Bridgeton Landfill, LLC

Monthly Data Submittals

February, 2016

Required by Section 52.E of Agreed Order, Case No. 13SL-CC01088 Effective May 13, 2013

Contents:

Commentary on Data

Attachment A Work Completed and Planned
Attachment B Daily Flare Monitoring Data

B-1 Flow Data TableB-2 Flow Data Graphs

• B-3 Flare TRS / Flare Station Flow

Attachment C Gas Well Analyses Maps

Attachment D Laboratory Data

D-1 Lab Analyses Summary
 D-2 Lab Analyses Reports

Attachment E Gas Wellfield Data

• E-1 Wellfield Data Table

• E-2 Maximum Wellhead Temperature Table

Attachment F Settlement Front Map

Attachment G Summary of Odor Complaints

Attachment H Liquid Characterization Data and Discharge Log

Attachment I Low Fill Project Area

Provided Separately:

- Flare Raw Data Excel Spreadsheet
- Gas Wellfield Raw Data Excel Spreadsheet

March 21, 2016

Commentary on Data

March 21, 2016

The following observations and comments are offered during this time period:

Gas Volume

• As seen in Attachment B-1, gas collection volumetric rate in for this month averaged 2,907 SCFM, as normalized per the MDNR weekly flow and TRS sampling results.

Gas Quality

- Attachments D and E contain the monthly data related to gas quality as measured at the respective wellheads.
- Attachment E-1 details vertical wells which had oxygen levels over 5% at one or more weekly monitoring events during this reporting period. These consisted of 12 older GEW wells (<#-120) that are experiencing low flows; 11 new GEW wells (>#-120) that are experiencing restricted flows; 8 GIW wells that have low gas flow due to the cooling loops that are installed within these wells. By the end of the month, the majority of these wells still exhibited oxygen at the wellhead at or greater than 5%. All these wells, except the new GEWs are low-flow/vacuum sensitive wells with valves only slightly open. On-going tuning, maintenance and pump operation is being performed to manage the oxygen content. These wells are in the south quarry area where the flexible membrane liner cap is in place to prevent atmospheric intrusion into the waste mass.
- Attachment E-2 contains gas temperatures as measured at the wellheads. Three (3) vertical wells (excluding GIW wells) decreased by 30°F during this reporting period. Additionally, seven (7) vertical wells (excluding GIW wells) increased by 30°F or more. All wells that exhibited changes greater than 30 degrees are all within the historical gas temperature norms for these wells or within the range of temperatures of nearby vertical wells.
- A detailed review of the gas extraction wells in the neck area was conducted. Maximum temperatures are consistent with previous months in each of the gas extraction wells in vicinity to the neck. Carbon monoxide (CO) results during this reporting period showed stable month-over-month based on historic levels within the Neck Area wells.

- All wells in the North Quarry during this reporting period exhibited a maximum wellhead temperature under 145°F with the exception of GEW-054. The well had a maximum well head temperature of 147°F, but it returned to 139°F. The only North Quarry well that had detections of carbon monoxide during this reporting period was GEW-053 (57 ppm). Carbon monoxide (CO) results showed non-detect (ND) for all other North quarry wells.
- Review of weekly gas quality in Attachment E reveals that all of the active North Quarry gas wells continue to have low, if any, oxygen and healthy methane and carbon dioxide levels indicating normal wellfield conditions for aged waste at all locations, consistent with GCCS wellfield conditions observed in the North Quarry for some time.

Settlement

• The South Quarry exhibited monthly maximum settlement up to 1.35 feet over 30 days for this reporting period (see Attachment F); which is comparable to last month's rate. The rate of settlement directly south of the neck continues to be small and stable compared to previous months.

Bird Monitoring and Mitigation

 Bridgeton Landfill conducted bird monitoring during this reporting period in accordance with the Approved Bird Hazard Monitoring and Mitigation Plan. Logs of bird population observations were provided to the Airport on a weekly basis. No change in bird population or bird hazards were observed and no bird mitigation measures were necessary.

Low Fill Project Area

- Enclosed is the requested clean fill placement figure in accordance with the June 19, 2015 letter from the Missouri Department of Natural Resources (MDNR) granting modification approval to Permit number 0118912. This modification allows for the acceptance of clean fill and use thereof as a method of re-establishing positive surface drainage and maintaining structural stability of landfill infrastructure. Condition four (4) of this approval is satisfied via the text below and the accompanying figure.
- Clean fill activities commenced in late December and have continued into March on a region of differential settlement located in the northeastern portion of the South Quarry. The total cubic yardage of fill material used is still to be determined. The enclosed figure indicates this fill area. Upon conclusion of the fill project the requested cubic yardage, drainage features (if applicable), and drawings showing the completed location area shall be provided with the following monthly report.

Bridgeton Landfill, LLC Monthly Summary of Work Completed and Planned

Work Completed in February 2016

Gas Collection and Control System

- Continued operation and maintenance of GCCS System and GIW wells.
- Continued header realignment project to improve condensate management and header vacuum distribution.

Alternative Heat Extraction System

Continued operation and maintenance of the HES.

Leachate Management System

Continued routine operation of previously installed and upgraded features.

Pre-Treatment Facility

- Continued ongoing operation of facility.
- Continued to optimize operation efficiency of pre-treatment facility.
- Permeate continued to be discharged directly to MSD Bissell Point Facility or other approved disposal facilities as determined by MSD. Began hauling permeate to MSD Bissell Point Facility to reduce solids concentrations in the treatment tank system.

Other Projects

- Continued North Quarry cap enhancements.
- Continued low area fill project in South Quarry.
- Continued acceptance of clean fill.

Work Planned for March 2016

Gas Collection and Control System

- Continue operation and maintenance of GCCS system.
- Continue header realignment project to improve condensate management and header vacuum distribution.
- Continue upgrades to GCCS system as necessary.
- Begin installation of five (5) dewatering sumps in a gas interceptor trench on the southern side of the landfill. The total number of sumps to be installed may vary based on field conditions.
- Begin the installation of fourteen (14) gas extraction wells. The total number of wells to be installed may vary based on field conditions.

Alternative Heat Extraction System

Continued operation and maintenance of the HES.

Leachate Management System

- Continued routine operation of previously installed and upgraded features.
- Begin work on West Lift Station including the replacement of flow meters and valves

Pre-Treatment Facility

- Ongoing operation of facility.
- Continue to optimize operation efficiency of pre-treatment facility.

Other Projects:

- Continue fill projects for north slope of south quarry and low area on east slope
- Continue acceptance of clean fill materials for future fill projects.
- Complete north quarry cap enhancement project (weather permitting).

Daily Flare Monitoring Data - Bridgeton Landfill February 2016

	Av	verage Devic	e Flow* (sci	·m)	Total Avg.
Date	Utility Flare (FL-100)	Utility Flare (FL-120)	Utility Flare (FL-140)	Aux. Utility Flare	Flow** (scfm)
2/1/2016	0	0	2,846		2,846
2/2/2016	0	0	2,899	11	2,910
2/3/2016	0	0	2,861		2,861
2/4/2016	0	0	2,795		2,795
2/5/2016	0	0	2,783		2,783
2/6/2016	0	0	2,977	4	2,981
2/7/2016	0	0	2,986		2,986
2/8/2016	0	0	3,047		3,047
2/9/2016	0	0	3,137		3,137
2/10/2016	0	0	2,812		2,812
2/11/2016	0	0	2,849		2,849
2/12/2016	0	0	2,934		2,934
2/13/2016	0	0	2,898		2,898
2/14/2016	0	0	2,904		2,904
2/15/2016	0	0	2,912		2,912
2/16/2016	0	0	2,850		2,850
2/17/2016	0	0	2,788		2,788
2/18/2016	0	0	2,987		2,987
2/19/2016	0	0	2,943		2,943
2/20/2016	0	0	2,951		2,951
2/21/2016	0	0	2,872		2,872
2/22/2016	0	0	2,793		2,793
2/23/2016	0	0	2,863		2,863
2/24/2016	0	0	2,925		2,925
2/25/2016	0	0	2,900		2,900
2/26/2016	0	0	2,929		2,929
2/27/2016	0	0	2,984		2,984
2/28/2016	0	0	2,960		2,960
2/29/2016	0	0	2,900		2,900
				Average	2,907

^{*} Flows normalized to **Blower Outlet Flowmeter - EPA Method 2 measurement verified

Inlet Carbon Monoxide*

Total Combined Flow (scfm)*

LANDFILL

Candlestick Flare (FL-100) Flow (scfm)*

Candlestick Flare (FL-120) Flow (scfm)*

Candlestick Flare (FL-140) Flow (scfm)*

Auxillary Candlestick Flare Flow (scfm)*

LANDFILL

Combined Inlet Methane (Field Data)*

Combined Inlet Oxygen (Field Data)*

BRIDGETON LANDFILL, LLC

FIGURE 1 - FLARE COMPOUND PROCESS FLOW DIAGRAM

Weaver Consultants Group

. JULECIS\12U\131 Bridgeton\Bridgeton Air Compliance 2U15\1KS Assistance\Hgure 1 - How Diagram - KEV.dwg jdthoenen;Way

COPYRIGHT © 2015 WEAVER CONSULTANTS GROUP. ALL RIGHTS RESERVED.

