50 98 70-130% ND 1.0 99 70-130% ND 0.0010 98 70-130% ND 0.0010 98 70-130%	3/17/16 16:20 3/18/16 7:08 3/18/16 7:08 AS AS 17mar027 17mar050 17mar050 1.0 1.0 Results RL % Rec. Criteria % Rec. ND 1.0 113 70-130% 112 ND 0.010 100 70-130% 98 ND 0.50 98 70-130% 97 ND 1.0 99 70-130% 99 ND 0.0010 98 70-130% 97	3/17/16 16:20 3/18/16 7:08 3/18/16 7:23 AS AS AS 17mar050 17mar051 1.0 1.0 Results RL % Rec. Criteria ND 1.0 113 70-130% 112 70-130% ND 0.010 100 70-130% 98 70-130% ND 0.50 98 70-130% 99 70-130% ND 1.0 99 70-130% 99 70-130% ND 0.0010 98 70-130% 97 70-130% ND 0.0010 98 70-130% 97 70-130%	3/17/16 16:20 3/18/16 7:08 3/18/16 7:23 AS AS AS AS AS 17mar050 17mar051 1.0 Results RL % Rec. Criteria % RPD ND 1.0 113 70-130% 112 70-130% 1.1 ND 0.010 100 70-130% 98 70-130% 1.3 ND 0.50 98 70-130% 97 70-130% 1.0 ND 1.0 99 70-130% 99 70-130% 0.7 ND 0.0010 98 70-130% 97 70-130% 0.7 ND 0.0010 98 70-130% 97 70-130% 0.7

ND = Not Detected (Below RL)

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

QC Batch No.: 160318GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method	Blank	L	.CS	L	CSD		
Date/Time Analyzed:	3/18/10	5 9:05	3/18/16 8:21		3/18/16 8:35			
Analyst Initials:	A	S	S AS		AS			
Datafile:	18ma	r006	18n	ar003	18mar004			
Dilution Factor:	1.	0		1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	112	70-130%	111	70-130%	0.5	<30
Carbon Dioxide	ND	0.010	99	70-130%	98	70-130%	0.2	<30
Oxygen/Argon	ND	0.50	97	70-130%	97	70-130%	0.0	<30
Nitrogen	ND	1.0	98	70-130%	98	70-130%	0.0	<30
Methane	ND	0.0010	98	70-130%	97	70-130%	0.8	<30
Carbon Monoxide	ND	0.0010	118	70-130%	118	70-130%	0.1	<30

ND = Not Detected (Below RL)

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

The cover letter is an integral part of this analytical report.

1

AirTECHNOLOGY Laboratories, Inc. -

Date: 3-22-16

QC Batch No.: 160321GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method	Blank	L	CS	L	CSD		
Date/Time Analyzed:	3/21/16	11:04	3/21/16 10:21		3/21/16 10:35			
Analyst Initials:	A	S		AS	AS			
Datafile:	21ma	r012	2111	nar009	21mar010			
Dilution Factor:	1.	0		1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	-1.0	109	7.0-130%	109	70-130%	0.1	<30
Carbon Dioxide	ND	0.010	103	70-130%	102	70-130%	0.4	<30
Oxygen/Argon	ND	0.50	102	70-130%	101	70-130%	0.4	<30
Nitrogen	ND	1.0	102	70-130%	102	70-130%	0.2	<30
Methane	ND	0.0010	97	70-130%	94	70-130%	2.9	<30
Carbon Monoxide	ND	0.0010	115	70-130%	112	70-130%	2.5	<30

ND = Not Detected (Below RL)

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

Date: 3-22-16

QC Batch #

160318GC8A2

Matrix:

Air

Units:

% v/v

QC for Low Level Hydrogen Analysis

Lab No.:	Blank		LCS		LCSD			
Date Analyzed:	3/18/2016 15:14		3/18/2016 14:58		3/18/2016 15:03			
Analyst Initials:	AS		AS		AS			L 0200
Dilution Factor:	1.0		1.0		1.0			
ANALYTE	Results	RL	%Rec	Criteria	%Rec	Criteria	RPD	Criteria
Hydrogen	ND	0.01	95	70-130	95	70-130	0.1	<20

ND = Not Detected (Below RL)

RL = PQL X Dilution Factor

Reviewed/Approved By:

Mark Johnson

Operations Manager

Date: 3.22/6

QC Batch #

160319GC8A1

Matrix:

Air

Units:

% v/v

QC for Low Level Hydrogen Analysis

Lab No.:	Blan	Blank		LCS		CSD		
Date Analyzed:	3/19/2016 13:55		3/19/2016 13:46		3/19/2016 13:50			
Analyst Initials:	MJ		MJ		MJ			
Dilution Factor:	1.0		1.0		1.0			
ANALYTE	Results	RL	%Rec	Criteria	%Rec	Criteria	RPD	Criteri
Hydrogen	ND	0.01	94	70-130	94	70-130	0.3	<20

ND = Not Detected (Below RL)

RL = PQL X Dilution Factor

Reviewed/Approved By:

Mark Johnson

Operations Manager

Date: 3-72-16

QC Batch #

160322GC8A1

Matrix:

Air

Units:

% v/v

QC for Low Level Hydrogen Analysis

Lab No.:	Blan	Blank		LCS		CSD		
Date Analyzed:	3/22/2016 8:40		3/22/2016 8:31		3/22/2016 8:36			
Analyst Initials:	AS		AS		AS			
Dilution Factor:	1.0		1.0		1.0			g ₁₀
ANALYTE	Results	RL	%Rec	Criteria	%Rec	Criteria	RPD	Criteri
Hydrogen	ND	0.01	97	70-130	98	70-130	0.7	<20

ND = Not Detected (Below RL)

RL = PQL X Dilution Factor

Reviewed/Approved By:

Mark Johnson

Operations Manager

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
		•	(% v	ol)		°I	•	sci	^f m		H₂O	
GEW-002	3/3/2016 10:12	58.7	39.5	0.1	1.7	119.9		29	29	-0.8	-0.8	-10.9
GEW-002	3/7/2016 13:38	56.5	41.6	0.0	1.9	119.4		41	41	-0.6	-0.6	-11.5
GEW-002	3/7/2016 13:42	56.9	41.0	0.0	2.1	120.2		16	16	-0.2	-0.2	-12.0
GEW-002	3/18/2016 10:36	42.9	34.9	0.8	21.4	122.1		38	40	-3.8	-3.8	-6.9
GEW-002	3/18/2016 10:37	38.9	35.7	1.4	24.0	121.0		0	0	-2.6	-2.6	-10.5
GEW-002	3/22/2016 14:05	56.0	39.5	0.0	4.5	123.4		0	0	1.2	1.2	-8.0
GEW-002	3/22/2016 14:06	53.8	43.1	0.0	3.1	123.9		0	0	1.2	1.1	-8.3
GEW-002	3/28/2016 10:34	56.7	39.1	0.0	4.2	124.2		17	14	-0.3	-0.3	-10.1
GEW-002	3/28/2016 10:36	53.1	41.6	0.0	5.3	121.8		21	20	-0.5	-0.5	-10.3
GEW-003	3/3/2016 10:16	56.3	39.1	0.1	4.5	109.5		11	13	-0.5	-0.5	-10.6
GEW-003	3/7/2016 13:47	54.3	40.8	0.0	4.9	112.5		13	13	0.2	0.2	-12.0
GEW-003	3/7/2016 13:51	55.3	39.7	0.0	5.0	115.2		0	0	0.0	0.0	-11.1
GEW-003	3/18/2016 10:40	49.3	35.6	0.0	15.1	112.8		48	48	-4.6	-4.6	-8.8
GEW-003	3/18/2016 10:41	45.3	36.9	0.6	17.2	108.1		0	0	-3.2	-3.2	-10.1
GEW-003	3/22/2016 14:09	52.6	42.2	0.0	5.2	77.1		6	6	1.4	1.4	-8.1
GEW-003	3/22/2016 14:10	54.7	42.1	0.0	3.2	77.5		8	8	1.5	1.4	-7.9
GEW-003	3/28/2016 10:39	55.5	41.1	0.0	3.4	83.3		0	0	-0.1	-0.1	-9.7
GEW-003	3/28/2016 10:40	55.6	41.9	0.0	2.5	97.4		34	33	-0.2	-0.2	-10.1
GEW-004	3/3/2016 10:18	56.3	39.9	0.1	3.7	105.9		11	8	-0.5	-0.5	-10.6
GEW-004	3/7/2016 14:03	55.7	41.5	0.0	2.8	110.6		0	0	0.2	0.2	-11.8
GEW-004	3/7/2016 14:08	55.7	41.5	0.0	2.8	110.9		15	15	0.1	0.1	-11.8
GEW-004	3/18/2016 10:49	50.0	35.1	0.0	14.9	116.5		9	9	-2.0	-2.0	-10.8
GEW-004	3/22/2016 14:12	52.5	41.2	0.0	6.3	106.5		21	22	1.3	1.3	-7.7
GEW-004	3/22/2016 14:13	52.3	41.2	0.0	6.5	106.5		30	30	1.3	1.3	-7.5
GEW-004	3/28/2016 10:44	51.7	40.7	0.0	7.6	110.2		34	35	-0.3	-0.3	-9.7
GEW-005	3/3/2016 10:33	43.3	36.0	0.1	20.6	94.0		0	0	-0.5	-0.5	-11.2
GEW-005	3/7/2016 14:30	53.1	38.4	0.0	8.5	89.9		27	26	0.2	0.2	-11.3
GEW-005	3/7/2016 14:34	53.6	36.2	0.0	10.2	89.9		0	0	0.2	0.2	-11.3
GEW-005	3/18/2016 10:55	38.5	34.4	0.0	27.1	87.2		10	14	-1.2	-1.2	-12.8
GEW-005	3/18/2016 10:55	40.9	34.4	0.0	24.7	86.0		0	0	-1.1	-1.1	-13.3
GEW-005	3/22/2016 15:15	52.1	40.9	0.0	7.0	87.0		4	4	0.9	0.8	-10.5
GEW-005	3/22/2016 15:15	53.8	40.5	0.0	5.7	92.4		37	38	0.8	0.7	-10.4
GEW-005	3/28/2016 10:58	48.0	37.8	0.0	14.2	91.0		28	27	-0.2	-0.2	-9.3
GEW-006	3/3/2016 10:42	49.5	37.8	0.1	12.6	89.0		0	0	-0.5	-0.5	-11.5
GEW-006	3/7/2016 15:11	55.5	38.6	0.0	5.9	89.9		8	11	0.2	0.2	-10.3
GEW-006	3/7/2016 15:15	56.1	37.9	0.0	6.0	91.1		20	22	0.0	0.1	-10.2
GEW-006	3/18/2016 11:00	44.9	35.6	0.1	19.4	86.7		0	0	-0.8	-0.8	-12.1
GEW-006	3/22/2016 15:22	55.5	39.9	0.0	4.6	84.2		0	0	0.9	0.9	-9.8
GEW-006	3/22/2016 15:23	55.8	39.4	0.0	4.8	88.3		19	17	0.7	0.7	-10.3
GEW-006	3/28/2016 11:04	50.7	37.5	0.0	11.8	83.2		12	9	-0.3	-0.3	-10.1
GEW-007	3/3/2016 13:25	58.5	39.6	0.1	1.8	87.4		31	30	-0.3	-0.2	-12.2
GEW-007	3/7/2016 13:48	58.3	39.4	0.0	2.3	91.3		0	0	0.2	0.2	-11.9