TABLE 1
Summary of Key LFG Tested Parameters
Flare Compound: *Blower Outlet*

Bridgeton Landfill, LLC. February 2, 2016 to March 8, 2016

SAMPLE	DATE	VELOCITY	FLOW	TRS
EVENT #	DATE	ft/sec	dscfm	ppm _{vd}
				1200
53-10 ¹	3/8/2016	37.25	3017	1200
				1100
52-09	3/2/2016	37.79	3061	VOID ⁴
32-09	3/2/2010	37.79	3001	1300
51-08	2/22/2016	32.48	2631	1300
31-08	2/22/2010	32.40	2031	1200
50-07	2/17/2016	37.35	3025	1300
30-07	2/17/2016	37.33	3023	1200
49-06	2/11/2016	25.24	2052	1000
49-06	2/11/2016	35.21	2852	VOID ³
				1200
				1100
40.05.1	2/2/2016	22.02	2720	1100 ²
48-05 ¹	2/2/2016	33.03	2730	1300 ²
				VOID ^{2,3}
				1200 ²

Notes

¹ Indicates velocity/flow determined by EPA Method 2

² Split smples, different lab and test method

³ Void due to apparent air intrusion

⁴ Void due to acetone cross contamination

PARAMETER Blower Out Date Test Date 3/8/16 Run Start Time Start 8:04 10:08 Run Finish Time Net Traversing Points 8 (2 x 4) Net Run Time, minutes Θ 2:03:41 C_p Pitot Tube Coeficient 0.99 P_{Br} Barometric Pressure, inches of Mercury 29.45 % H₂O Moisture Content of LFG, % 2.37 % RH Relative Humidity, % 61.90 M_{fd} Dry Mole Fraction 0.976 %CH₄ Methane, % 11.00 %CO₂ Carbon Dioxide, % 36.50 $%O_{2}$ Oxygen, % 8.50 %Balance Assumed as Nitorgen, % 34.00 %H₂Hydrogen, % 9.10 %CO Carbon Monoxide, % 0.10 M_{d} Dry Molecular Weight, lb/lb-Mole 30.28 $M_{\rm s}$ 29.99 Wet Molecular weight, lb/lb-Mole P_{q} Flue Gas Static Pressure, inches of H₂O 30.22 P_s Absolute Flue Gas Pressure, inches of Mercury 31.86 Average Stack Gas Temperature, °F 91 ts ΔP_{avg} Average Velocity Head, inches of H₂O 0.337 Average LFG Velocity, feet/second 37.31 $\mathbf{v}_{\mathbf{s}}$ $\mathbf{A}_{\mathbf{s}}$ Stack Crossectional Area, square feet 1.35 Q_{sd} Dry Volumetric Flow Rate, dry scfm 3,017 \mathbf{Q}_{s} Standard Volumetric Flow Rate, scfm 3,089 \mathbf{Q}_{aw} Actual Wet Volumetric Flue Gas Flow Rate, acfm 3,029 $\mathbf{Q}_{\mathrm{lb/hr}}$ Dry Air Flow Rate at Standard Conditions, lb/hr 14,228 NHV Net Heating Value, Btu/scf 151 Methane, lb/hr 829.4 $\mathbf{LFG}_{\mathbf{CH4}}$ Methane, grains/dscf 32.07 Carbon Dioxide, lb/hr 7,549.6 LFG_{CO2} Carbon Dioxide, grains/dscf 291.93 1278.3 Oxygen, lb/hr LFG₀₂ Oxygen, grains/dscf 49.43 Balance gas as Nitrogen, lb/hr 4,476.4

Balance gas as Nitrogen, grains/dscf

Hydrogen, lb/hr

Hydrogen, grains/dscf

Carbon Monoxide, lb/hr

Carbon Monoxide, grains/dscf

LFG_{N2}

 $\mathsf{LFG}_{\mathsf{H4}}$

LFG_{co}

Bridgeton Landfill, LLC Weekly TRS Monthly Method 2C Event 53-10 03/08/2016

		Outlet A	Outlet B	Outlet C
	Hydrogen Sulfide Concentration, ppmd	26.00	11.00	0
H ₂ S	Hydrogen Sulfide Rate, lb/hr	0.42	0.18	C
	Hydrogen Sulfide Rate, grains/dscf	0.016	0.007	0.
	Carbonyl Sulfide Concentration, ppmd	0.51	0.53	(
cos	Carboynl Sulfide Rate, lb/hr	0.01	0.01	(
	Carbonyl Sulfide Rate, grains/dscf	0.001	0.001	0.
	Methyl Mercaptan Concentration, ppmd	190.00	190.00	150
CH ₄ S	Methyl Mercaptan Rate, lb/hr	4.30	4.30	;
	Methyl Mercaptan Rate, grains/dscf	0.166	0.166	0.
	Ethyl Mercaptan Concentration, ppmd	2.30	2.30	
C ₂ H ₆ S	Ethyl Mercaptan Rate, lb/hr	0.07	0.07	(
	Ethyl Mercaptan Rate, grains/dscf	0.003	0.003	0.
	Dimethyl Sulfide Concentration, ppmd	960.00	910.00	86
(CH ₃) ₂ S	Dimethyl Sulfide Rate, lb/hr	28.03	26.57	2
	Dimethyl Sulfide Rate, grains/dscf	1.084	1.028	0.
	Carbon Disulfide Concentration, ppmd	0.51	0.53	(
CS ₂	Carbon Disulfide Rate, lb/hr	0.02	0.02	(
	Carbon Disulfide Rate, grains/dscf	0.001	0.001	0.
	Dimethyl Disulfide Concentration, ppmd	25.00	26.00	3
$C_2H_6S_2$	Dimethyl Disulfide Rate, lb/hr	1.11	0.93	
	Dimethyl Disulfide Rate, grains/dscf	0.043	0.036	0.
	TRS>SO2 Emission Concentration, ppmd	1,200.00	1,200.00	1,100
●E _{TRS-SO2}	TRS>SO2 Emission Rate, lb/hr TRS>SO2 Emission Rate, grains/dscf	36.13 1.397	36.13 1.397	3: 1.

173.09

86.2

3.33

12.5

0.48

Tuesday, March 08, 2016

LOCATION	TIME	F	LOW -SCFM		Method 2 vs.	Method 2
200/111011		Method 2	FleetZoom	Kurz FM	Fleetzoom	Kurz
BLOWER OUT	8:04	3,089	3,142	2,934	-1.7%	5.0%

March 14, 2016

Republic Services

ADE-1461 EPA Methods TO3, TO14A, TO15 SIM & SCAN

TX Cert T104704450-14-6 EPA Methods TO14A, TO15

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

ATTN: Jim Getting 13570 St. Charles Rock Rd. Bridgeton, MO 63044

LABORATORY TEST RESULTS

Project Reference: Bridgeton Landfill

Lab Number:

H030901-01/07

Enclosed are results for sample(s) received 3/09/16 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the NELAC Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Jim Getting, Mike Lambrich, Ryan Ayer, Nicholas Bauer and David Randall, Weaver Consultants Group, on 3/11/16.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely.

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

Enclosures

					18501 F. G	ale Ave., Suite 130			CH	AIN (OF C	USTO	DY RE	CORD			
Air	TECH	INOL	OGY			stry, CA 91748	TUR	NAROUN	D TIME		DE	LIVERA	BLES	PAGE:	1	OF	1
	Labora	itories, Inc.			Ph: 626-964 Fx: 626-964	V 14500-0-1-1-1-1	Standard		48 hours					Condition	upon rece	ipt:	
				_	FX. 020-904	-3032	Same Day		72 hours						Sealed	Yes 🗌	No 🗌
Project No.:							24 hours		96 hours			Level 3			Intact	Yes 🗌	No 🗌
Project Name:	Bridgeton La	ındfill					Other:		5 day			Level 4			Chilled	-	deg C
Report To:	Jim Getting							BILL	.ING				A	NALYSIS	REQUE	ST	
Company:	Republic Se	rvices					P.O. No.:	PO486	245255	5441	60						
Street:	13570 St. Ch	narles Rock Rd				5.	Bill to:	Republ	ic Servi	ces a	3/11/16						
City/State/Zip:	Bridgeton , N	/IO 63044						Attn: Ji	m Gettin	g			<u>«</u>				
Phone& Fax:	314-683-392	21					13570 St.	Charles	Rock I	Rd.			CO +				
e-mail:	JGetting@r	epublicservic	es.com				Bridgeton,	MO 63	044			+ TRS	+H2	25C			
								7	1			+ (0	(ပု	bo			
		Canis	ster Press	ures ("hg)		빌	빌급	YPE	 ≚	RVA N	12/16	11946 SCF	/leth			
LAB USE	ONLY	Canister ID	Sample Start	Sample End	Lab Receive	SAMPLE IDENTIFICATION	SAMPLE DATE	SAMPLE	CONTAINER QTY/TYPE	MATRIX	PRESERVA- TION	EPA 15/16	ASTM 194 BTU/SCF	EPA Method			
H0309	01-01				11 Hay	Blower Outlet 1	0/0/0040	050		150		Х	X	Х			
HUSUT	Sec. 10 10 10 10 10 10 10 10 10 10 10 10 10	5948	-19.69	-2.75	2" 1	K 36 00 00	3/8/2016	859	С	LFG	NA						-
	-02	1613	-20.14	-3.75		Blower Outlet 2	3/8/2016	930	С	LFG	NA	Х	Х	X			
	-03	1620	-18.74	-3.5	5"	Blower Outlet 3	3/8/2016	1132	С	LFG	NA	Х	Х	X		-	
	-04	5959	-23.09	-3.91	1.65	Blower Outlet 4 903/4/16	3/8/2016	1345	С	LFG	NA	Х	Х	Х			
	-05	5962	-20.43	-3.69	4"	North Quarry	3/8/2016	856	С	LFG	NA	X	Х	Х			
	-06	5976	-19.77	-3.9	4"	LFG CSU EP14	3/1/2016	743	С	LFG	NA		Х				
1	-07	5936	-20.73	-3.67	24 V	North Quarry #1	3/1/2016	845	С	LFG	NA	X	Х	Х			
		,															
							-										
AUTHORIZATION TO P	евеови мовк. Да	ve Penoyer				COMPANY: Republic Services	DATE/TIME:		СОММЕ	NTS		×					
SAMPLED BY: Ryan						COMPANY: Republic Services	DATE/TIME		A CAN	CEL 15	7110	א משע	arry d	N Quam	भुना व		
RELINQUISHED BY	7,,010					DATE/RECEIVED BY	DATE/TIME		10	CHAN	GE F	or emo	il from	DRan	dall 3/	19/16/98	D -
		jer	3-8	-16 15	00	DATE/RECEIVED BY	DATE/TIME										
RELINQUISHED BY	aEx 0	3-916	10:3	2		394	6 10	35									
RELINQUISHED BY						DATE/RECEIVED BY	DATE/TIME										
METHOD OF TI	RANSPORT (cir	cle one): Walk	-In FedEx	UPS Co	urier ATLI	Other			1			*					

Page 2 of 8 Republic Services H030901

Client:

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/09/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H0309	901-01	H0309	901-02	H0309	901-03	H0309	901-04	
Client Sample I.D.:	Blower	Outlet 1	Blower	Outlet 2	Blower	Outlet 3		South Quarry GCCS	
Date/Time Sampled:	3/8/10	6 8:59	3/8/10	6 9:30	3/8/16	11:32	3/8/16	13:45	
Date/Time Analyzed:	3/9/16	14:12	3/9/16	15:00	3/9/16	15:30	3/9/16	15:45	
QC Batch No.:	160309	GC8A1	160309	GC8A1	160309	GC8A1	160309	GC8A1	
Analyst Initials:	A	S	A	S -	A	S	А	S	
Dilution Factor:	2	.5	2	.7	3.	.2	2	.5	
ANALYTE	Result % v/v	RL % v/v							
Hydrogen	8.5	2.5	9.3	2.7	9.4	3.2	11	2.5	
Carbon Dioxide	37	0.025	36	0.027	36	0.032	37	0.025	
Oxygen/Argon	8.7	1.3	8.5	1.3	8.4	1.6	8.7	1.3	
Nitrogen	34	2.5	34	2.7	34	3.2	35	2.5	
Methane	11	0.0025	11	0.0027	11	0.0032	7.2	0.0025	
Carbon Monoxide	0.093	0.0025	0.095	0.0027	0.093	0.0032	0.11	0.0025	
Net Heating Value (BTU/ft3)	146	2.5	152	2.7	154	3.2	127	2.5	
Gross Heating Value (BTU/ft3)	165	2.5	172	2.7	174	3.2	144	2.5	

Results normalized including non-methane hydrocarbons

BTU values based on D1946 analysis and non-methane analysis assumed as propane

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Operations Manager

Client: Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/09/16

Matrix:

Air

Reporting Units:

% v/v

ASTM D1946

Lab No.:	H0309	901-05	H030	901-06	H0309	901-07	To the control of the	
Client Sample I.D.:	North	North Quarry LF		SU EP14	l .	Quarry 1		
Date/Time Sampled:	3/8/10	6 8:56	3/1/1	6 7:43	3/1/1	6 8:45		
Date/Time Analyzed:	3/9/16	16:13	3/9/16	16:42	3/9/16	16:27		
QC Batch No.:	160309	GC8A1	160309	GC8A1	160309	GC8A1		
Analyst Initials:	A	S	A	LS	A	S		
Dilution Factor:	3	.0	3	.0	2	.7		
ANALYTE	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v		
Hydrogen	ND	3.0	10	3.0	ND	2.7		a) kanakan kata da da da kata ara ara ara ara ara ara ara ara ara
Carbon Dioxide	33	0.030	31	0.030	31	0.027		
Oxygen/Argon	4.1	1.5	10	1.5	4.6	1.3		
Nitrogen	19	3.0	41	3.0	21	2.7		
Methane	43	0.0030	6.3	0.0030	42	0.0027		
Carbon Monoxide	ND	0.0030	0.087	0.0030	ND	0.0027		
Net Heating Value (BTU/ft3)	402	3.0	107	3.0	385	2.7		
Gross Heating Value (BTU/ft3)	447	3.0	122	3.0	428	2.7		

Results normalized including non-methane hydrocarbons

BTU values based on D1946 analysis and non-methane analysis assumed as propane

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Operations Manager

Date 3/1

The cover letter is an integral part of this analytical report

Page 3 of 8

H030901

QC Batch No.: 160309GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method	Blank	L	LCS	L	CSD		
Date/Time Analyzed:	3/9/16	13:54	3/9/1	6 13:10	3/9/1	6 13:25		
Analyst Initials:	AS	S		AS		AS		
Datafile:	09ma	r014	09n	nar011	09n	nar012		
Dilution Factor:	1.0	0		1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	103	70-130%	103	70-130%	0.1	<30
Carbon Dioxide	ND	0.010	101	70-130%	100	70-130%	0.5	<30
Oxygen/Argon	ND	0.50	102	70-130%	102	70-130%	0.1	<30
Nitrogen	ND	1.0	101	70-130%	102	70-130%	0.5	<30
Methane	ND	0.0010	100	70-130%	100	70-130%	0.1	<30
Carbon Monoxide	ND	0.0010	111	70-130%	111	70-130%	. 0.0	<30
						×		

ND = Not Detected (Below RL)

Reviewed/Approved By:	in All	4	Date:	3/11/16	
_	Mark J. Johnson	1	-		4
	Operations Manager			W	

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project Number:

NA

Date Received: Matrix: 3/9/2016 Vapor

TNMOC by EPA METHOD 25C

	Lab Number:	H03090	1-01	H03090	1-02	H03090	1-03	H03090	1-04	H03090	01-05
CI	ient Sample ID:	Blower Ou	ıtlet 1	Blower O	utlet 2	Blower O	utlet 3	South Q		North Q	uarry
Date/	Time Collected:	3/8/16 8	:59	3/8/16 9	9:30	3/8/16 1	1:32	3/8/16 1	3:45	3/8/16	8:56
Date/	Гіте Analyzed:	3/9/16 17	7:11	3/9/16 1	8:09	3/9/16 1	9:07	3/9/16 2	0:06	3/9/16 2	23:00
1	Analyst Initials:	AS		AS		AS		AS		AS	
	QC Batch:	160309GC	C8A1	160309G	C8A1	160309G	C8A1	160309G	C8A1	160309G	C8A1
]	Dilution Factor:	13		13		16		13		3.0	
ANALYTE	Units	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
TNMOC	ppmv C	72,000	130	68,000	130	65,000	160	68,000	130	12,000	30
TNMOC uncorr*	ppmv C	35,000	130	34,000	130	34,000	160	35,000	130	8,800	30

 $\mathbf{N}\mathbf{D} = \mathbf{Not}$ detected at or above reporting limit.