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
		Į.	(%)	vol)		°F	=	scf	m	l.	H₂O	
GEW-007	3/7/2016 13:59	58.1	39.2	0.1	2.6	92.1		31	31	-0.2	-0.2	-11.7
GEW-007	3/18/2016 11:39	52.2	44.4	0.0	3.4	89.9		0	0	-1.2	-1.2	-12.8
GEW-007	3/24/2016 9:18	53.7	42.8	0.0	3.5	88.4		28	28	-0.7	-0.7	-11.6
GEW-007	3/29/2016 9:44	57.0	40.5	0.0	2.5	87.0		5	10	-0.9	-0.9	-9.7
GEW-008	3/3/2016 13:49	51.4	45.0	0.2	3.4	112.2		18	15	-0.5	-0.5	-11.9
GEW-008	3/7/2016 14:05	51.1	43.7	0.0	5.2	113.0		14	18	-0.4	-0.4	-11.6
GEW-008	3/7/2016 14:12	50.6	43.7	0.1	5.6	113.0		20	18	-0.4	-0.4	-11.3
GEW-008	3/18/2016 11:36	51.1	42.4	0.0	6.5	112.1		14	16	-0.7	-0.6	-12.2
GEW-008	3/24/2016 9:13	50.2	45.3	0.0	4.5	113.2		18	17	-0.6	-0.6	-11.2
GEW-008	3/29/2016 9:40	52.1	43.4	0.0	4.5	113.0		16	16	-0.5	-0.5	-9.7
GEW-009	3/3/2016 13:52	51.9	44.1	0.2	3.8	125.1		29	30	0.0	0.0	-22.6
GEW-009	3/7/2016 14:16	53.8	41.9	0.0	4.3	126.4		38	36	0.0	0.0	-22.5
GEW-009	3/7/2016 14:22	53.9	40.8	0.1	5.2	126.0		9	10	0.1	0.1	-22.1
GEW-009	3/18/2016 11:33	48.6	48.1	0.0	3.3	124.3		29	29	0.0	0.0	-22.8
GEW-009	3/24/2016 9:09	53.4	39.2	0.0	7.4	126.4		12	13	-0.1	-0.1	-17.5
GEW-009	3/29/2016 9:37	54.9	42.0	0.0	3.1	124.8		14	14	0.0	0.0	-17.1
GEW-010	3/3/2016 14:23	39.0	45.8	0.5	14.7	79.9		3	2	-17.7	-17.7	-17.9
GEW-010	3/3/2016 14:29	40.6	47.7	0.4	11.3	85.5		5	3	-22.5	-22.2	-23.2
GEW-010	3/7/2016 16:42	40.0	49.1	0.6	10.3	94.6		2	3	-22.1	-22.1	-22.4
GEW-010	3/18/2016 11:31	38.4	46.8	0.6	14.2	81.9		5	4	-22.0	-22.0	-22.8
GEW-010	3/23/2016 15:54	40.2	48.3	0.6	10.9	88.8		5	3	-17.1	-17.0	-17.2
GEW-010	3/29/2016 11:14	38.2	48.1	0.4	13.3	82.6		4	0	-17.2	-17.3	-17.5
GEW-013A	3/25/2016 11:20	6.3	46.5	6.2	41.0	152.2				-6.1	-6.1	-8.2
GEW-013A	3/25/2016 11:21	6.2	47.3	6.3	40.2	152.1				-6.1	-5.4	-8.4
GEW-022R	3/9/2016 9:33	0.7	66.9	0.0	32.4	193.1				-21.2	-20.8	-21.0
GEW-022R	3/9/2016 9:37	0.6	65.1	0.0	34.3	193.1				-21.2	-20.8	-20.6
GEW-028R	3/9/2016 9:55	0.1	63.5	0.1	36.3	191.9				-18.8	-18.4	-18.6
GEW-028R	3/9/2016 9:58	0.1	60.9	0.1	38.9	192.1				-18.7	-17.9	-18.2
GEW-038	3/3/2016 9:19	0.5	54.1	6.1	39.3	44.1		18	11	-7.9	-7.9	-7.9
GEW-038	3/3/2016 9:26	0.9	35.1	9.9	54.1	44.3		10	14	-6.4	-6.4	-7.6
GEW-038	3/7/2016 17:07	0.6	56.9	2.5	40.0	76.1		10	10	-0.9	-0.9	-21.8
GEW-038	3/18/2016 11:24	9.5	41.2	6.2	43.1	61.4		13	14	-0.7	-0.8	-21.7
GEW-038	3/18/2016 11:24	3.2	45.8	5.9	45.1	61.3		9	9	-0.5	-0.5	-21.0
GEW-038	3/23/2016 15:39	1.5	47.9	4.5	46.1	79.5		4	4	-5.9	-5.9	-16.1
GEW-038	3/29/2016 11:23	4.5	41.5	11.5	42.5	63.9		13	12	-3.9	-4.0	-17.8
GEW-038	3/29/2016 11:23	1.4	36.2	11.5	50.9	64.1		12	12	-4.1	-4.1	-17.1
GEW-039	3/3/2016 9:31	39.5	51.8	0.1	8.6	130.9				-0.2	-0.2	-18.8
GEW-039	3/3/2016 9:36	41.5	51.2	0.0	7.3	130.8				-0.2	-0.2	-16.4
GEW-039	3/7/2016 17:10	29.7	56.0	0.1	14.2	133.4				-0.2	-0.2	-19.5
GEW-039	3/7/2016 17:10	39.8	51.7	0.1	8.4	133.4				-0.2	-0.3	-20.3
GEW-039	3/18/2016 11:20	41.4	53.1	0.0	5.5	128.7				-0.2	-0.2	-18.3
GEW-039	3/23/2016 15:42	38.6	56.2	0.2	5.0	132.1				0.1	0.1	-13.8

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
			(%	vol)		°F	=	sci	m		H₂O	
GEW-039	3/23/2016 15:44	39.0	54.9	0.2	5.9	132.7				0.0	-0.1	-13.4
GEW-039	3/29/2016 11:18	39.9	52.6	0.0	7.5	125.0				-0.1	-0.1	-13.9
GEW-040	3/3/2016 7:57	60.6	38.4	0.0	1.0	84.5		37	37	-0.4	-0.4	-10.8
GEW-040	3/7/2016 8:59	58.0	41.7	0.0	0.3	87.1		10	10	-0.5	-0.4	-12.7
GEW-040	3/7/2016 9:04	58.2	39.7	0.0	2.1	87.3		45	45	-0.5	-0.5	-12.2
GEW-040	3/18/2016 10:06	57.9	36.5	0.0	5.6	84.5		36	36	-0.2	-0.2	-9.7
GEW-040	3/22/2016 9:26	62.2	35.5	0.0	2.3	84.5		15	15	-0.1	-0.1	-8.7
GEW-040	3/28/2016 9:23	58.0	40.1	0.0	1.9	84.7		31	32	-0.2	-0.2	-9.7
GEW-040	3/28/2016 9:24	57.4	40.6	0.0	2.0	87.0		33	34	-0.7	-0.6	-9.9
GEW-041R	3/3/2016 8:11	60.7	38.6	0.0	0.7	103.0		32	36	0.0	0.0	-9.8
GEW-041R	3/7/2016 9:24	57.3	40.6	0.1	2.0	104.7		10	17	-0.2	-0.2	-11.9
GEW-041R	3/7/2016 9:27	57.6	39.9	0.1	2.4	104.5		16	16	-0.3	-0.3	-12.2
GEW-041R	3/18/2016 10:12	56.8	36.5	0.0	6.7	103.9		15	15	-0.1	-0.1	-10.0
GEW-041R	3/22/2016 9:31	49.0	37.8	0.2	13.0	109.0		30	42	-1.9	-1.9	-7.5
GEW-041R	3/22/2016 9:32	48.0	37.9	0.3	13.8	108.7		0	0	-1.2	-1.2	-8.2
GEW-041R	3/28/2016 9:35	46.9	37.8	0.2	15.1	107.5		21	16	-1.1	-1.1	-6.4
GEW-041R	3/28/2016 9:36	46.5	38.1	0.3	15.1	106.7		0	24	-0.9	-0.9	-7.9
GEW-042R	3/3/2016 8:16	58.0	40.3	0.0	1.7	104.3		11	17	-0.2	-0.2	-1.1
GEW-042R	3/7/2016 9:33	55.3	42.7	0.0	2.0	107.0		12	12	-1.3	-1.3	-4.7
GEW-042R	3/7/2016 9:37	57.0	41.0	0.0	2.0	107.0		15	15	-1.3	-1.3	-4.5
GEW-042R	3/18/2016 10:15	55.9	38.7	0.0	5.4	101.4		14	12	-1.2	-1.2	-3.4
GEW-042R	3/22/2016 9:36	55.5	38.2	0.0	6.3	81.0		31	32	-0.2	-0.2	-0.2
GEW-042R	3/28/2016 10:06	52.6	39.6	0.0	7.8	110.0		0	14	-1.4	-1.4	-2.0
GEW-043R	3/3/2016 8:23	57.0	41.5	0.0	1.5	133.3		41	46	-0.1	-0.2	-10.2
GEW-043R	3/3/2016 8:24	55.9	42.8	0.0	1.3	134.0		21	21	0.0	0.0	-9.9
GEW-043R	3/7/2016 9:46	54.9	43.0	0.0	2.1	134.3		41	41	-0.1	-0.1	-12.8
GEW-043R	3/7/2016 9:50	55.7	41.0	0.0	3.3	134.0		27	28	-0.1	-0.1	-12.2
GEW-043R	3/18/2016 10:18	54.7	40.1	0.0	5.2	124.0		18	18	-0.6	-0.6	-8.0
GEW-043R	3/22/2016 9:42	55.3	40.2	0.1	4.4	124.5		35	34	-1.8	-1.7	-9.1
GEW-043R	3/28/2016 10:10	54.6	40.8	0.0	4.6	130.6		51	48	-2.2	-2.2	-10.4
GEW-044	3/3/2016 8:31	58.1	40.8	0.0	1.1	72.9		9	7	-0.1	-0.1	-3.4
GEW-044	3/7/2016 9:58	57.7	40.5	0.0	1.8	85.3		0	11	-0.6	-0.6	-6.4
GEW-044	3/7/2016 10:03	57.9	40.7	0.0	1.4	85.1		29	28	-0.6	-0.6	-5.9
GEW-044	3/18/2016 10:21	51.2	39.9	0.0	8.9	79.9		14	11	-1.0	-1.0	-4.5
GEW-044	3/22/2016 9:47	54.1	39.8	0.0	6.1	76.2		15	16	0.0	0.0	-2.3
GEW-044	3/22/2016 9:48	53.4	40.0	0.0	6.6	76.4		0	0	0.0	0.0	-2.3
GEW-044	3/28/2016 10:14	43.1	37.9	0.0	19.0	79.5		26	26	-0.9	-0.9	-4.0
GEW-044	3/28/2016 10:15	42.8	37.9	0.0	19.3	80.0		37	38	-0.9	-0.9	-3.6
GEW-045R	3/3/2016 8:38	57.1	41.1	0.0	1.8	82.3		10	10	-0.2	-0.2	-10.1
GEW-045R	3/7/2016 10:17	57.8	40.5	0.0	1.7	83.8		9	9	-2.6	-2.6	-12.4
GEW-045R	3/7/2016 10:20	58.2	38.0	0.0	3.8	84.3		13	13	-2.6	-2.6	-11.7
GEW-045R	3/22/2016 10:02	55.1	39.0	0.6	5.3	84.7		9	9	-9.4	-9.1	-8.9