TNMOC = Total Non-Methane Organic Carbon.

TNMOC uncorr* = TNMOC concentration in sample without nitrogen/moisture correction.

NA = Nitrogen/moisture correction causes division by zero.

Reviewed/Approved By:

Mark Johnson Operations Manager Date: 3-14-16

	en	

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project Number: NA

Date Received:

3/9/2016

Matrix:

Vapor

TNMOC by EPA METHOD 25C

	Lab Number:	H030901	1-07	ï		-		
CI	ient Sample ID:	North Qua	rry #1	2				*
Date/	Time Collected:	3/1/16 8	:45					***************************************
Date/	Time Analyzed:	3/10/16 2	3:59					
	Analyst Initials:	AS						
	QC Batch:	160309GC	8A1			ü		
	Dilution Factor:	2.7		is .			7/	
ANALYTE	Units	Result	RL				,	
TNMOC	ppmv C	6,800	27					
TNMOC uncorr*	ppmv C	4,700	27		ii.			

ND = Not detected at or above reporting limit.

TNMOC = Total Non-Methane Organic Carbon.

TNMOC uncorr* = TNMOC concentration in sample without nitrogen/moisture correction.

Operations Manager

NA = Nitrogen/moisture correction causes division by zero.

Reviewed/Approved By:	INNM-	1	Date:	3lulih
	ark Johnson			il.

Page 7 of 8 H030901

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/09/16

Matrix:

Air

Reporting Units: ppmv

EPA 15/16

Lab No.:	H03	3090	01-01	H03	090	01-02	H03	3090	01-03	H03	090	1-04
Client Sample I.D.:	Blow	er C	outlet 1	Blowe	er Ç	utlet 2	Blowe	er C	outlet 3	E.	h Q	uarry
Date/Time Sampled:	3/8/16 8:59		3/8	/16	9:30	3/8/	16	11:32	3/8/	16 1	13:45	
Date/Time Analyzed:	3/10)/16	9:10	3/10	/16	9:47	3/10	/16	10:24	3/10/	16	11:00
QC Batch No.:	160310GC3A1		1603	100	C3A1	1603	100	GC3A1	1603	10G	C3A1	
Analyst Initials:		AS	3		AS	3		AS	3		AS	5
Dilution Factor:		2.5	5		2.7			3.2	,		2.5	
	Resu	lt	RL	Resu	t	RL	Resul	t	RL	Resul	t	RL
ANALYTE .	ppm	V	ppmv	ppm	V	ppmv	ppm	V	ppmv	ppmy	7	ppmv
Hydrogen Sulfide	26	d	5.1	11	an an agus	0.53	ND		0.63	30	d	5.1
Carbonyl Sulfide	ND		0.51	ND		0.53	ND		0.63	ND		0.51
Methyl Mercaptan	190	d	5.1	190	d	5.3	150	d	6.3	210	d	5.1
Ethyl Mercaptan	2.3		0.51	2.3		0.53	1.7		0.63	2.4		0.51
Dimethyl Sulfide	960	d	51.0	910	d	53.0	860	d	63.0	980	d	51.0
Carbon Disulfide	ND		0.51	ND		0.53	ND		0.63	0.52		0.51
Dimethyl Disulfide	25		0.51	26		0.53	31		0.63	25		0.51
Total Reduced Sulfur	1,200		0.51	1,200		0.53	1,100		0.63	1,300		0.51
W. N. D. C. L. DI.												

ND =	Not	Detected	(below	RL)	Ì
------	-----	----------	--------	-----	---

Reviewed/Approved By:	11/1/1	Date
iteviewed/ippioved by.	Mark Johnson	<i></i>
	Operations Manager	

RL = Reporting Limit

d = Reported from a secondary dilution

QC Batch No.:

160310GC3A1

Matrix: Units:

Air ppmv Page 8 of 8 H030901

QC for Sulfur Compounds by EPA 15/16

Lab No.:	Method Blank		1	LCS	LCSD			
Date/Time Analyzed:	3/10/16 8:58		3/10/	0/16 8:34 3/10		/16 8:46		d
Analyst Initials:	AS		al .	AS		AS		
Datafile:	10mar(003	101	nar001	101	nar002	ø	
Dilution Factor:	1.0			1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen Sulfide	ND	0.20	78	70-130%	78	70-130%	0.5	<30
Carbonyl Sulfide	ND	0.20	99	70-130%	98	70-130%	0.5	<30
Methyl Mercaptan	ND	0.20	74	70-130%	74	70-130%	0.7	<30
Ethyl Mercaptan	ND	0.20	97	70-130%	99	70-130%	1.4	<30
Dimethyl Sulfide	ND	0.20	84	70-130%	84	70-130%	0.1	<30
Carbon Disulfide	ND	0.20	81	70-130%	81	70-130%	0.1	<30
Dimethyl Disulfide	ND	0.20	95	70-130%	94	70-130%	0.5	<30
						2.		

ND = Not Detected (Below RL)

RL = Reporting Limit

Reviewed/Approved By:	Moll	Date:	Julic
	Mark J. Johnson		4 -0
	Operations Manager		

Sample results on 3/2/2016 for Blower Outlet A were void due to acetone in the sample train. Calculations were performed for the representative sample for Blower Outlet B. Lab data is attached below.

Additionally, EPA Test Method TO15 was performed to confirm the acetone contamination. Those lab results are also attached below.

Sample results void from sample No. H030302- $\Delta = 5.3\%$ 01 for **Outlet A** due to apparent cross contamination with acetone in sample train.

	PARAMETER	Outlet A	Outlet B
Date	Test Date		3/2/1
Time	Start - Finish		14:5
%CH₄	Methane, %		10.7
%CO ₂	Carbon Dioxide, %		34.6
%O ₂	Oxygen, %		8.8
%Balance	Assumed as Nitorgen, %		35.3
%H ₂	Hydrogen, %		9.6
%CO	Carbon Monoxide, %		0.09
P_g	Flue Gas Static Pressure, inches of H ₂ O		30.8
ts	Blower Outlet LFG Temperature, °F		ŧ
Q_{sd}	Dry Volumetric Flow Rate, dry scfm (assumes 5%H2O)	2,908	
Q_s	Kurz FM, Standard Volumetric Flow Rate, scfm	3,061	
NHV	Net Heating Value, Btu/scf		145.0
LFG _{CH4}	Methane, lb/hr	0.0	777
LI G _{CH4}	Methane, grains/dscf	0.00	31.2
LFG _{CO2}	Carbon Dioxide, lb/hr	0.0	6,896
LFG _{CO2}	Carbon Dioxide, grains/dscf	0.00	276.7
LFG _{O2}	Oxygen, lb/hr	0.0	1,275
LFG ₀₂	Oxygen, grains/dscf	0.00	51.
LFG _{N2}	Balance gas as Nitrogen, lb/hr	0.0	4,478
LFG _{N2}	Balance gas as Nitrogen, grains/dscf	0.00	179.7
LFG _{H4}	Hydrogen, lb/hr	0.0	87
LI-G _{H4}	Hydrogen, grains/dscf	0.00	3.5
LFG _{co}	Carbon Monoxide, lb/hr	0.0	11
LFG _{CO}	Carbon Monoxide, grains/dscf	0.00	0.4

		Outlet A	Outlet B
	Hydrogen Sulfide Concentration, ppmd		42
H ₂ S	Hydrogen Sulfide Rate, lb/hr	0.00	(
	Hydrogen Sulfide Rate, grains/dscf	0.000	0.
	Carbonyl Sulfide Concentration, ppmd		(
cos	Carboynl Sulfide Rate, lb/hr	0.00	(
	Carbonyl Sulfide Rate, grains/dscf	0.000	0.
	Methyl Mercaptan Concentration, ppmd		180
CH ₄ S	Methyl Mercaptan Rate, lb/hr	0.00	3
	Methyl Mercaptan Rate, grains/dscf	0.000	0.
	Ethyl Mercaptan Concentration, ppmd		2
C ₂ H ₆ S	Ethyl Mercaptan Rate, lb/hr	0.00	(
	Ethyl Mercaptan Rate, grains/dscf	0.000	0.
	Dimethyl Sulfide Concentration, ppmd		910
(CH ₃) ₂ S	Dimethyl Sulfide Rate, lb/hr	0.00	25
	Dimethyl Sulfide Rate, grains/dscf	0.000	1.0
	Carbon Disulfide Concentration, ppmd		C
CS ₂	Carbon Disulfide Rate, lb/hr	0.00	(
	Carbon Disulfide Rate, grains/dscf	0.000	0.
	Dimethyl Disulfide Concentration, ppmd		74
$C_2H_6S_2$	Dimethyl Disulfide Rate, lb/hr	0.00	3
	Dimethyl Disulfide Rate, grains/dscf	0.000	0.
	TRS>SO2 Emission Concentration, ppmd		1,300
●E _{TRS-SO2}	TRS>SO2 Emission Rate, lb/hr	0.00	37
	TRS>SO2 Emission Rate, grains/dscf	0.000	1.
	TPY =	0.00	165

March 15, 2016

Republic Services

ATTN: Jim Getting

Bridgeton, MO 63044

13570 St. Charles Rock Rd.

ADE-1461 EPA Methods TO3, TO14A, TO15 SIM & SCAN

TX Cert T104704450-14-6 EPA Methods TO14A, TO15

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

LABORATORY TEST RESULTS

Project Reference: Bridgeton Landfill

Lab Number:

H030302-01/02

Enclosed are results for sample(s) received 3/03/16 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the NELAC Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Jim Getting, Mike Lambrich, Ryan Ayer, Nicholas Bauer and David Randall, Weaver Consultants Group, on 3/07/16 and 3/14/16 (EPA TO15).

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

Enclosures

H030302-01/02

18501 E. Gale Ave., Suite 130 City of Industry, CA 91748						ale Ave. Suite 130			CH	AIN (OF C	USTO	DY RE	CORD			
Air	TECH	INOL	DGY			stry, CA 91748	TUR	NAROUN	D TIME		DE	LIVERA		PAGE:	1	OF	1
	Labor	atories, Inc.			Ph: 626-964 Fx: 626-964		Standard		48 hours	10				Condition	Condition upon receipt:		
					1 7. 020-304	-0002	Same Day		72 hours							Yes 🗌	No 🗌
Project No.:	-						24 hours		96 hours			Level 3			Intact	Yes 🗌	No 🗌
Project Name:	Bridgeton La	andfill					Other:		5 day			Level 4			Chilled	1	deg C
Report To:	Jim Getting							BILL	ING				ANALYSIS REQUEST				
Company:	Republic Se	ervices					P.O. No.:	PO554	4106			46					
Street:	13570 St. C	harles Rock Rd.					Bill to:	Republ	ic Servi	ces		/119					
City/State/Zip:	Bridgeton, I	Bridgeton , MO 63044						Attn: Jii	m Gettir	ng		& ASTM1946	11.				
Phone& Fax:	314-683-3921				13570 St.	Charles	Rock	Rd.		₹	SCI		×				
e-mail:	JGetting@	republicservice	es.com			,	Bridgeton, MO 63044) Ti	*			
												 	, B				
		Canis	ter Press	ures ("hg)		<u>"</u> "	۳	HE HE	×	PRESERVA- TION	EPA 15/16 - + H2+ CO	ASTM 1946, BTU/SCF	7-			
LAB USE	ONLY		T			SAMPLE IDENTIFICATION	SAMPLE	SAMPLE	CONTAINER QTY/TYPE	MATRIX	ESEF	12 + T	Σ	10			
多在夏季	10000000000000000000000000000000000000	Canister ID	Sample Start	Sample End	Lab Receive	.,,	. 0	J ",	89		R	교 +	AS				
H0303	02-01	1614	-20.3	-3.5	-3" Hg	Outlet A	3/2/2016	1445	С	LFG	NA	Х	Х	×			
1	-02	1540	-20.1	-3.5	-3"1ta	Outlet B	3/2/2016	1455	С	LFG	NA	Х	Х	X			
					(
San San Benglin (1985)																	
								-		-				-			
	All Property of the State of th			-				-		-	-					igwdown	
			-					-		-							
4						DA1											
AUTHORIZATION TO P	ERFORM WORK: Da	ave Penoyer				COMPANY: Republic Services	DATE/TIME:		СОММ	ENTS							
SAMPLED BY: Ryan						COMPANY: Republic Services	DATE/TIME		Ad	1	TO-	15	per	NI	Bauri	- 3-	10-16
RELINQUISHED BY						DATE/RECEIVED BY	DATE/TIME		/ 15.								1
RELINQUISHED BY	2- /ly	en	3-2		1600		DATE/TIME										
Fe	dEx	3-	3-16	C	1:10		3-3-16	9:10									
RELINQUISHED BY	1					DATE/RECEIVED BY	DATE/TIME										
METHOD OF T	PANSDORT (al	rcle one): Walk	In FedEv	LIPS Co	urier ATLI	Other			1								

Page 2 of 10 H030302

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/03/16

Sample results void from the evaluation due to

Matrix:

Air

apparent cross contamination with acetone in the

Reporting Units: % v/v

sample train.

A CURNI DADAC											
		ASTM I	D1946	***************************************							
Lab No.:	H0303	302-01	H030	302-02							
Client Sample I.D.:	Outlet A		Outlet B								
Date/Time Sampled:	3/2/16	3/2/16 14:45		3/2/16 14:55							
Date/Time Analyzed:	3/4/16	3/4/16 11:47		12:07							
QC Batch No.:	160304GC8A1		160304GC8A1								
Analyst Initials:	AS		AS								
Dilution Factor:	2.8		2.8								
ANALYTE	Result % v/v	RL % v/v	Result % v/v	RL % v/v							
Hydrogen	8.8	2.8	9.6	2.8							
Carbon Dioxide	31.1	0.028	34.6	0.028							
Oxygen/Argon	9.0	1.4	8.8	1.4							
Nitrogen	35.5	2.8	35.3	2.8							
Methane	9.5	0.0028	10.7	0.0028							
Carbon Monoxide	0.081	0.0028	0.091	0.0028							
Net Heating Value (BTU/ft3)	255.4	2.8	145.0	2.8							
Gross Heating Value (BTU/ft3)	283.5	2.8	164.1	2.8							
						1					

Results normalized including non-methane hydrocarbons

BTU values based on D1946 analysis and non-methane analysis assumed as propane

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

AirTECHNOLOGY Laboratories, Inc.

page 1 of 1

Date 3-7-16

Date: 3-7-16

QC Batch No.: 160304GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method	Blank	I	CS	L	CSD		×,
Date/Time Analyzed:	3/4/16	10:17	3/4/1	16 9:33	3/4/16 9:48			
Analyst Initials:	AS	S		AS	AS			
Datafile:	04mar009		04n	nar006	04mar007			
Dilution Factor:	1.0	0	1.0		1.0			
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	92	70-130%	92	70-130%	1.0	<30
Carbon Dioxide	ND	0.010	95	70-130%	96	70-130%	1.4	<30
Oxygen/Argon	ND	0.50	102	70-130%	103	70-130%	1.2	<30
Nitrogen	ND	1.0	101	70-130%	102	70-130%	1.0	<30
Methane	ND	0.0010	108	70-130%	108	70-130%	0.2	<30
Carbon Monoxide	ND	0.0010	110	70-130%	110	70-130%	0.7	<30
-								

ND = Not Detected (Below RL)

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

Page 4 of 10 H030302

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Sample results void from the evaluation due to

Date Received:

Reporting Units:

03/03/16

apparent cross contamination with acetone in the

Matrix:

Air ppmv

sample train.