March 2016 Wellfield Monitoring Data - Bridgeton Landfill

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
		Į.	(% v	/ol)		°I	=	scf	m	Į.	H₂O	
GEW-045R	3/22/2016 10:03	57.1	38.3	0.3	4.3	82.5		12	12	-2.1	-2.1	-8.9
GEW-045R	3/28/2016 10:18	54.1	41.2	0.0	4.7	69.2		10	10	1.6	1.6	-9.9
GEW-045R	3/28/2016 10:19	53.8	42.1	0.0	4.1	72.9		11	11	0.2	0.2	-10.1
GEW-046R	3/3/2016 8:51	55.3	40.7	0.0	4.0	93.8		0	0	-0.4	-0.4	-10.6
GEW-046R	3/7/2016 10:26	54.6	40.2	0.0	5.2	95.2		32	32	-0.4	-0.4	-11.9
GEW-046R	3/7/2016 10:29	55.2	39.8	0.0	5.0	95.2		40	41	-0.5	-0.5	-12.4
GEW-046R	3/18/2016 10:23	50.4	39.5	0.0	10.1	85.7		11	8	-1.2	-1.3	-10.3
GEW-046R	3/22/2016 13:46	54.4	39.7	0.0	5.9	98.4		0	0	0.5	0.5	-8.1
GEW-046R	3/22/2016 13:47	53.9	40.0	0.0	6.1	99.6		13	12	0.4	0.4	-8.2
GEW-046R	3/28/2016 10:23	51.3	40.1	0.0	8.6	97.4		0	0	-0.8	-0.8	-10.1
GEW-047R	3/3/2016 10:26	47.0	37.0	0.3	15.7	111.1		0	0	-0.7	-0.7	-10.9
GEW-047R	3/7/2016 14:15	51.6	40.0	0.0	8.4	110.0		3	3	0.2	0.2	-11.6
GEW-047R	3/7/2016 14:22	50.8	37.1	0.0	12.1	115.2		37	38	0.0	0.0	-11.3
GEW-047R	3/18/2016 10:52	38.5	34.7	0.0	26.8	111.1		72	79	-4.7	-4.7	-10.5
GEW-047R	3/18/2016 10:52	38.4	34.7	0.0	26.9	108.8		0	7	-1.9	-1.9	-12.7
GEW-047R	3/22/2016 15:11	53.8	40.4	0.0	5.8	110.8		0	0	0.8	0.7	-10.6
GEW-047R	3/22/2016 15:12	53.2	41.4	0.0	5.4	112.5		0	0	0.7	0.7	-10.7
GEW-047R	3/28/2016 10:52	44.3	37.5	0.3	17.9	107.3		10	11	-0.2	-0.3	-9.6
GEW-048	3/3/2016 10:38	55.2	38.8	0.1	5.9	102.3		30	30	-0.5	-0.5	-7.3
GEW-048	3/7/2016 15:03	57.3	40.0	0.0	2.7	102.1		0	0	0.1	0.1	-9.6
GEW-048	3/7/2016 15:07	57.3	39.8	0.0	2.9	103.5		0	0	0.1	0.1	-5.6
GEW-048	3/18/2016 10:57	53.9	37.0	0.0	9.1	103.4		32	30	-1.3	-1.3	-12.0
GEW-048	3/22/2016 15:18	56.0	39.8	0.0	4.2	104.3		0	0	0.7	0.7	-8.8
GEW-048	3/22/2016 15:19	56.4	40.7	0.0	2.9	106.0		0	0	0.6	0.6	-8.9
GEW-048	3/28/2016 11:01	53.3	38.3	0.0	8.4	103.1		17	18	-0.5	-0.5	-7.8
GEW-049	3/3/2016 10:53	52.8	35.8	0.1	11.3	107.9		0	0	-0.3	-0.3	-4.5
GEW-049	3/7/2016 15:30	56.7	38.8	0.1	4.4	109.9		35	35	0.1	0.1	-4.4
GEW-049	3/7/2016 15:39	56.4	37.7	0.1	5.8	109.7		13	13	0.0	0.0	-3.8
GEW-049	3/18/2016 11:08	44.2	34.6	0.5	20.7	106.9		0	0	-1.0	-1.0	-10.8
GEW-049	3/22/2016 15:39	55.5	40.8	0.0	3.7	109.8		0	0	0.6	0.6	-3.7
GEW-049	3/22/2016 15:40	56.0	41.2	0.0	2.8	116.4		0	0	0.2	0.2	-3.6
GEW-049	3/28/2016 11:17	46.0	36.2	0.1	17.7	107.0		14	13	-0.5	-0.5	-4.5
GEW-050	3/3/2016 13:19	57.4	39.2	0.2	3.2	105.6		29	31	-0.1	-0.1	-4.7
GEW-050	3/7/2016 15:22	57.3	38.0	0.0	4.7	106.3		30	32	0.1	0.1	-3.9
GEW-050	3/7/2016 15:26	56.9	39.0	0.0	4.1	106.5		16	14	0.0	0.0	-5.3
GEW-050	3/18/2016 11:03	51.8	37.7	0.0	10.5	106.5		19	20	-1.2	-1.2	-11.5
GEW-050	3/22/2016 15:26	55.9	39.0	0.0	5.1	107.5		18	18	0.8	0.7	-3.1
GEW-050	3/22/2016 15:27	55.6	39.9	0.0	4.5	108.5		16	19	0.7	0.6	-5.2
GEW-050	3/28/2016 11:07	54.1	38.2	0.0	7.7	106.0		14	15	-0.4	-0.4	-4.9
GEW-050	3/28/2016 11:08	54.0	38.7	0.0	7.3	107.5		38	38	-0.6	-0.5	-4.2
GEW-051	3/3/2016 10:55	54.5	36.1	0.1	9.3	122.6		17	17	-0.1	-0.1	-12.0
GEW-051	3/7/2016 15:20	55.3	40.0	0.1	4.6	123.5		0	0	0.4	0.5	-10.2

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
	Ī	•	(% v	ol)	•	°I	=	scf	m		H₂O	
GEW-051	3/7/2016 15:26	55.3	40.8	0.1	3.8	124.0		19	19	0.0	0.0	-9.9
GEW-051	3/18/2016 11:10	54.6	37.9	0.0	7.5	124.9		13	13	-0.8	-0.8	-13.5
GEW-051	3/22/2016 15:35	54.1	39.8	0.0	6.1	127.8		14	13	0.8	0.8	
GEW-051	3/22/2016 15:36	54.4	41.5	0.0	4.1	128.9		13	17	0.8	0.8	-10.2
GEW-051	3/29/2016 9:17	56.9	40.0	0.0	3.1	125.0		16	17	-0.6	-0.6	-9.7
GEW-051	3/29/2016 9:19	55.7	41.2	0.0	3.1	127.2		29	24	-1.0	-1.0	-9.3
GEW-052	3/3/2016 13:22	52.1	36.8	0.1	11.0	114.0		35	34	-0.2	-0.1	-11.8
GEW-052	3/7/2016 15:57	53.2	37.6	0.1	9.1	114.7		39	38	-0.1	-0.1	-10.0
GEW-052	3/7/2016 16:02	52.8	37.3	0.1	9.8	114.9		14	11	0.0	0.0	-10.3
GEW-052	3/18/2016 11:05	49.8	37.3	0.0	12.9	111.1		9	9	-0.4	-0.4	-12.8
GEW-052	3/22/2016 15:30	54.9	39.8	0.0	5.3	117.3		0	0	0.3	0.3	-10.1
GEW-052	3/22/2016 15:30	54.7	40.4	0.0	4.9	117.4		0	0	0.3	0.3	-10.6
GEW-052	3/28/2016 11:12	50.3	37.0	0.0	12.7	112.5		30	31	-0.2	-0.2	-9.0
GEW-053	3/3/2016 11:22	52.2	41.7	0.1	6.0	136.6		12	13	-0.1	-0.1	-12.4
GEW-053	3/3/2016 11:22	51.1	42.7	0.1	6.1	136.9		12	13	-0.1	-0.1	-12.4
GEW-053	3/7/2016 15:08	50.6	41.7	0.1	7.6	137.0		0	0	0.4	0.4	-10.6
GEW-053	3/7/2016 15:14	51.1	41.0	0.1	7.8	140.0		0	0	0.0	-0.1	-10.5
GEW-053	3/18/2016 11:12	51.5	40.0	0.2	8.3	56.4		10	10	-0.1	-0.1	-14.6
GEW-053	3/24/2016 10:13	51.7	38.1	0.0	10.2	128.0		10	6	-0.4	-0.4	-11.7
GEW-054	3/3/2016 11:27	55.6	38.4	0.1	5.9	146.6		20	19	0.1	0.1	-11.7
GEW-054	3/3/2016 11:28	54.0	41.3	0.1	4.6	147.0		20	20	-0.1	-0.1	-11.5
GEW-054	3/7/2016 14:45	52.5	41.3	0.1	6.1	144.7		18	18	-0.1	-0.1	-11.0
GEW-054	3/7/2016 14:52	52.8	41.4	0.1	5.7	144.3		16	19	-0.1	-0.1	-10.6
GEW-054	3/18/2016 11:14	50.8	41.9	0.0	7.3	147.7		51	48	-4.1	-4.2	-12.1
GEW-054	3/18/2016 11:15	51.6	42.8	0.0	5.6	146.6		18	18	-1.9	-1.9	-14.3
GEW-054	3/29/2016 9:30	54.4	40.1	0.0	5.5	147.2		40	39	-2.9	-2.9	
GEW-054	3/29/2016 9:31	52.2	42.2	0.0	5.6	147.0		33	35	-2.2	-2.1	-9.0
GEW-055	3/3/2016 11:35	54.8	41.4	0.1	3.7	121.8		0	0	-0.3	-0.3	-11.6
GEW-055	3/7/2016 14:29	54.1	41.5	0.1	4.3	123.7		0	0	-0.2	-0.2	-11.2
GEW-055	3/7/2016 14:34	54.2	41.2	0.1	4.5	123.7		0	0	-0.1	-0.1	-11.2
GEW-055	3/18/2016 11:17	51.7	42.8	0.0	5.5	123.7		9	9	-0.7	-0.7	-14.6
GEW-055	3/24/2016 9:06	57.0	36.3	0.1	6.6	125.8		22	23	-0.6	-0.6	_
GEW-055	3/29/2016 9:34	53.6	42.0	0.0	4.4	124.7		35	35	-0.5	-0.5	-9.7
GEW-056R	3/3/2016 13:59	18.6	35.8	0.0	45.6	158.8				-5.4	-5.4	-18.2
GEW-056R	3/3/2016 14:05	17.8	36.7	0.0	45.5	130.5				0.5	0.5	0.9
GEW-056R	3/7/2016 16:36	18.5	39.1	0.2	42.2	157.0				-6.0	-5.9	
GEW-056R	3/7/2016 16:37	20.2	38.7	0.1	41.0	157.0				-5.9	-5.9	
GEW-056R	3/18/2016 11:26	11.4	46.9	0.2	41.5	156.6				-5.5	-5.5	
GEW-056R	3/18/2016 11:27	13.9	43.6	0.2	42.3	156.6				-5.5	-5.5	-17.4
GEW-056R	3/23/2016 15:50	14.6	46.0	0.3	39.1	156.6				-4.0	-4.0	-12.2
GEW-056R	3/23/2016 15:51	17.2	42.5	0.2	40.1	156.6				-4.0	-4.0	-12.3
GEW-056R	3/29/2016 11:08	15.4	39.7	0.1	44.8	154.8				-3.9	-4.0	-12.4

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
			(% \	/ol)	,	٥	=	sci	fm		H₂O	1
GEW-056R	3/29/2016 11:09	14.4	43.1	0.1	42.4	155.2				-3.9	-3.8	-10.9
GEW-057B	3/25/2016 11:07	0.5	58.1	0.3	41.1	113.0				-15.7	-15.9	-15.1
GEW-057R	3/9/2016 10:08	0.4	15.7	17.4	66.5	148.9				-14.4	-12.0	-13.8
GEW-057R	3/9/2016 10:09	0.4	14.6	17.1	67.9	148.9				-14.5	-14.9	-14.7
GEW-058	3/9/2016 10:13	4.2	38.4	8.2	49.2	177.2				-21.7	-21.7	-22.3
GEW-058	3/9/2016 10:14	4.8	37.1	7.8	50.3	176.2				-21.2	-20.8	-22.1
GEW-058A	3/9/2016 10:16	0.8	48.7	3.9	46.6	151.4				-13.5	-14.4	-13.8
GEW-058A	3/9/2016 10:20	0.6	46.5	4.2	48.7	154.5				-13.9	-14.0	-14.8
GEW-059R	3/9/2016 10:26	1.4	53.4	0.2	45.0	189.1				-7.1	-7.1	0.1
GEW-059R	3/9/2016 10:30	1.4	56.7	0.2	41.7	189.1				-8.1	-8.1	0.2
GEW-065A	3/9/2016 10:35	0.3	28.4	15.9	55.4	96.1				-20.3	-19.7	-21.0
GEW-065A	3/9/2016 10:35	0.2	21.4	16.4	62.0	95.8				-19.8	-19.8	-20.6
GEW-067A	3/25/2016 11:12	3.2	36.8	11.1	48.9	122.9				-2.8	-2.7	-10.4
GEW-067A	3/25/2016 11:14	3.4	34.3	11.0	51.3	125.0		19	18	-1.1	-1.3	-14.6
GEW-082R	3/9/2016 10:45	0.9	58.8	0.2	40.1	196.3				-17.4	-18.3	-17.2
GEW-082R	3/9/2016 10:48	0.8	56.1	0.2	42.9	196.5				-16.9	-16.9	-17.1
GEW-086	3/9/2016 11:04	6.7	28.3	11.2	53.8	84.1				-0.2	-0.2	-16.6
GEW-086	3/9/2016 11:04	7.1	26.4	11.3	55.2	80.4				-0.2	-0.2	-17.3
GEW-089	3/9/2016 11:22	2.9	17.4	17.6	62.1	74.8				-4.4	-4.3	-13.5
GEW-089	3/9/2016 11:23	2.5	13.1	18.2	66.2	74.3		6	0	-4.2	-4.4	-17.1
GEW-090	3/9/2016 11:48	8.7	54.6	0.3	36.4	183.5				-14.5	-14.5	-21.0
GEW-090	3/9/2016 11:52	8.1	49.0	0.2	42.7	183.5		41	42	-15.5	-15.5	-20.6
GEW-102	3/9/2016 12:05	1.9	59.4	0.2	38.5	184.1				-20.8	-20.8	-20.6
GEW-102	3/9/2016 12:09	1.6	57.7	0.2	40.5	184.1				-20.8	-20.8	-21.0
GEW-107	3/9/2016 12:27	0.8	28.4	15.2	55.6	69.2				-20.8	-20.8	-21.5
GEW-107	3/9/2016 12:28	1.2	29.7	7.2	61.9	69.5		4	4	-22.2	-22.3	-22.0
GEW-109	3/3/2016 9:39	15.2	51.2	0.0	33.6	81.3		3	4	-16.8	-17.0	-18.1
GEW-109	3/3/2016 9:45	14.0	49.8	0.1	36.1	83.7		3	3	-17.7	-17.7	-18.3
GEW-109	3/7/2016 17:14	13.3	49.9	0.1	36.7	117.0		4	1	-17.9	-17.8	-20.2
GEW-109	3/18/2016 11:22	15.3	41.2	1.3	42.2	90.7		2	2	-17.6	-17.6	-18.2
GEW-109	3/23/2016 15:47	13.8	48.8	0.2	37.2	93.4		4	5	-12.3	-12.3	-14.2
GEW-109	3/29/2016 11:21	13.8	51.9	0.0	34.3	82.6		2	2	-13.1	-13.1	-14.8
GEW-110	3/3/2016 14:35	2.9	37.9	8.7	50.5	91.8		6	3	0.0	0.0	-22.2
GEW-110	3/3/2016 14:44	2.6	34.6	10.1	52.7	92.1		3	5	0.0	0.0	-24.5
GEW-110	3/7/2016 16:45	4.2	36.1	8.8	50.9	97.3		7	6	-0.1	-0.1	-22.0
GEW-110	3/7/2016 16:46	3.1	36.8	8.7	51.4	97.5		4	4	-0.1	-0.1	-22.1
GEW-110	3/18/2016 11:29	10.2	35.5	11.7	42.6	64.1		6	6	-0.1	-0.1	-22.6
GEW-110	3/18/2016 11:29	8.9	31.3	11.8	48.0	64.1		6	5	0.0	-0.1	-22.9
GEW-110	3/23/2016 15:57	4.0	51.8	2.7	41.5	101.1		3	2	0.0	0.0	-17.6
GEW-110	3/29/2016 11:11	8.1	38.5	8.5	44.9	71.4		6	4	0.0	0.0	-15.6
GEW-110	3/29/2016 11:12	6.2	35.2	8.9	49.7	71.4		4	3	-0.1	-0.1	-14.9
GEW-116	3/9/2016 12:22	2.7	44.3	12.9	40.1	71.0		7	7	-7.1	-7.1	-19.6

Well Name	Date Sampled	Methane	CO ₂	02	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
		•	(% v	ol)		٥	=	sc	fm		H₂O	
GEW-116	3/9/2016 12:22	1.7	32.9	12.1	53.3	70.5		4	3	-9.5	-9.5	-19.6
GEW-117	3/9/2016 12:20	6.0	53.6	2.0	38.4	105.0				-19.8	-19.8	-19.6
GEW-120	3/2/2016 8:30	13.9	57.5	0.9	27.7	175.2				-8.8	-8.8	-8.8
GEW-120	3/2/2016 8:35	14.2	58.5	0.9	26.4	175.2				-12.7	-12.8	-12.6
GEW-121	3/2/2016 8:33	4.2	59.6	0.0	36.2	189.6		33	35	-8.6	-8.4	-10.4
GEW-121	3/2/2016 8:40	5.2	61.2	0.1	33.5	189.3		42	40	-14.2	-13.8	-18.4
GEW-122	3/2/2016 8:49	6.3	52.7	0.1	40.9	181.9				-16.6	-16.6	-16.5
GEW-122	3/2/2016 8:53	5.9	55.8	0.1	38.2	181.9				-16.2	-16.5	-16.1
GEW-123	3/2/2016 8:49	3.7	62.1	0.0	34.2	190.8				-16.7	-16.4	-17.1
GEW-123	3/2/2016 10:04	4.6	59.7	0.0	35.7	190.6				-16.2	-16.2	-16.9
GEW-124	3/2/2016 10:04	7.6	59.5	1.0	31.9	129.3				-13.7	-14.1	-13.6
GEW-124	3/2/2016 10:08	7.2	58.8	1.0	33.0	128.1				-13.8	-14.1	-13.6
GEW-125	3/2/2016 10:13	0.7	48.3	5.5	45.5	51.8				-16.2	-16.2	-16.4
GEW-125	3/2/2016 10:14	0.7	47.9	5.0	46.4	52.3				-16.2	-16.2	-16.1
GEW-126	3/2/2016 10:12	10.5	57.9	0.2	31.4	190.8				-16.1	-16.5	-16.1
GEW-126	3/2/2016 10:16	9.8	54.0	0.2	36.0	190.8				-8.8	-8.7	-8.3
GEW-127	3/2/2016 10:19	1.8	58.8	0.0	39.4	189.6				-5.4	-5.3	-5.8
GEW-127	3/2/2016 10:37	1.8	62.0	0.0	36.2	189.8				-4.7	-4.9	-4.8
GEW-128	3/2/2016 10:24	7.3	63.4	0.2	29.1	179.9				-5.5	-5.5	-5.4
GEW-128	3/2/2016 10:28	6.6	61.1	0.2	32.1	179.8				-5.6	-5.4	-5.3
GEW-129	3/2/2016 10:45	6.3	58.7	0.0	35.0	167.9				-5.4	-5.7	-5.9
GEW-129	3/2/2016 10:52	6.4	56.2	0.0	37.4	167.8				-14.2	-14.3	-14.7
GEW-131	3/2/2016 10:46	9.5	48.3	3.7	38.5	171.7				-6.0	-5.9	-5.9
GEW-131	3/2/2016 10:50	10.1	44.6	4.2	41.1	173.1				-6.2	-6.4	-6.3
GEW-132	3/2/2016 11:14	8.5	49.2	3.2	39.1	169.2				-12.3	-12.4	-15.2
GEW-132	3/2/2016 11:17	6.8	43.6	3.6	46.0	169.2				-12.2	-12.2	-15.2
GEW-133	3/2/2016 11:18	0.7	32.0	12.9	54.4	50.3		6	5	-16.2	-16.2	-15.8
GEW-133	3/2/2016 11:19	0.6	38.7	9.3	51.4	51.8		5	8	-16.2	-16.2	-16.4
GEW-134	3/2/2016 11:23	4.6	38.8	9.4	47.2	116.4				-15.7	-15.7	-16.2
GEW-134	3/2/2016 11:25	4.9	38.6	9.4	47.1	118.6				-17.2	-17.6	-17.8
GEW-135	3/2/2016 11:30	4.7	42.1	6.8	46.4	172.7				-7.8	-6.8	-17.4
GEW-135	3/9/2016 15:37	4.4	34.8	9.1	51.7	152.5				-19.2	-19.1	-18.6
GEW-135	3/9/2016 15:39	4.4	33.6	9.2	52.8	153.3				-17.9	-15.7	-17.9
GEW-136	3/4/2016 9:05	1.6	7.6	19.6	71.2	107.2				-6.5	-6.9	-17.6
GEW-136	3/4/2016 9:09	1.8	11.3	18.9	68.0	109.9				-13.8	-12.2	-14.5
GEW-137	3/4/2016 8:38	15.6	43.8	0.2	40.4	104.7				-17.0	-16.1	-16.9
GEW-137	3/4/2016 8:42	16.0	42.4	0.2	41.4	102.3				-15.6	-14.7	-13.8
GEW-138	3/4/2016 9:10	15.5	61.0	0.3	23.2	144.8				-1.6	-1.8	-8.1
GEW-138	3/4/2016 9:13	16.1	58.0	0.3	25.6	145.1				-2.0	-2.0	-12.2
GEW-139	3/4/2016 9:19	1.2	59.8	0.3	38.7	187.9				-1.7	-1.7	-19.5
GEW-139	3/4/2016 9:22	1.4	57.0	0.3	41.3	187.9				-1.7	-1.7	-19.2
GEW-140	3/4/2016 9:18	11.7	55.7	0.2	32.4	174.1				-18.7	-18.2	-18.7

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
		.	(%	vol)		٥		sc	fm	'	H₂O	
GEW-140	3/4/2016 9:24	11.5	55.0	0.2	33.3	174.1				-16.4	-18.2	-15.2
GEW-141	3/4/2016 9:33	1.8	61.1	0.6	36.5	115.7				-20.3	-20.3	-20.1
GEW-141	3/4/2016 9:37	1.7	57.7	0.4	40.2	116.0				-20.0	-20.5	-20.1
GEW-142	3/4/2016 9:38	0.0	1.0	23.2	75.8	38.7				-20.2	-19.5	-19.8
GEW-142	3/4/2016 9:40	0.0	1.0	23.0	76.0	38.8				-20.2	-19.8	-20.3
GEW-143	3/4/2016 10:02	0.3	37.3	9.0	53.4	53.7				-19.6	-20.0	-19.6
GEW-143	3/4/2016 10:03	0.2	36.0	8.8	55.0	54.9				-19.5	-20.0	-19.1
GEW-144	3/4/2016 10:03	2.9	58.1	1.4	37.6	91.1				-9.8	-10.3	-10.5
GEW-144	3/4/2016 10:04	2.4	52.9	1.1	43.6	92.7				-8.4	-8.4	-8.8
GEW-145	3/4/2016 10:11	4.7	57.1	0.0	38.2	178.2				-20.7	-20.6	-20.8
GEW-145	3/4/2016 10:18	4.9	56.9	0.0	38.2	179.8				-20.7	-20.7	-20.8
GEW-146	3/9/2016 9:39	4.3	21.2	14.7	59.8	76.6				-4.3	-4.3	-20.7
GEW-146	3/9/2016 9:47	5.3	22.4	13.0	59.3	78.0				-13.3	-13.7	-15.4
GEW-147	3/9/2016 9:59	11.3	49.4	0.1	39.2	165.0				-20.6	-20.6	-20.7
GEW-147	3/9/2016 10:09	12.6	54.0	0.4	33.0	169.7				-20.7	-20.6	-20.7
GEW-148	3/9/2016 10:21	0.3	15.4	20.1	64.2	66.2		9	16	-21.1	-20.7	-21.3
GEW-148	3/9/2016 10:25	0.0	4.5	21.6	73.9	66.4		5	2	-10.9	-10.8	-21.1
GEW-149	3/9/2016 11:02	8.0	36.2	9.2	46.6	121.5		36	37	-1.8	-1.9	-24.3
GEW-149	3/9/2016 11:14	7.6	38.9	8.2	45.3	116.3		19	16	-0.6	-0.6	-23.3
GEW-150	3/9/2016 11:24	4.9	32.6	12.0	50.5	152.5				-14.7	-14.7	-20.8
GEW-150	3/9/2016 11:32	5.0	32.3	11.9	50.8	150.9				-14.7	-14.8	-21.0
GEW-151	3/9/2016 14:25	9.4	40.1	5.7	44.8	135.7				-6.9	-7.8	-12.4
GEW-151	3/9/2016 14:26	9.0	41.7	5.7	43.6	133.9		22	18	-5.9	-5.9	-17.6
GEW-152	3/9/2016 13:47	8.7	52.6	0.2	38.5	167.3				-22.1	-21.6	-22.6
GEW-152	3/9/2016 13:54	8.3	51.6	0.2	39.9	168.1				-21.1	-21.4	-21.7
GEW-153	3/9/2016 12:25	23.7	47.6	0.1	28.6	158.8		20	9	-10.5	-10.3	-23.2
GEW-153	3/9/2016 12:31	25.4	47.1	0.1	27.4	160.1		31	30	-15.7	-15.8	-22.7
GEW-154	3/9/2016 12:08	12.5	26.4	11.7	49.4	141.1		11	11	-5.3	-5.4	-23.0
GEW-154	3/9/2016 12:17	15.2	26.4	11.1	47.3	147.5		34	36	-18.2	-17.7	-22.5
GEW-155	3/9/2016 11:38	9.2	40.5	8.2	42.1	111.6				-1.3	-1.3	-13.0
GEW-155	3/9/2016 11:49	8.9	37.8	8.6	44.7	117.0				-5.5	-5.5	-6.6
GEW-156	3/9/2016 11:59	4.2	14.0	16.5	65.3	94.4				-13.5	-13.3	-21.7
GEW-156	3/9/2016 12:03	2.5	11.5	17.2	68.8	95.4				-0.3	-0.3	-22.3
GEW-157	3/9/2016 14:28	6.5	53.1	0.1	40.3	191.3		29	15	1.1	-4.6	2.0
GEW-157	3/9/2016 14:29	5.7	58.4	0.2	35.7	191.3		13	35	0.1	-3.2	-1.9
GEW-158	3/9/2016 14:22	1.4	28.5	10.1	60.0	71.2		12	8	-19.0	-18.6	-18.8
GEW-158	3/9/2016 14:24	1.5	26.9	9.4	62.2	70.9		3	1	-22.6	-22.6	-22.4
GEW-159	3/9/2016 13:57	13.5	43.4	0.0	43.1	160.5		22	22	-20.9	-20.9	-21.4
GEW-159	3/9/2016 14:01	14.0	38.7	0.0	47.3	161.4		23	20	-21.0	-21.0	-21.5
GEW-160	3/9/2016 13:53	0.8	39.4	2.4	57.4	72.4		2		-20.0	-19.6	-20.0
GEW-161	3/9/2016 13:51	2.2	33.2	8.3	56.3	72.9		9		-21.1	-20.5	-20.9
GEW-161	3/9/2016 13:51	1.5	33.0	8.6	56.9	73.2		7		-21.9		-22.0