EPA 15/16

		LII II I	3/10					
Lab No.:	H0303	02-01	H0303	02-02		4	T	
Client Sample I.D.:	Outle	Outlet A		Outlet B				-
Date/Time Sampled:	3/2/16	3/2/16 14:45		3/2/16 14:55				
Date/Time Analyzed:	3/3/16 11:21		3/3/16 11:58					
QC Batch No.:	160303GC3A1		160303GC3A1					
Analyst Initials:	AS	AS		AS				
Dilution Factor:	2.8	2.8		2.8				
	Result	RL	Result	RL				I
ANALYTE	ppmv	ppmv	ppmv	ppmv				
Hydrogen Sulfide	34 d	5.6	42 d	5.6				
Carbonyl Sulfide	ND	0.56	ND	0.56				
Methyl Mercaptan	160 d	5.6	180 d	5.6				
Ethyl Mercaptan	2.2	0.56	2.4	0.56				
Dimethyl Sulfide	860 d	56.0	910 d	56.0				
Carbon Disulfide	ND	0.56	ND	0.56				
Dimethyl Disulfide	56 d	5.6	74 d	5.6				
Total Reduced Sulfur	1,200	0.56	1,300	0.56				
ND = Not Detected (below RI)								

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary dilution

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 3-7-16

QC Batch No.:

160303GC3A1

Matrix: Units:

Air

ppmv

Page 5 of 10 H030302

QC for Sulfur Compounds by EPA 15/16

Lab No.:	Method I	Blank	I	LCS	L	CSD				
Date/Time Analyzed:	3/3/16 1	0:58	3/3/1	6 10:33	3/3/1	6 10:45				
Analyst Initials:	AS			ÀS		AS				
Datafile:	03MAR	004	03N	IAR002	03N	IAR003		*:		
Dilution Factor:	1.0	V.		1.0	1.0		1.0			
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria		
Hydrogen Sulfide	ND	0.20	95	70-130%	95	70-130%	0.3	<30		
Carbonyl Sulfide	ND	0.20	115	70-130%	. 114	70-130%	1.2	<30		
Methyl Mercaptan	ND	0.20	89	70-130%	89	70-130%	0	<30		
Ethyl Mercaptan	ND	0.20	114	70-130%	113	70-130%	0.6	<30		
Dimethyl Sulfide	ND	0.20	97	70-130%	97	70-130%	0.9	<30		
Carbon Disulfide	ND	0.20	100	70-130%	100	70-130%	0.3	<30		
Dimethyl Disulfide	ND	0.20	114	70-130%	108	70-130%	5.4	<30		

ND = Not Detected (Below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark J. Johnson Operations Manager Date: 3-7-16

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

Sample results below show apparent cross

Date Received:

03/03/16

contamination of acetone in sample train.

Matrix:

Air

Reporting Units: ppbv

FPA	Me	tho	d	roi	5

Lab No.:	H030302	-01	H0303	02-02				
Client Sample I.D.:	Outlet	Outlet A		Outlet B				
Date/Time Sampled:	3/2/16 14	3/2/16 14:45		3/2/16 14:55				
Date/Time Analyzed:	3/11/16 1	5:09	3/11/16	14:29				
QC Batch No.:	160311M	S2A1	1603111	MS2A1				
Analyst Initials:	DT		D'	Г			The state of the s	
Dilution Factor:	200,00	0	2,8	00				
ANALYTE	Result ppbv	RL ppbv	Result ppbv	RL ppbv				
Dichlorodifluoromethane (12)	ND	200,000	ND	2,800	and the second s	Marie American Street	Market of Careff School September 1	
Chloromethane	ND	390,000	NĎ	5.600				
1,2-Cl-1,1,2,2-F ethane (114)	ND	200,000	ND	2,800				
Vinyl Chloride	ND	200,000	ND	2,800				
Bromomethane	ND	200,000	ND	2,800				
Chloroethane	ND	200,000	ND	2,800				
Trichlorofluoromethane (11)	ND	200,000	ND	2,800				
1,1-Dichloroethene	ND	200,000	ND	2,800				
Carbon Disulfide	ND -	980,000	ND	14,000				
1,1,2-Cl 1,2,2-F ethane (113)	ND	200,000	ND	2,800				
Acetone	32,000,000	980,000	450,000	14,000				
Methylene Chloride	ND	200,000	ND	2,800				
t-1,2-Dichloroethene	ND	200,000	ND	2,800				
1,1-Dichloroethane	ND	200,000	ND	2,800				
Vinyl Acetate	ND	980,000	ND	14,000				
c-1,2-Dichloroethene	ND	200,000	ND	2,800				
2-Butanone	250,000	200,000	350,000	2,800				
t-Butyl Methyl Ether (MTBE)	ND	200,000	ND	2,800	,		2	
Chloroform	ND	200,000	ND	2,800				
1,1,1-Trichloroethane	ND	200,000	ND	2,800				
Carbon Tetrachloride	ND	200,000	ND .	2,800				
Benzene	230,000	200,000	190,000	2,800				
1,2-Dichloroethane	ND .	200,000	ND	2,800				
Trichloroethene	ND	200,000	ND	2,800				
1,2-Dichloropropane	ND	200,000	ND	2,800				
Bromodichloromethane	ND	200,000	ND	2,800				
c-1,3-Dichloropropene	ND	200,000	ND	2,800				
4-Methyl-2-Pentanone	ND	200,000	9,600	2,800				
Toluene	ND	200,000	34,000	2,800				
t-1,3-Dichloropropene	ND	200,000	ND	2,800				

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No .:

NA

Date Received:

03/03/16

Matrix:

Air

Reporting Units: ppbv

EPA Method TO15

		I A IVICUI	04 1 015					
Lab No.:	H030302	2-01	H03030	02-02			ZZ STATE OF	
Client Sample I.D.:	Outlet	Outlet A		Outlet B				
Date/Time Sampled:	3/2/16 1	4:45	3/2/16	14:55		The Column Street Street		************
Date/Time Analyzed:	3/11/16 1	5:09	3/11/16	14:29		Complete St. Profession St.		
QC Batch No.:	160311M	S2A1	160311N	VIS2A1				
Analyst Initials:	DT		D7	r				
Dilution Factor:	200,00	00	2,80	00				
ANALYTE	Result ppbv	RL ppbv	Result ppbv	RL ppbv				
1,1,2-Trichloroethane	ND	200,000	ND	2,800				
Tetrachloroethene	ND	200,000	ND	2,800				
2-Hexanone	ND	200,000	4,600	2,800				
Dibromochloromethane	ND	200,000	ND	2,800				
1,2-Dibromoethane	ND	200,000	ND	2,800				
Chlorobenzene	ND	200,000	ND	2,800				
Ethylbenzene	ND	200,000	14,000	2,800				
p,&m-Xylene	ND	200,000	21,000	2,800			- Continue	
o-Xylene	ND	200,000	9,000	2,800				
Styrene	ND	200,000	ND	2,800				
Bromoform	ND	200,000	ND	2,800				
1,1,2,2-Tetrachloroethane	ND	390,000	ND .	5,600				
Benzyl Chloride	ND	200,000	ND	2,800				
4-Ethyl Toluene	ND	200,000	3,600	2,800				
1,3,5-Trimethylbenzene	ND	390,000	ND	5,600		7		
1,2,4-Trimethylbenzene	ND	390,000	ND	5,600				
1,3-Dichlorobenzene	ND	200,000	ND	2,800				
1,4-Dichlorobenzene	ND	200,000	ND	2,800				
1,2-Dichlorobenzene	ND	200,000	ND	2,800				
1,2,4-Trichlorobenzene	ND	390,000	ND	5,600				
Hexachlorobutadiene	ND	200,000	ND	2,800				

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson Operations Manager Date 3-14-16

The cover letter is an integral part of this analytical report

AirTECHNOLOGY Laboratories, Inc.

page 2 of 2

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/03/16

Matrix:

Air ..

Reporting Units: ppbv

EPA Method TO15

Lab No.:	МЕТНО	D BLANK			T		
Client Sample I.D.:					CONTRACTOR OF THE PROPERTY OF		
Date/Time Sampled:		-					
Date/Time Analyzed:	3/11/1	6 13:47					
QC Batch No.:	160311	MS2A1					
Analyst Initials:	I)T					
Dilution Factor:	0	.20					
	Result	RL		T	I		
ANALYTE	ppbv	ppbv					
Dichlorodifluoromethane (12)	ND	0.20	EVERTICAL STATE OF THE STATE OF	ACCUMAZIONA SURVINOS	AND AND ADDRESS OF THE ADD	discussion and the opera	STATE OF SEVERAL PROPERTY OF
Chloromethane	ND	0.40					
1,2-Cl-1,1,2,2-F ethane (114)	ND	0.20					
Vinyl Chloride	ND	0.20					
Bromomethane	ND	0.20					
Chloroethane	ND	0.20					
Trichlorofluoromethane (11)	ND	0.20					
1,1-Dichloroethene	ND	0.20					
Carbon Disulfide	ND	1.0					
1,1,2-Cl 1,2,2-F ethane (113)	ND	0.20					
Acetone	ND	1.0					
Methylene Chloride	ND	0.20					
t-1,2-Dichloroethene	ND	0.20					
1,1-Dichloroethane	ND	0.20					
Vinyl Acetate	ND	1.0					
c-1,2-Dichloroethene	ND	0.20					
2-Butanone	ND	0.20					
t-Butyl Methyl Ether (MTBE)	ND ·	0.20					
Chloroform	ND	0.20					
1,1,1-Trichloroethane	ND	0.20					
Carbon Tetrachloride	ND	0.20					
Benzene	ND	0.20					
1,2-Dichloroethane	ND	0.20					
Trichloroethene	ND	0.20					
1,2-Dichloropropane	ND	0.20					
Bromodichloromethane	ND	0.20					
c-1,3-Dichloropropene	ND	0.20					a
4-Methyl-2-Pentanone	ND	0.20					
Toluene	ND	0.20					
t-1,3-Dichloropropene	ND	0.20					