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
		<u>'</u>	(% v	/ol)	•	٥	F	sc	fm		H₂O	
GEW-162	3/9/2016 13:47	17.9	50.1	1.1	30.9	78.0		17	10	-21.9	-21.6	-22.1
GIW-01	3/3/2016 9:03	3.4	61.9	0.4	34.3	186.8		35	38	-7.9	-7.7	-7.9
GIW-01	3/3/2016 9:10	2.9	66.9	0.1	30.1	186.3		20	0	-7.5	-7.4	-7.9
GIW-01	3/16/2016 15:31	3.2	59.6	0.5	36.7	182.4		0	30	-22.1	-22.1	-22.0
GIW-01	3/16/2016 15:33	2.8	62.7	0.2	34.3	183.5		13	23	-21.6	-22.5	-21.9
GIW-01	3/21/2016 14:21	6.9	53.1	1.4	38.6	177.7		0	0	-22.5	-22.5	-22.3
GIW-01	3/21/2016 14:22	2.6	59.5	1.0	36.9	177.2		0	27	-22.5	-22.5	-22.3
GIW-02	3/3/2016 15:25	7.3	28.9	11.2	52.6	72.0		0	10	-8.4	-7.8	-23.3
GIW-02	3/3/2016 15:32	7.0	30.9	11.2	50.9	71.7		0	36	-6.8	-6.9	-23.4
GIW-02	3/11/2016 16:24	5.3	32.0	10.9	51.8	71.8		82	0	-8.8	-8.3	-22.3
GIW-02	3/11/2016 16:26	5.7	29.8	11.0	53.5	71.2		53	0	-5.8	-5.3	-22.5
GIW-02	3/16/2016 15:37	2.7	24.9	13.8	58.6	73.2		0	0	-0.7	-0.7	-22.5
GIW-02	3/16/2016 15:38	3.0	23.8	14.0	59.2	73.7		2	4	-0.7	-0.7	-22.1
GIW-02	3/21/2016 14:28	4.9	25.5	12.3	57.3	70.2		4	5	-0.7	-0.7	-22.4
GIW-02	3/21/2016 14:29	5.0	25.6	12.3	57.1	70.0		5	6	-0.7	-0.7	-21.9
GIW-03	3/3/2016 15:14	0.1	19.8	18.0	62.1	55.3		0	0	-11.8	-11.8	-22.7
GIW-03	3/3/2016 15:20	0.1	10.0	19.2	70.7	56.1		4	3	-11.3	-11.2	-21.8
GIW-03	3/11/2016 16:11	0.9	19.1	17.4	62.6	69.0		8	4	-21.6	-21.5	-22.1
GIW-03	3/11/2016 16:14	0.2	12.0	19.3	68.5	68.5		7	4	-6.8	-6.8	-22.1
GIW-03	3/16/2016 15:40	0.2	15.3	18.2	66.3	75.3		1	6	-6.9	-6.9	-22.2
GIW-03	3/16/2016 15:42	0.1	10.7	19.2	70.0	75.5		3	2	-2.1	-2.0	-21.5
GIW-03	3/21/2016 14:32	0.3	22.1	15.6	62.0	74.8		4	6	-1.7	-1.7	-21.7
GIW-03	3/21/2016 14:34	0.2	21.2	15.6	63.0	75.5		4	2	-1.5	-1.4	-22.3
GIW-04	3/3/2016 15:01	0.8	35.5	5.2	58.5	54.7		8	8	-11.2	-11.2	-22.7
GIW-04	3/3/2016 15:09	0.3	31.8	6.1	61.8	54.4		8	8	-19.2	-19.2	-22.4
GIW-04	3/11/2016 16:20	0.8	39.8	4.3	55.1	66.9		9	8	-14.6	-14.6	-21.6
GIW-04	3/16/2016 15:45	0.1	8.7	19.4	71.8	76.6		3	1	-20.6	-20.6	-22.4
GIW-04	3/16/2016 15:46	0.1	6.0	20.0	73.9	77.5		3	3	-20.5	-20.5	-22.5
GIW-04	3/21/2016 14:39	0.1	7.0	19.7	73.2	72.9		5	1	-20.9	-20.9	-22.5
GIW-04	3/21/2016 14:40	0.1	6.0	19.7	74.2	73.4		3	3	-20.8	-20.7	-22.3
GIW-05	3/3/2016 7:53	3.5	55.0	1.6	39.9	42.0		0	0		-20.6	-21.8
GIW-05	3/3/2016 7:58	3.5	47.8	0.8	47.9	42.0		36	0	-16.7	-16.8	-17.8
GIW-05	3/7/2016 16:12	8.8	53.7	0.5	37.0	83.0		44	68	-19.2	-19.2	-22.4
GIW-05	3/16/2016 15:50	9.2	53.9	1.4	35.5	72.4		71	29	-19.2	-19.2	-20.6
GIW-05	3/21/2016 14:44	10.5	53.5	1.4	34.6	65.2		74	62	-13.8	-13.7	-22.3
GIW-06	3/2/2016 15:48	1.5	56.1	0.7	41.7	48.6				-21.6	-22.1	-21.7
GIW-06	3/2/2016 15:58	1.7	57.8	0.4	40.1	47.6				-13.2	-13.2	-22.4
GIW-06	3/7/2016 16:15	2.3	57.2	0.1	40.4	81.0				-21.1	-21.2	-21.8
GIW-06	3/16/2016 15:52	2.7	54.4	1.2	41.7	75.7				-21.1	-21.1	-22.5
GIW-06	3/21/2016 14:46	2.3	52.8	1.1	43.8	70.5				-6.0	-5.9	-22.3
GIW-07	3/2/2016 16:02	20.0	44.7	6.7	28.6	45.2		5	5	-7.4	-7.3	-22.4
GIW-07	3/2/2016 16:11	20.5	44.2	6.7	28.6	45.9		3	3	-7.3	-7.3	-20.4

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
			(%	vol)		٥	-	scf	m	<u> </u>	H₂O	
GIW-07	3/7/2016 16:18	15.0	53.4	4.7	26.9	78.0		1	1	-3.4	-3.3	-21.7
GIW-07	3/16/2016 15:55	15.4	42.4	8.3	33.9	77.3		3	1	-7.4	-7.5	-22.6
GIW-07	3/16/2016 15:56	15.4	40.3	8.6	35.7	77.9		1	1	-7.4	-7.4	-22.0
GIW-07	3/21/2016 14:57	12.8	39.9	8.6	38.7	68.7		1	1	-6.5	-6.6	-22.6
GIW-07	3/21/2016 14:58	14.3	40.5	8.3	36.9	70.1		2	1	-6.3	-6.3	-22.2
GIW-08	3/2/2016 16:15	20.4	61.0	0.0	18.6	49.3				-13.8	-13.8	-20.8
GIW-08	3/2/2016 16:22	19.7	56.7	0.0	23.6	49.3				-14.2	-14.3	-22.1
GIW-08	3/7/2016 17:04	21.6	45.9	0.3	32.2	77.9				-12.8	-12.8	-19.0
GIW-08	3/16/2016 15:59	20.2	49.1	0.1	30.6	73.6				-13.8	-13.7	-15.5
GIW-08	3/21/2016 15:01	19.1	48.6	0.2	32.1	68.4				-13.7	-13.7	-21.9
GIW-09	3/2/2016 16:26	2.6	24.3	15.3	57.8	62.2				-6.3	-6.0	-23.4
GIW-09	3/2/2016 16:32	2.6	18.7	15.9	62.8	61.7				-6.3	-6.3	-22.0
GIW-09	3/7/2016 17:01	3.2	28.0	15.8	53.0	79.0				-1.3	-1.3	-22.7
GIW-09	3/7/2016 17:01	0.4	14.6	17.4	67.6	79.0				-1.4	-1.3	-21.8
GIW-09	3/16/2016 16:17	1.1	21.6	16.0	61.3	69.3				-1.7	-1.7	-22.2
GIW-09	3/16/2016 16:18	0.7	14.4	16.9	68.0	69.0				-1.7	-1.7	-22.0
GIW-09	3/21/2016 15:06	1.1	15.6	16.7	66.6	71.6				-4.3	-4.3	-23.0
GIW-09	3/21/2016 15:07	1.2	15.1	16.5	67.2	69.6				-2.5	-2.5	-22.3
GIW-10	3/3/2016 7:41	6.7	49.3	0.0	44.0	43.8		0	0	-21.3	-21.6	-21.7
GIW-10	3/3/2016 7:47	6.2	48.9	0.0	44.9	44.4		10	12	-21.6	-21.6	-22.2
GIW-10	3/7/2016 16:09	7.8	46.0	0.1	46.1	81.9		3	6	-20.7	-21.1	-21.4
GIW-10	3/16/2016 16:21	5.6	48.1	0.1	46.2	70.0		12	5	-22.1	-22.1	-22.0
GIW-10	3/21/2016 15:09	7.1	41.4	0.2	51.3	69.6		15	10	-22.5	-22.1	-22.8
GIW-11	3/3/2016 8:29	6.2	43.3	5.0	45.5	54.9				-2.9	-2.9	-8.2
GIW-11	3/3/2016 8:35	6.4	43.1	5.0	45.5	55.0				-2.8	-2.8	-8.6
GIW-11	3/7/2016 16:56	6.4	33.3	6.4	53.9	86.9				-6.5	-6.5	-21.9
GIW-11	3/7/2016 16:58	5.8	36.7	6.4	51.1	85.3				-4.2	-4.2	-22.0
GIW-11	3/16/2016 16:23	5.7	41.7	5.8	46.8	70.5				-3.6	-3.6	-22.2
GIW-11	3/16/2016 16:25	5.9	39.8	5.9	48.4	70.2				-2.8	-2.8	-22.3
GIW-11	3/21/2016 15:21	5.1	45.8	4.8	44.3	69.5				-2.5	-2.5	-22.3
GIW-12	3/3/2016 8:39	8.3	30.0	8.6	53.1	60.6				-1.6	-1.6	-8.5
GIW-12	3/3/2016 8:44	8.6	28.4	8.6	54.4	60.1				-1.6	-1.6	-7.8
GIW-12	3/7/2016 16:52	6.3	29.9	9.7	54.1	87.0				-3.7	-3.7	-22.7
GIW-12	3/7/2016 16:53	6.3	25.1	9.9	58.7	87.1				-3.6	-3.7	-22.1
GIW-12	3/16/2016 16:27	4.3	25.5	10.8	59.4	75.2				-3.5	-3.6	-22.5
GIW-12	3/16/2016 16:29	4.6	23.0	10.9	61.5	74.5				-2.5	-2.6	-21.7
GIW-12	3/21/2016 15:12	5.1	28.4	9.0	57.5	72.7				-2.4	-2.4	-22.6
GIW-12	3/21/2016 15:13	5.3	25.1	9.2	60.4	71.7				-1.4	-1.4	-22.6
GIW-13	3/3/2016 8:47	11.6	54.6	0.0	33.8	45.5				-4.4	-4.5	-4.4
GIW-13	3/3/2016 8:54	9.7	60.1	0.0	30.2	45.6				-4.8	-5.0	-5.2
GIW-13	3/7/2016 16:50	11.6	53.4	0.3	34.7	78.4				-16.5	-16.3	-16.4
GIW-13	3/16/2016 16:32	11.0	57.5	0.1	31.4	69.5				-9.5	-9.3	-9.4

Well Name	Date Sampled	Methane	CO ₂	02	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
			(%	vol)		٥	F	sci	fm		H ₂ O	
GIW-13	3/21/2016 15:18	10.1	59.9	0.0	30.0	69.2				-10.7	-10.7	-10.7
LCS-5A	3/3/2016 11:25	57.1	42.8	0.1	0.0	91.7				-12.7	-12.2	-12.2
LCS-5A	3/7/2016 15:03	58.5	38.6	0.1	2.8	93.6				-10.0	-9.9	-10.5
LCS-5A	3/29/2016 9:27	59.1	39.6	0.0	1.3	91.8				-9.5	-9.5	-9.2
LCS-6B	3/3/2016 10:22	51.2	39.6	1.2	8.0	93.9		7	7	-1.7	-1.7	-10.6
LCS-6B	3/28/2016 10:55	52.5	40.7	0.5	6.3	75.0		9	9	-1.1	-1.1	-9.7
PGW-60	3/3/2016 9:02	59.8	39.3	0.2	0.7	73.9		33	36	42.0	42.0	-10.3
PGW-60	3/3/2016 9:03	58.2	41.2	0.1	0.5	76.4		42	17	-0.7	-0.9	-10.2
PGW-60	3/7/2016 10:41	62.5	27.6	0.3	9.6	73.1		27	24	-5.0	-5.3	-10.8
PGW-60	3/18/2016 10:31	60.5	27.2	0.5	11.8	75.0		32	24	-9.9	-9.4	-10.1
SEW-002	3/30/2016 10:35	0.3	10.1	18.3	71.3	69.8		9	9	-10.5	-10.5	-12.4
SEW-002	3/30/2016 10:36	0.3	11.3	17.8	70.6	69.8		5	5	-10.8	-10.8	-12.7
T-56	3/3/2016 10:44	46.2	34.7	1.4	17.7	47.1		18	22	-0.1	-0.1	-12.3