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

03/03/16

Matrix:

Air

Reporting Units: ppbv

EPA Method TO15

		AND THE TYPE	104 101					
Lab No.:	метно	D BLANK					- Control of the Cont	
Client Sample I.D.:	The state of the s	-			Control to Annual Special Control			
Date/Time Sampled:				and the second of the second o		ACTION AND THE SECOND STREET, AND THE ACTIONS OF THE PERSON		
Date/Time Analyzed:	3/11/1	6 13:47			THE STATE OF THE S			
QC Batch No.:	160311	MS2A1			No.			
Analyst Initials:	I)T						
Dilution Factor:	0.	.20			No.			
ANALYTE	Result ppbv	RL ppbv						
1,1,2-Trichloroethane	ND	0.20						
Tetrachloroethene	ND .	0.20						
2-Hexanone	ND	0.20			TE ANSIEU ACT			
Dibromochloromethane	ND	0.20						
1,2-Dibromoethane	ND	0.20						
Chlorobenzene	ND	0.20						
Ethylbenzene	ND	0.20						
p,&m-Xylene	ND	0.20						
o-Xylene	ND	0.20						
Styrene	.ND	0.20						
Bromoform	ND	0.20						
1,1,2,2-Tetrachloroethane	ND	0.40						
Benzyl Chloride	ND	0.20						
4-Ethyl Toluene	ND	0.20						
1,3,5-Trimethylbenzene	ND	0.40						
1,2,4-Trimethylbenzene	ND	0.40						
1,3-Dichlorobenzene	ND	0.20						
1,4-Dichlorobenzene	ND	0.20						
1,2-Dichlorobenzene	ND	0.20						
1,2,4-Trichlorobenzene	ND	0.40						
Hexachlorobutadiene	ND	0.20	- Control of the Cont					

ND = Not Detected (below RL)

RL = Reporting Limit

Mark Johnson

Operations Manager

3-14-16

cover letter is an integral part of this analytical report

AirTECHNOLOGY Laboratories, Inc.

page 2 of 2

QC Batch #: 160311MS2A1

Matrix: Air

		EPA	Method	1 TO-1	4/TO-1:	5					
Lab No:	Method Blank		L	CS	LC	SD.	Augustion statutes associatelluses	Marie Carlo Company			CANADA PROPERTY UNITED
Date/Time Analyzed:	3/11/16 13:47		3/11/1	3/11/16 10:29 3/11/16 11:08							
Data File ID:	11MAR014.D		11MA	R009.D	11MAR010.D						
Analyst Initials:	DT		D	T	D	T		the first order to be a second			
Dilution Factor:	0.2		1	.0	1.0			Limits			
ANALYTE	Result ppbv	Spike Amount	Result ppbv	% Rec	Result ppbv	% Rec	RPD	Low %Rec	High %Rec	Max. RPD	Pass/ Fail
1,1-Dichloroethene	0.0	10.0	9.8	98	9.9	99	1.5	70	130	30	Pass
Methylene Chloride	0.0	10.0	9.7	97	9.8	98	1.5	70	130	30	Pass
Trichloroethene	0.0	10.0	10.0	100.	10.2	102	1.5	70	130	30	Pass
Toluene	0.1	10.0	9.8	97	10.0	99	2.2	70	130	30	Pass
1,1,2,2-Tetrachloroethane	0.0	10.0	11.1	111	10.9	109	1.6	70	130	30	Pass
received.											

RPD = Relative Percent Difference

Reviewed/Approved By:

Mark Johnson Operations Manager

The cover letter is an integral part of this analytical report

Date: 3-19-

Kurz FM =	2,770	scfm		
Fleetzoom Total =	3,025	scfm	Δ=	8.4%

	PARAMETER	Outlet A	Outlet B
Date	Test Date		2/22/16
Time	Start - Finish	13:55	14:05
%CH₄	Methane, %	11.70	10.30
%CO ₂	Carbon Dioxide, %	38.80	38.50
%O ₂	Oxygen, %	7.40	7.40
%Balance	Assumed as Nitorgen, %	30.30	30.30
%H ₂	Hydrogen, %	11.00	11.20
%CO	Carbon Monoxide, %	0.100	0.100
P_{g}	Flue Gas Static Pressure, inches of H ₂ O	16.28	16.28
t _s	Blower Outlet LFG Temperature, °F	97	97
\mathbf{Q}_{sd}	Dry Volumetric Flow Rate, dry scfm (assumes 5%H2O)	2,631	
Q_s	Kurz FM, Standard Volumetric Flow Rate, scfm	2,770	
NHV	Net Heating Value, Btu/scf	156.5	159.7
LFG _{CH4}	Methane, lb/hr	769.4	677.
LI OCH4	Methane, grains/dscf	34.11	30.0
LFG _{CO2}	Carbon Dioxide, lb/hr	6,999.3	6,945.
LI O _{CO2}	Carbon Dioxide, grains/dscf	310.32	307.9
LFG _{O2}	Oxygen, lb/hr	970.6	970.
LI G ₀₂	Oxygen, grains/dscf	43.03	43.0
LFG _{N2}	Balance gas as Nitrogen, lb/hr	3,479.2	3,479.
LI G _{N2}	Balance gas as Nitrogen, grains/dscf	154.26	154.2
LFG _{H4}	Hydrogen, lb/hr	90.9	92.
Lr G _{H4}	Hydrogen, grains/dscf	4.03	4.10
LFG _{co}	Carbon Monoxide, lb/hr	11.5	11.9
LI G _{CO}	Carbon Monoxide, grains/dscf	0.48	0.48

		Outlet A	Outlet B
	Hydrogen Sulfide Concentration, ppmd	36.00	43
H ₂ S	Hydrogen Sulfide Rate, lb/hr	0.50	0
	Hydrogen Sulfide Rate, grains/dscf	0.022	0.0
	Carbonyl Sulfide Concentration, ppmd	0.56	0
cos	Carboynl Sulfide Rate, lb/hr	0.01	0
	Carbonyl Sulfide Rate, grains/dscf	0.001	0.0
	Methyl Mercaptan Concentration, ppmd	170.00	200
CH₄S	Methyl Mercaptan Rate, lb/hr	3.35	3
	Methyl Mercaptan Rate, grains/dscf	0.149	0.
	Ethyl Mercaptan Concentration, ppmd	2.60	2
C ₂ H ₆ S	Ethyl Mercaptan Rate, lb/hr	0.07	C
	Ethyl Mercaptan Rate, grains/dscf	0.003	0.0
	Dimethyl Sulfide Concentration, ppmd	860.00	910
(CH ₃) ₂ S	Dimethyl Sulfide Rate, lb/hr	21.90	23
	Dimethyl Sulfide Rate, grains/dscf	0.971	1.0
	Carbon Disulfide Concentration, ppmd	0.56	C
CS ₂	Carbon Disulfide Rate, lb/hr	0.02	C
	Carbon Disulfide Rate, grains/dscf	0.001	0.0
	Dimethyl Disulfide Concentration, ppmd	68.00	79
$C_2H_6S_2$	Dimethyl Disulfide Rate, lb/hr	2.63	3
	Dimethyl Disulfide Rate, grains/dscf	0.116	0.
	TRS>SO2 Emission Concentration, ppmd	1,200.00	1,300
●E _{TRS-SO2}	TRS>SO2 Emission Rate, lb/hr	31.51	34
	TRS>SO2 Emission Rate, grains/dscf	1.397	1.5
	TPY =	138.02	149

February 26, 2016

ADE-1461 EPA Methods TO3, TO14A, TO15 SIM & SCAN

TX Cert T104704450-14-6 EPA Methods TO14A, TO15

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

Republic Services ATTN: Jim Getting 13570 St. Charles Rock Rd. Bridgeton, MO 63044

LABORATORY TEST RESULTS

Project Reference: Bridgeton Landfill

Lab Number:

H022302-01/02

Enclosed are results for sample(s) received 2/23/16 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Complete reanalysis of both samples was conducted, per client's request.
- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the NELAC Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Jim Getting, Mike Lambrich, Ryan Ayers and David Randall, Weaver Consultants Group, on 2/25/16.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely,