Well Name	Maximum Init	tial Temperature Readings	From All Monthl s (in °F)	y Wellhead	Temp Trend	Comments
Tron Italiio	December 2015	Janaury 2016	February 2016	March 2016	><30°F	
GEW-001						
GEW-002	122.0	124.9	120.2	124.2		
GEW-003	111.9	113.3	110.9	115.2		
GEW-004	115.0	117.8	112.5	116.5		
GEW-005	93.4	95.6	96.2	94.0		
GEW-006	84.0	89.9	90.1	91.1		
GEW-007	90.5	96.4	94.0	92.1		
GEW-008	111.8	112.5	112.9	113.2		
GEW-009	124.5	122.3	121.5	126.4		
GEW-010	59.9	63.3	69.2	94.6		
GEW-011						
GEW-013A			186.8	152.2		
GEW-014A						
GEW-015						
GEW-016R						
GEW-018B						
GEW-018R						
GEW-019A						
GEW-020A	90.0					
GEW-021A						
GEW-022R	170.0	192.8	194.8	193.1		
GEW-023A						
GEW-024A						
GEW-025A						
GEW-026R						
GEW-027A	90.0					
GEW-028R	150.0	178.2	193.7	192.1		
GEW-029						
GEW-030R						
GEW-033R						
GEW-034						
GEW-034A						
GEW-035						
GEW-036						
GEW-037						
GEW-038	59.9	50.9	56.1	79.5		
GEW-039	136.0	134.1	132.7	133.4		
GEW-040	87.4	86.9	85.5	87.3		
GEW-041R	95.2	103.2	103.2	109.0		
GEW-042R	99.9	111.6	112.7	110.0		
GEW-043R	127.0	130.8	133.3	134.3		
GEW-044	80.0	73.1	81.3	85.3		
GEW-045R	75.0	83.2	82.9	84.7		
GEW-045R	81.2	93.2	95.0	99.6		

Well Name	Maximum Initial Temperature From All Monthly Wellhead Readings (in °F)				Temp Trend	Comments
	December 2015	Janaury 2016	February 2016	March 2016	><30°F	
GEW-047R	103.5	110.4	124.3	115.2		
GEW-048	101.3	103.6	102.2	106.0		
GEW-049	100.7	109.9	109.9	116.4		
GEW-050	101.5	106.3	106.4	108.5		
GEW-051	122.1	125.1	124.1	128.9		
GEW-052	109.0	112.6	115.0	117.4		
GEW-053	144.0	138.0	138.7	140.0		
GEW-054	147.7	154.9	147.1	147.7		
GEW-055	116.8	122.8	121.8	125.8		
GEW-056R	165.9	165.5	175.2	158.8		
GEW-057B	167.0	100.8	98.7	113.0		
GEW-057R	185.0	162.3	143.2	148.9		
GEW-058	172.0	184.6	177.7	177.2		
GEW-058A	188.0	167.8	170.7	154.5		
GEW-059R	142.0	186.3	187.4	189.1		
GEW-061B	44.0					
GEW-064A						
GEW-065A	192.0	180.8	99.4	96.1		
GEW-066		70.2				
GEW-067A	189.1	165.0	122.3	125.0		
GEW-068A						
GEW-069R						
GEW-070R						
GEW-071						
GEW-071B						
GEW-072RR						
GEW-073R						
GEW-075						
GEW-076R						
GEW-077	111.0	65.9				
GEW-078R						
GEW-080	50.0	51.5				
GEW-081						
GEW-082R	180.0	196.6	197.9	196.5		
GEW-083						
GEW-084						
GEW-085						
GEW-086	110.0	87.0	84.7	84.1		
GEW-087						
GEW-088				74.0		
GEW-089	55.0	86.1	94.6	74.8		
GEW-090	173.0	185.2	185.2	183.5		
GEW-091						
GEW-100						

Well Name	Maximum Init	Maximum Initial Temperature From All Monthly Wellhead Readings (in °F)				Comments
	December 2015	Janaury 2016	February 2016	March 2016	><30°F	
GEW-101						
GEW-102	188.0	144.0	189.1	184.1		
GEW-103						
GEW-104	55.0					
GEW-105	45.0					
GEW-106						
GEW-107			55.6	69.5		
GEW-108						
GEW-109	102.6	61.1	113.1	117.0		
GEW-110	95.6	98.0	71.3	101.1		
GEW-112						
GEW-113						
GEW-116	77.0	35.5	51.2	71.0		
GEW-117	70.0	57.4	83.3	105.0		
GEW-118						
GEW-120	171.2	173.1	184.1	175.2		
GEW-121	187.4	186.3	187.9	189.6		
GEW-122	193.7	190.8	190.8	181.9		
GEW-123	192.6	170.8	193.1	190.8		
GEW-124	111.6	157.6	119.0	129.3		
GEW-125	192.6	190.2	193.1	52.3		
GEW-126	184.6	189.1	191.3	190.8		
GEW-127	186.3	184.6	186.8	189.8		
GEW-128	182.2	181.9	182.4	179.9		
GEW-129	166.4	165.4	159.6	167.9		
GEW-130						
GEW-131	125.1	177.2	179.8	173.1		
GEW-132	181.4	171.7	173.6	169.2		
GEW-133	71.4	64.7	56.5	51.8		
GEW-134	168.3	163.2	155.6	118.6	-	
GEW-135	178.7	155.4	147.0	172.7		
GEW-136	136.6	112.8	110.9	109.9		
GEW-137	120.1	121.5	91.9	104.7		
GEW-138	157.0	152.9	147.4	145.1		
GEW-139	184.6	183.0	180.3	187.9		
GEW-140	183.0	160.5	191.3	174.1	-	
GEW-141	148.5	157.9	155.0	116.0		
GEW-142	104.2	88.2	92.9	38.8		
GEW-143	103.0	94.2	113.7	54.9		
GEW-144	71.9	70.7	64.9	92.7		
GEW-145	137.6	86.0	150.9	179.8		
GEW-146	77.3	70.0	69.5	78.0		
GEW-147	184.1	191.9	178.2	169.7		
GEW-148	136.3	45.2	64.9	66.4		

Well Name	Maximum Initial Temperature From All Monthly Wellhead Readings (in °F)				Temp Trend	Comments
	December 2015	Janaury 2016	February 2016	March 2016	><30°F	
GEW-149	171.7	123.7	171.2	116.3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
GEW-150	136.3	184.6	188.5	152.5		
GEW-151	171.2	47.3	57.9	135.7		
GEW-152			71.9	168.1		
GEW-153	46.2		52.4	160.1		
GEW-154	144.7	51.5	113.8	147.5		
GEW-155	108.6	111.6	113.3	117.0		
GEW-156	124.0	102.0	93.6	95.4		
GEW-157	41.9	62.1	37.9	191.3		
GEW-158	44.1	55.8	54.1	71.2		
GEW-159	43.6	64.2	27.5	161.4		
GEW-160	42.0	66.7	162.8	72.4		
GEW-161	42.0		37.9	73.2		
GEW-162	42.7	63.3	56.1	78.0		
GIW-01	189.6	183.0	186.3	186.8		
GIW-02	63.8	75.5	73.8	73.7		
GIW-03	63.5	75.2	64.1	75.5		
GIW-04	61.9	72.3	62.0	77.5		
GIW-05	59.3	55.8	62.4	83.0		
GIW-06	60.5	73.6	57.3	81.0		
GIW-07	59.6	73.4	55.5	78.0		
GIW-08	59.2	81.0	57.9	77.9		
GIW-09	66.8	81.3	65.4	79.0		
GIW-10	60.2	72.5	60.5	81.9		
GIW-11	62.2	61.0	76.5	86.9		
GIW-12	74.7	65.6	79.4	87.1		
GIW-13	60.0	57.0	66.1	78.4		
LCS-1D						
LCS-2D						
LCS-3C						
LCS-4B						
LCS-5A	90.0	91.2	93.3	93.6	_	
LCS-6B	73.0	60.1	125.1	93.9		
PGW-60	60.0	49.6	65.7	76.4		
SEW-002	38.0	36.4	64.6	69.8		
SEW-012A						
SEW-017R						
SEW-031R						
SEW-032R						
SEW-060R						
SEW-061R						
SEW-062R						
SEW-063						
SEW-064						

Well Name	Maximum Initial Temperature From All Monthly Wellhead Readings (in °F)				Temp Trend	Comments
	December 2015	Janaury 2016	February 2016	March 2016	><30°F	
SEW-067						
SEW-072R				-		
SEW-074				-		
SEW-079R		1		-		
T-56	40.0	47.7	47.3	47.1		

^{-- =} Indicates no data available.

NOTES

- EXISTING CONTOURS DEVELOPED FROM SITE AERIAL TOPOGRAPHIC SURVEY BY COOPER AERIAL SURVEYS, CO. ON FEBRUARY 10, 2015.
- 2. FOR CLARITY, NOT ALL SITE FEATURES MAY BE SHOWN.
- 3. ELEVATION DIFFERENCE DETERMINED BY SUBTRACTING SPOT ELEVATIONS SURVEYED ON 2-18-16 FROM SPOT ELEVATIONS SURVEYED ON 3-17-16.
- 4. SURVEY POINTS WERE PERFORMED USING GPS METHODS.
- 5. SETTLEMENT RANGE SURFACE WAS GENERATED FROM THE SPOT ELEVATION DIFFERENCES.
- 6. ELEVATION DIFFERENCES THAT ARE SHOWN AS NEGATIVE INDICATE SPOTS OF SETTLEMENT.
- 7. ANY POINTS THAT ARE NOT A GROUND-TO-GROUND COMPARISON TO THE PREVIOUS MONTH'S POINTS, OR THAT WERE NOT SURVEYED IN THE SAME LOCATION AS THE PREVIOUS MONTH ARE NOT INCLUDED AND WERE NOT USED IN ANY SURFACE GENERATION.

LEGEND

X -0.42 SPOT ELEVATION DIFFERENCE (3-17-16 TO 2-18-16)
 MINOR ELEVATION CHANGE CONTOUR (0.25 FEET)
 —0.50 MAJOR ELEVATION CHANGE CONTOUR (0.50 FEET)
 —3-17 SETTLEMENT FRONT CONTOUR FOR AREA WITH 1.35' PER 30 DAYS FOR CURRENT PERIOD OF DAYS (AREA REPRESENTS 1.260' OVER 28 DAYS BASED ON CONVERSION)

ELEVATION CHANGE (FEET)								
Number	Minimum Elev. Change	Maximum Elev. Change	Area (sq.ft.)	Color				
_ 1	-5.00	-4.00	0.00					
2	-4.00	-3.00	0.00					
3	-3.00	-2.00	0.00					
4	-2.00	-1.00	35856.84					
5	-1.00	0.00	1384326.12					
6	0.00	1.00	119770.08					

BRIDGETON LANDFILL

DESCRIPTION

REV. NO. DATE

BRIDGETON LANDFILL BRIDGETON, MO

SETTLEMENT MAP FEBRUARY 18, 2016 THROUGH MARCH 17, 2016

DRAWN BY: ORC APPROVED BY: JPV PROJ. NO.: 155162 DATE: APRIL 2016

March 1, 2015 - March 31, 2015 / MDNR ODOR COMPLAINTS

Name: NA

Message: Odor logged March 1, 2016, at 7:52 am strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. On the date and time of this concern winds were of a clear southwestern origin as local conditions transitioned from a low velocity southern wind vector to a moderate to high velocity western origin. Such a wind regime places this location well outside the downwind pathway of the Bridgeton Landfill and directly downwind of another known odor source with frequent uncontrolled off-site odor emissions. Bridgeton Landfill staff performed an odor patrol in close time proximity to this concern and did not observe Bridgeton Landfill related odor at any location between this concern location and the Bridgeton Landfill. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 1, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed immediately following the time cited in this concern. No odor associated with the Bridgeton Landfill was observed at points between this location and the Bridgeton Landfill. This concern location is directly adjacent to another known odor source with frequent uncontrolled off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 1, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed immediately following the time cited in this concern. No odor associated with the Bridgeton Landfill was observed at points between this location and the Bridgeton Landfill. This concern location is directly adjacent to another known odor source with frequent uncontrolled off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 1, 2016, at 7:31 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed immediately following the time cited in this concern. No odor associated with the Bridgeton Landfill was observed at points between this location and the Bridgeton

Landfill. This concern location is directly adjacent to another known odor source with frequent uncontrolled off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 1, 2016, at 7:31 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed immediately following the time cited in this concern. No odor associated with the Bridgeton Landfill was observed at points between this location and the Bridgeton Landfill. This concern location is directly adjacent to another known odor source with frequent uncontrolled off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 1, 2016, at 7:32 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed immediately following the time cited in this concern. No odor associated with the Bridgeton Landfill was observed at points between this location and the Bridgeton Landfill. This concern location is directly adjacent to another known odor source with frequent uncontrolled off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 1, 2016, at 7:32 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed immediately following the time cited in this concern. No odor associated with the Bridgeton Landfill was observed at points between this location and the Bridgeton Landfill. This concern location is directly adjacent to another known odor source with frequent uncontrolled off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 1, 2016, at 7:35 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed immediately following the time cited in this concern. No odor associated with the Bridgeton Landfill was observed at points between this location and the Bridgeton Landfill. This concern location is directly adjacent to another known odor source with frequent uncontrolled off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 2, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed immediately following the time cited in this concern. No odor associated with the Bridgeton Landfill was observed at points between this location and the Bridgeton Landfill. This concern location is directly adjacent to another known odor source with frequent uncontrolled off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 2, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed immediately following the time cited in this concern. No odor associated with the Bridgeton Landfill was observed at points between this location and the Bridgeton Landfill. This concern location is directly adjacent to another known odor source with frequent uncontrolled off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 2, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed immediately following the time cited in this concern. No odor associated with the Bridgeton Landfill was observed at points between this location and the Bridgeton Landfill. This concern location is directly adjacent to another known odor source with frequent uncontrolled off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 2, 2016, at 7:31 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed immediately following the time cited in this concern. No odor associated with the Bridgeton Landfill was observed at points between this location and the Bridgeton Landfill. This concern location is directly adjacent to another known odor source with frequent uncontrolled off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 2, 2016, at 7:31 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed immediately following the time cited in this concern. No odor associated with the Bridgeton Landfill was observed at points between this location and the Bridgeton Landfill. This concern location is directly adjacent to another known odor source with frequent uncontrolled off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 2, 2016, at 7:32 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed immediately following the time cited in this concern. No odor associated with the Bridgeton Landfill was observed at points between this location and the Bridgeton Landfill. This concern location is directly adjacent to another known odor source with frequent uncontrolled off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 2, 2016, at 7:33 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed immediately following the time cited in this concern. No odor associated with the Bridgeton Landfill was observed at points between this location and the Bridgeton Landfill. This concern location is directly adjacent to another known odor source with frequent uncontrolled off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 2, 2016, at 2:00 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. This concern location is directly adjacent to another known odor source with frequent uncontrolled off-site odor emissions. This is not believed to have been a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 2, 2016, at 1:15 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. This concern location is directly adjacent to another known odor source with frequent uncontrolled off-site odor emissions. This is not believed to have been a Bridgeton Landfill odor.

Name: Proctor Jeff

Message: Odor logged March 3, 2016, at 1:37 am strength of 9

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. This concern location is directly adjacent to another known odor source with frequent uncontrolled off-site odor emissions. This is not believed to have been a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 2, 2016, at 8:47 am strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed less than one hour prior to the time cited in this concern. No odor related to the Bridgeton Landfill was observed at multiple points between this location and the Bridgeton Landfill. This concern location is also of a substantial distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 3, 2016, at 8:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. This concern location is directly adjacent to another known odor source with frequent uncontrolled off-site odor emissions. This is not believed to have been a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 3, 2016, at 7:00 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Odor patrols performed before and after the time cited in this concern did not observe any odor associated with the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 4, 2016, at 7:40 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed immediately following the time cited in this concern. No odor associated with the Bridgeton Landfill was observed at points between this location and the Bridgeton Landfill. This concern location is directly adjacent to another known odor source with frequent uncontrolled off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 4, 2016, at 7:40 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed immediately following the time cited in this concern. No odor associated with the Bridgeton Landfill was observed at points between this location and the Bridgeton Landfill. This concern location is directly adjacent to another known odor source with frequent uncontrolled off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 4, 2016, at 7:35 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed immediately following the time cited in this concern. No odor associated with the Bridgeton Landfill was observed at points between this location and the Bridgeton Landfill. This concern location is directly adjacent to another known odor source with frequent uncontrolled off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 4, 2016, at 7:36 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed immediately following the time cited in this concern. No odor associated with the Bridgeton Landfill was observed at points between this location and the Bridgeton Landfill. This concern location is directly adjacent to another known odor source with frequent uncontrolled off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 5, 2016, at 6:00 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol performed on the morning of this concern did not observe any odor related to the Bridgeton Landfill at multiple points between this concern location and the Bridgeton Landfill. Winds were of low velocity and of variable origin. There is no evidence to suggest that this was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 5, 2016, at 7:41 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol performed within the hour of receipt of this concern. No odor related to the Bridgeton Landfill was observed at multiple points between this concern location and the Bridgeton Landfill. Winds were of low velocity and of variable origin. There is no evidence to suggest that this was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 5, 2016, at 7:46 am strength of 10

Follow-up: The following concern lacks essential location data.

Name: Dixie Boussum

Message: Odor logged March 7, 2016, at 9:23 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. This concern location is directly adjacent to another known odor source with frequent uncontrolled off-site odor emissions. This is not believed to have been a Bridgeton Landfill odor.

Name: David Blackwell

Message: Odor logged March 5, 2016, at 8:45 am strength of 6

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed by Bridgeton Landfill staff at the time cited in this concern. No odor was observed on this patrol including a location of extremely close proximity to the location provided in this concern. This was not a Bridgeton Landfill odor.

Name: Kathy Bell

Message: Odor logged March 7, 2016, at 12:04 pm strength of 7

Follow-up: The following concern cites a time approximately seven minutes after the submittal time and is therefore invalid.

Name: Emily jacobi

Message: Odor logged March 9, 2016, at 1:01 pm strength of 3

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. On the date and time of this concern winds were of a clear southwestern origin. Such a wind regime places this location well outside the downwind pathway of the Bridgeton Landfill and directly

downwind of another known odor source with frequent uncontrolled off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: Emily jacobi

Message: Odor logged March 9, 2016, at 1:01 pm strength of 3

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. On the date and time of this concern winds were of a clear southwestern origin. Such a wind regime places this location well outside the downwind pathway of the Bridgeton Landfill and directly downwind of another known odor source with frequent uncontrolled off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: Emily jacobi

Message: Odor logged March 9, 2016, at 1:01 pm strength of 3

Follow-up: The following concern is a duplication of another concern.

Name: Emily jacobi

Message: Odor logged March 9, 2016, at 1:01 pm strength of 3

Follow-up: The following concern is a duplication of another concern.

Name: Emily jacobi

Message: Odor logged March 9, 2016, at 1:01 pm strength of 3

Follow-up: The following concern is a duplication of another concern.

Name: Charlotte

Message: Odor logged March 9, 2016, at 12:52 pm strength of 9

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. On the date and time of this concern winds were of a clear southwestern origin. Such a wind regime places this location well outside the downwind pathway of the Bridgeton Landfill and directly downwind of another known odor source with frequent uncontrolled off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: Bob Labeaume

Message: Odor logged March 9, 2016, at 6:00 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Odor patrols before and after the time referenced in this concern observed no odor related to the Bridgeton Landfill. There is no evidence suggesting this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged March 10, 2016, at 11:17 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. An odor patrol performed less than an hour prior to the time cited in this concern observed no odor related to the Bridgeton Landfill. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 9, 2016, at 11:15 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. An odor patrol performed approximately one hour prior to the time cited in this concern observed no odor related to the Bridgeton Landfill. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 9, 2016, at 11:20 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. An odor patrol performed approximately one hour prior to the time cited in this concern observed no odor related to the Bridgeton Landfill. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 10, 2016, at 12:21 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. An odor patrol performed approximately one hour prior to the time cited in this concern observed no odor related to the Bridgeton Landfill. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 10, 2016, at 5:50 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 10, 2016, at 6:00 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 10, 2016, at 6:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 10, 2016, at 6:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 10, 2016, at 7:15 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer

to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 10, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 10, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 10, 2016, at 6:00 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 10, 2016, at 7:25 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: David Hinners

Message: Odor logged March 10, 2016, at 5:38 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: Ellen Wortham

Message: Odor logged March 10, 2016, at 5:35 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed approximately one hour prior to the time referenced in this concern. No odor related to the Bridgeton Landfill was observed at multiple points between this concern location and the Bridgeton Landfill, including a monitoring point in close proximity to this concern location. No technical disruptions with the potential to cause odor occurred between that patrol and this concern. There is no evidence to suggest this was a Bridgeton Landfill odor.

Name: David Hinners

Message: Odor logged March 10, 2016, at 8:01 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: Steve Commuso

Message: Odor logged March 10, 2016, at 9:20 pm strength of 5

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 10, 2016, at 5:30pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 11, 2016, at 5:50 am strength of 6

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 10, 2016, at 5:30 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 11, 2016, at 7:35 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: Tracy Bouslog

Message: Odor logged March 10, 2016, at 7:30 pm strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: Tracy Bouslog

Message: Odor logged March 11, 2016, at 6:30 am strength of 5

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: Shawn Nevins

Message: Odor logged March 12, 2016, at 8:07 am strength of 6

Follow-up: The following concern lacks essential location data.

Name: Shawn Nevins

Message: Odor logged March 11, 2016, at 6:09 pm strength of 6

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: Gloria Thrift

Message: Odor logged March 12, 2016, at 11:27 am strength of 6

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of extremely close proximity to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: Debbie gibson

Message: Odor logged March 12, 2016, at 8:59 pm strength of 5

Follow-up: The following concern lacks essential location data.

Name: Greg Greenwald

Message: Odor logged March 13, 2016, at 11:15 pm strength of 5

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of extremely close proximity to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: Rhonda Steelman

Message: Odor logged March 13, 2016, at 10:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of extremely close proximity to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: Mary Jo Grimm

Message: Odor logged March 27, 2016, at 8:30 am strength of 10

Follow-up: The following concern cites a date 14 days in the future.

Name: NA

Message: Odor logged March 14, 2016, at 4:03 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 14, 2016, at 4:35 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 14, 2016, at 4:40 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 14, 2016, at 5:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer

to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 14, 2016, at 5:30 am strength of 10

Follow-up: The following concern is a duplicate of a previous concern.

Name: NA

Message: Odor logged March 14, 2016, at 6:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 14, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 14, 2016, at 7:00 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 14, 2016, at 5:47 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 14, 2016, at 7:39 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: William Siegler

Message: Odor logged March 13, 2016, at 3:54 pm strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. As this concern was submitted approximately 26 hours after the stated observation time real-time investigation was not possible. On this date no odor related to the Bridgeton Landfill was observed during odor patrols, no projects with the potential to cause odor were occurring, and no technical disruptions with the potential to cause odor occurred. There is no evidence to suggest that this was a Bridgeton Landfill odor.

Name: Ellen Wortham

Message: Odor logged March 14, 2016, at 6:20 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. On this date and several hours before, during, and after the time cited in this concern winds were of persistent southern origins (southeastern to southwestern). Placing this concern location directly upwind of the Bridgeton Landfill. Odor unrelated to the Bridgeton Landfill was observed during odor monitoring patrols. All evidence indicates that this odor originated from another source, and was not a Bridgeton landfill odor.

Name: Clark Allen

Message: Odor logged March 14, 2016, at 6:55 pm strength of 10

Follow-up: The following concern cites a location of such substantial distance from the Bridgeton Landfill as to be clearly in error. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 15, 2016, at 7:32 am strength of 10

Follow-up: The following concern cites a location of such substantial distance from the Bridgeton The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 15, 2016, at 7:33 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 15, 2016, at 7:33 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 15, 2016, at 7:34 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: NA

Follow-up: The following concern lacks all data and is therefore invalid.

Name: Bob Labeaume

Message: Odor logged March 15, 2016, at 9:08 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 16, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 16, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 16, 2016, at 7:31 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and far closer to another known odor source with frequent off-site odor emissions. There is no evidence to suggest that his was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 16, 2016, at 10:26 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is directly adjacent to another known odor source with frequent off-site odor and even more frequent odor concerns filed in response to said odor. This is not a Bridgeton Landfill odor despite continued use of the Bridgeton Landfill concern system for these obviously erroneous concerns.

Name: Tracy Dedert

Message: Odor logged March 16, 2016, at 5:22 pm strength of 6

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is directly adjacent to another known odor source with frequent off-site odor and even more frequent odor concerns filed in response to said odor. This was not a Bridgeton Landfill odor despite continued use of the Bridgeton Landfill concern system for these obviously erroneous concerns.

Name: David McComber AT&T

Message: Odor logged March 16, 2016, at 8:00 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is directly adjacent to another known odor source with frequent off-site odor and even more frequent odor concerns filed in response to said odor. This was not a Bridgeton Landfill odor.

Name: Emily Jacobi

Message: Odor logged March 16, 2016, at 2:04 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is directly adjacent to another known odor source with frequent off-site odor and even more frequent odor concerns filed in response to said odor. This was not a Bridgeton Landfill odor.

Name: mary milligan

Message: Odor logged March 16, 2016, at 2:23 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is in close downwind proximity to another known odor source with frequent off-site odor. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 16, 2016, at 8:52 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of greater distance than any previously documented Bridgeton Landfill odor and directly adjacent to various other industrial facilities with potential for odor. An odor patrol performed shortly before the time cited in this concern did not observe any odor related to the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill odor.

Name: Richard

Message: Odor logged March 16, 2016, at 9:48 pm strength of 10

Follow-up: The following concern lacks essential location data and therefore cannot be

investigated.

Name: Jennifer shakhnovich

Message: Odor logged March 16, 2016, at 7:54 pm strength of 9

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. On this evening winds were of a southwestern origin, placing this location outside the downwind pathway of the Bridgeton Landfill and directly downwind of another known odor source with observed off-site odor emissions on this date and in close proximity to this concern location. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 17, 2016, at 7:45 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location provided is immediately adjacent to another known odor source with frequent off-site emissions. A strong odor associated with this odor source was observed on this date shortly after the time cited in this concern by Bridgeton Landfill staff. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 16, 2016, at 5:30 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. On this evening winds were of a southwestern origin, placing this location outside the downwind pathway of the Bridgeton Landfill and directly downwind of another known odor source with observed off-site odor emissions on this date and in close proximity to this concern location. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 17, 2016, at 7:45 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location provided is immediately adjacent to another known odor source with frequent off-site

emissions. A strong odor associated with this odor source was observed on this date shortly after the time cited in this concern by Bridgeton Landfill staff. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 17, 2016, at 7:50 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location provided is immediately adjacent to another known odor source with frequent off-site emissions. A strong odor associated with this odor source was observed on this date shortly after the time cited in this concern by Bridgeton Landfill staff. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 17, 2016, at 7:45 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location provided is immediately adjacent to another known odor source with frequent off-site emissions. A strong odor associated with this odor source was observed on this date shortly after the time cited in this concern by Bridgeton Landfill staff. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 17, 2016, at 8:08 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location provided is immediately adjacent to another known odor source with frequent off-site emissions. A strong odor associated with this odor source was observed on this date shortly before the time cited in this concern by Bridgeton Landfill staff. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 17, 2016, at 7:50 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location provided is immediately adjacent to another known odor source with frequent off-site emissions. A strong odor associated with this odor source was observed on this date shortly after the time cited in this concern by Bridgeton Landfill staff. This was not a Bridgeton Landfill odor.

Name: Mary Jo Adams

Message: Odor logged March 17, 2016, at 6:45 am strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. On this evening winds were of a southwestern origin, placing this location outside the downwind pathway of the Bridgeton Landfill and directly downwind of another known odor source with observed off-site odor emissions on this date and in close proximity to this concern location. This was not a Bridgeton Landfill odor.

Name: Mary Jo Adams

Message: Odor logged March 17, 2016, at 6:45 am strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. On this evening winds were of a southwestern origin, placing this location outside the downwind pathway of the Bridgeton Landfill and directly downwind of another known odor source with observed off-site odor emissions on this date and in close proximity to this concern location. This was not a Bridgeton Landfill odor.

Name: Taylor Meyer

Message: Odor logged March 17, 2016, at 3:03 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed within the hour in which this concern was received. No odor related to the Bridgeton Landfill was observed. There is no evidence to suggest that this was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 17, 2016, at 4:06 pm strength of 8

Follow-up: The following concern lacks essential location data and therefore cannot be

investigated.

Name: NA

Message: Odor logged March 17, 2016, at 4:19 pm strength of 8

Follow-up: The following concern lacks essential location data and therefore cannot be

investigated.

Name: Kathy Baumann

Message: Odor logged March 17, 2016, at 7:30 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern location provided is of significant distance from the Bridgeton Landfill and of far closer proximity to another known odor source. Winds were of variable origin throughout this date. Bridgeton Landfill odor patrols performed before and after the time cited in this concern did not observe any odor related to the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill odor.

Name: Meghan Cousino

Message: Odor logged March 17, 2016, at 7:00 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern location provided is of significant distance from the Bridgeton Landfill and of far closer proximity to another known odor source. Winds were of variable origin throughout this date. Bridgeton Landfill odor patrols performed before and after the time cited in this concern did not observe any odor related to the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 18, 2016, at 7:24 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern location provided is of significant distance from the Bridgeton Landfill and of far closer proximity to another known odor source. Winds were of a northern origin throughout this date. Bridgeton Landfill odor patrols performed later in the morning from this concern did not observe any odor related to the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill odor.

Name: steve commuso

Message: Odor logged March 18, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern location provided is of significant distance from the Bridgeton Landfill and of far closer proximity to another known odor source. Winds were of a northern origin throughout this date. Bridgeton Landfill odor patrols performed later in the morning from this concern did not observe any odor related to the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill odor.

Name: Amy Stowers

Message: Odor logged March 18, 2016, at 4:31 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern location provided is of significant distance from the Bridgeton Landfill and of far closer proximity to another known odor source. Winds were of a northern origin throughout this date. Bridgeton Landfill odor patrols performed later in the morning from this concern did not observe any odor related to the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 18, 2016, at 7:15 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern location provided is of significant distance from the Bridgeton Landfill and of far closer proximity to another known odor source. Winds were of a northern origin throughout this date. Bridgeton Landfill odor patrols performed later in the morning from this concern did not observe any odor related to the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill odor.

Name: Gail Schafluetzel

Message: Odor logged March 19, 2016, at 7:26 am strength of 2

Follow-up: The following concern is of significant distance away from the Bridgeton Landfill and is not valid.

Name: Meghan Cousino

Message: Odor logged March 18, 2016, at 10:50 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern location provided is of significant distance from the Bridgeton Landfill and of far closer proximity to another known odor source. There is no evidence to suggest that this was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 19, 2016, at 8:22 pm strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern location provided is of significant distance from the Bridgeton Landfill and of far closer

proximity to another known odor source. There is no evidence to suggest that this was a Bridgeton Landfill odor.

Name: Margie menke

Message: Odor logged March 21, 2016, at 5:15 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. At the time cited in this concern the location provided was directly upwind of the Bridgeton Landfill and downwind of another known odor source. This was not a Bridgeton Landfill odor.

Name: Bob LaBeaume

Message: Odor logged March 21, 2016, at 6:00 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. At the time cited in this concern the location provided was outside of the downwind pathway of the Bridgeton Landfill and directly downwind of another known odor source. This was not a Bridgeton Landfill odor.

Name: Connie Nolan

Message: Odor logged March 21, 2016, at 7:20 am strength of 10

Follow-up: The following concern lacks essential location data.

Name: NA

Message: Odor logged March 21, 2016, at 7:44 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is directly adjacent to another known odor source with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 21, 2016, at 7:45 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is directly adjacent to another known odor source with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 21, 2016, at 10:15 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is directly adjacent to another known odor source with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: celena

Message: Odor logged March 21, 2016, at 7:26 am strength of 8

Follow-up: The following concern is of significant distance away from the Bridgeton Landfill and is not valid.

Name: Sarah Abernathy

Message: Odor logged March 21, 2016, at 9:00 am strength of 7

Follow-up: The following concern references a time in concurrence with a Bridgeton Landfill odor patrol. This patrol did not observe any odor related to the Bridgeton Landfill at multiple points between the landfill and this location. This was not a Bridgeton Landfill odor.

Name: Mary Jo Adams

Message: Odor logged March 21, 2016, at 6:30 am strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor unrelated to the Bridgeton Landfill was observed in close proximity to this concern shortly after the time cited. This was not a Bridgeton Landfill odor.

Name: Mary Jo Adams

Message: Odor logged March 17, 2016, at 7:15 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern cites a location of significant distance from the Bridgeton Landfill and was submitted over four days after the claimed observation date and time. There is no evidence to suggest that this was a Bridgeton Landfill odor.

Name: Janelle Eveld

Message: Odor logged March 22, 2016, at 10:06 am strength of 8

Follow-up: The following concern is of significant distance away from the Bridgeton Landfill and is not valid.

Name: NA

Message: Odor logged March 21, 2016, at 5:15 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is directly adjacent to another known odor source with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 22, 2016, at 7:45 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is directly adjacent to another known odor source with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 22, 2016, at 1:45 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is directly adjacent to another known odor source with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: Bob LaBeaume

Message: Odor logged March 22, 2016, at 9:00 pm strength of 9

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. At the time cited in this concern the location provided was outside of the downwind pathway of the Bridgeton Landfill and directly downwind of another known odor source. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 22, 2016, at 5:13 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is directly adjacent to another known odor source with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 23, 2016, at 7:35 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is directly adjacent to another known odor source with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: Kathy Bell

Message: Odor logged March 23, 2016, at 3:55 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol performed concurrent with the time cited in this concern did not observe any odor related to the Bridgeton Landfill off-site. This was not a Bridgeton Landfill odor. This concern is one of eleven identical concerns submitted on this date and time.

Name: NA

Message: Odor logged March 24, 2016, at 5:09 pm strength of 6

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern location provided is of significant distance from the Bridgeton Landfill and of far closer proximity to another known odor source. There is no evidence to suggest that this was a Bridgeton Landfill odor.

Name: Rhonda Steelman

Message: Odor logged March 27, 2016, at 11:06 am strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern location provided is of significant distance from the Bridgeton Landfill and of far closer proximity to another known odor source. There is no evidence to suggest that this was a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 27, 2016, at 5:19 pm strength of 5

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is directly adjacent to another known odor source with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: Richard Chatfield

Message: Odor logged March 21, 2016, at 6:08 am strength of 10

Follow-up: The following concern lacks essential location data.

Name: Andrew

Message: Odor logged March 28, 2016, at 6:38 am strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. On this date winds were of a persistent western origin placing this concern outside the downwind pathway of the Bridgeton Landfill. No odor related to the Bridgeton Landfill was observed at multiple points between this location and the Bridgeton Landfill during daily odor patrols. There is no evidence to indicate that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged March 28, 2016, at 8:23 am strength of 4

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. On this date winds were of a persistent western origin. An odor unassociated with the Bridgeton Landfill was observed at multiple times and locations throughout the day in close proximity to this concern. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 28, 2016, at 7:45 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is directly adjacent to another known odor source with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 28, 2016, at 7:46 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is directly adjacent to another known odor source with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: Bob LaBeaume

Message: Odor logged March 28, 2016, at 5:50 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. On this date winds were of a persistent western origin. An odor unassociated with the Bridgeton

Landfill was observed at multiple times and locations throughout the day in close proximity to this concern. This was not a Bridgeton Landfill odor.

Name: David Blackwell

Message: Odor logged March 28, 2016, at 7:45 am strength of 4

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. On this date winds were of a persistent western origin. The location cited in this concern is to the northwest of another known odor source with frequent off-site odor emissions, including observed emissions on this date. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 31, 2016, at 7:45 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is directly adjacent to another known odor source with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 31, 2016, at 7:46 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is directly adjacent to another known odor source with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 31, 2016, at 7:47 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is directly adjacent to another known odor source with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged March 31, 2016, at 7:30 pm strength of 10

Follow-up: The following concern lacks essential location data.

Bridgeton Landfill - Leachate PreTreatment Plant March 2016

Liquid Characterization Data

Liquid characterization data is made available to MDNR on an ongoing basis. No additional lechate characterization data, beyond that produced for MSD, was collected during the prior month.

Hauled Disposal to MSD - Bissell Point

Date	Waste	Source	Transporter	Quantity
3/1/2016	Waste	Tank 1 (T1)	МВІ	33
3/2/2016				33
3/3/2016				31
3/4/2016				31
3/5/2016				32
3/6/2016				33
3/7/2016				0
3/8/2016	LPTP Activated Sludge/ Permeate			0
3/9/2016				0
3/10/2016				0
3/11/2016				0
3/12/2016				39
3/13/2016				35
3/14/2016				29
3/15/2016				28
3/16/2016				29
3/17/2016				15
3/18/2016				0
3/19/2016				0
3/20/2016				0
3/21/2016				15
3/22/2016				0
3/23/2016				0
3/24/2016				0
3/25/2016				0
3/26/2016				0
3/27/2016				0
3/28/2016				0
3/29/2016				0
3/30/2016				0
3/31/2016				0

Total=

383

Direct Discharge to MSD

Date	Waste	Source	Quantity (gal)
3/1/2016		Through Tank AST 97k (MSD Sampling Point 013)	0
3/2/2016			0
3/3/2016			0
3/4/2016			111,161
3/5/2016			173,682
3/6/2016			161,697
3/7/2016			162,329
3/8/2016			207,616
3/9/2016			240,488
3/10/2016			234,967
3/11/2016			110,890
3/12/2016			0
3/13/2016			0
3/14/2016			0
3/15/2016	LOTO		0
3/16/2016	LPTP Permeate		236,584
3/17/2016	reilleate		159,264
3/18/2016			161,064
3/19/2016			215,321
3/20/2016			205,490
3/21/2016			239,370
3/22/2016			236,600
3/23/2016			227,760
3/24/2016			195,603
3/25/2016			219,060
3/26/2016			227,564
3/27/2016			252,198
3/28/2016			249,303
3/29/2016			249,571
3/30/2016			254,439
3/31/2016			277,010
		Total =	5,009,031