Operations Manager MJohnson@AirTechLabs.com

Enclosures

TOTAL TOTAL					19501 E C	ale Ave., Suite 130			CH	AIN (OF C	USTO	DY RE	CORD			
Air	TEC	HNOL	DGY		City of Indus	stry, CA 91748	TUR	NAROUN	D TIME		DE	LIVERA		PAGE:	1	OF	1
$\prod \Lambda \Lambda \Lambda \Lambda$	Labor	ratories, Inc.			Ph: 626-964 Fx: 626-964		Standard		48 hours					Condition	upon rece	ipt:	
3000					FX. 020-904	-5052	Same Day			V K					Sealed	Yes 🗌	No 🗌
Project No.:							24 hours		96 hours	_		3000 (0.00 (Intact	Yes	No 🗌
Project Name:	Bridgeton L	andfill					Other:		5 day			Level 4			Chilled		deg C
Report To:	Jim Getting	1						BILL	ING				A	NALYSIS	REQUE	ST	
Company:	Republic S	ervices					P.O. No.:	PO554	4106			46					
Street:	13570 St. 0	Charles Rock Rd.					Bill to:	Republ	ic Servic	ces		M19					
City/State/Zip:	Bridgeton,	MO 63044						Attn: Ji	m Gettin	g		ASTM1946	n.				
Phone& Fax:	314-683-39	921					13570 St.	Charles	Rock I	₹d.		ంర	BTU/SCF				
e-mail:	JGetting@	prepublicservice	es.com				Bridgeton,	MO 63	044			TRS)Ti				
								age -				+					
建工作		Canis	ter Press	ures ("hg)		<u> </u>	当	NE JE	×	-AVA	5/16	1946,				
LAB USE	ONLY	Canister ID	Sample Start	Sample End	Lab Receive	SAMPLE IDENTIFICATION	SAMPLE	SAMPLE	CONTAINER QTY/TYPE	MATRIX	PRESERVA- TION	EPA 15/16 - + H2+ CO	ASTM				
H82230	12-01	J1720	-20	-3.5	-3	Outlet A	2/22/2016	1355	С	LFG	NA	Х	Х				
	-02	1621	-20	-3.5	-2.5	Outlet B	2/22/2016	1405	С	LFG	NA	х	Х				
		ii:															
	4.5 错																
AUTHORIZATION TO PE	RFORM WORK: D	ave Penoyer				COMPANY: Republic Services	DATE/TIME:		СОММЕ	NTS							
SAMPLED BY: Ryan						COMPANY: Republic Services	DATE/TIME		i								
RELINQUISHED BY	7 -4	TOTA	2	-22-16	11126	DATE/RECEIVED BY	DATE/TIME		1								
RELINQUISHED BY	Lan to	yeur	d	20-16	1430	DATE/RECEIVED BY	23/16 L	250									
RELINQUISHED BY	TON					DATE/RECEIVED BY	DATE/TIME	50	ł								
METHOD OF TE	RANSPORT (c	ircle one): Walk-	In FedEx	UPS Co	urier ATLI	Other			1								

Page 2 of 5 H022302

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

02/23/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H0223	H022302-01		302-02				
Client Sample I.D.:	Out	Outlet A		Outlet B				
Date/Time Sampled:	2/22/10	2/22/16 13:55		2/22/16 14:05				
Date/Time Analyzed:	2/24/10	6 15:52	2/24/1	6 16:07			- 3	
QC Batch No.:	160224	GC8A1	160224	GC8A1			Na.	
Analyst Initials:	A	S	A	S				
Dilution Factor:	2	.8	2	.7		O		20
ANALYTE	Result % v/v	RL % v/v	Result % v/v	RL % v/v			A PARTICLE AND A POST OF THE PARTICLE AND A POST	
Hydrogen	11.0	2.8	11.2	2.7				
Carbon Dioxide	38.8	0.028	38.5	0.027				
Oxygen/Argon	7.4	1.4	7.4	1.4				
Nitrogen	30.3	2.8	30.3	2.7			**************************************	
Methane	11.4	0.0028	11.4	0.0027				
Carbon Monoxide	0.10	0.0028	0.10	0.0027				
Net Heating Value (BTU/ft3)	156.5	2.8	159.7	2.7				
Gross Heating Value (BTU/ft3)	177.4	2.8	180.9	2.7				

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

The cover letter is an integral part of this analytical report

Operations Manager

QC Batch No.: 160224GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method	Method Blank		LCS		CSD		
Date/Time Analyzed:	2/24/16	2/24/16 13:58		2/24/16 13:04		2/24/16 13:18		
Analyst Initials:	A	AS		AS		AS		
Datafile:	24fel	b012 24feb009		eb009	24feb010			
Dilution Factor:	1.	0	0	1.0	1.0			
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	73	70-130%	74	70-130%	1.4	<30
Carbon Dioxide	ND	0.010	89	70-130%	88	70-130%	1.0	<30
Oxygen/Argon	ND	0.50	106	70-130%	105	70-130%	1.0	<30
Nitrogen	ND	1.0	103	70-130%	102	70-130%	0.9	<30
Methane	ND	0.0010	123	70-130%	122	70-130%	1.0	<30
Carbon Monoxide	ND	0.0010	104	70-130%	102	70-130%	1.4	<30
			28					

ND = Not Detected (Below RL)

Reviewed/Approved By:	MAM.	1	Date:	2/25/11	
	Mark J. Johnson	0			
	Operations Manager				

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No .:

NA

Date Received:

02/23/16

Matrix:

Air

Reporting Units: ppmv

EPA 15/16

1102	H022302-01		H02	2230	02-02				
O	Outlet A		Outlet B						
2/22/16 13:55		2/22/16 14:05							
2/24	2/24/16 9:59		2/24/16 10:54						
1602	240	GC3A1	1602	24G	C3A1				
	AS	3		AS	3				
	2.8		2.7						
		RL ppmv	F17-2-12-1-1-2-1-1-1-1-1-1-1-1-1-1-1-1-1-		RL ppmv				
36	d	5.6	43	d	5.5				
ND		0.56	ND		0.55	_ BAILEACT			
170	d	5.6	200	d	5.5				
2.6		0.56	2.7		0.55				
860	d	56.0	910	d	55.0				
ND		0.56	ND		0.55				
68	d	5.6	79	d	5.5				
1,200		0.56	1,300		0.55				
	2/22/ 2/24 16022 Resul ppmv 36 ND 170 2.6 860 ND 68	2/22/16 2/24/16 1602240 AS 2.8 Result ppmv 36 d ND 170 d 2.6 860 d ND 68 d	2/22/16 13:55 2/24/16 9:59 160224GC3A1 AS 2.8 Result ppmv ppmv 36 d 5.6 ND 0.56 170 d 5.6 2.6 0.56 860 d 56.0 ND 0.56 68 d 5.6	2/22/16 13:55 2/22 2/24/16 9:59 2/24 160224GC3A1 1602 AS 2.8 Result ppmv ppmv ppmv REsult ppmv ppmv 36 d 5.6 43 ND 0.56 ND 170 d 5.6 200 2.6 0.56 2.7 860 d 56.0 910 ND 0.56 ND 68 d 5.6 79	2/22/16 13:55 2/22/16 2/24/16 9:59 2/24/16 160224GC3A1 160224G AS AS 2.8 2.7 Result ppmv ppmv ppmv Result ppmv ppmv 36 d 5.6 43 d d ND ND 0.56 ND 170 d 5.6 200 d d 2.6 0.56 2.7 860 d 56.0 910 d d ND 0.56 ND 68 d 5.6 79 d d	2/22/16 13:55 2/22/16 14:05 2/24/16 9:59 2/24/16 10:54 160224GC3A1 160224GC3A1 AS AS 2.8 2.7 Result ppmv ppmv ppmv RL ppmv ppmv ppmv RL ppmv ppmv 36 d 5.6 43 d 5.5 ND 0.56 ND 0.55 170 d 5.6 200 d 5.5 2.5 2.6 0.56 2.7 0.55 860 d 56.0 910 d 55.0 ND 0.55 ND 0.56 ND 0.55 68 d 5.6 79 d 5.5 5.5	2/22/16 13:55 2/22/16 14:05 2/24/16 9:59 2/24/16 10:54 160224GC3A1 160224GC3A1 AS AS 2.8 2.7 Result ppmv ppmv ppmv ppmv RL ppmv ppmv ppmv 36 d 5.6 43 d 5.5 ND 0.56 ND 0.55 170 d 5.6 200 d 5.5 2.6 0.56 2.7 0.55 860 d 56.0 910 d 55.0 ND 0.55 68 d 5.6 79 d 5.5	2/22/16 13:55 2/22/16 14:05 2/24/16 9:59 2/24/16 10:54 160224GC3A1 160224GC3A1 AS AS 2.8 2.7 Result ppmv ppmv ppmv ppmv RL ppmv ppmv ppmv 36 d 5.6 43 d 5.5 ND 0.56 ND 0.55 170 d 5.6 200 d 5.5 2.6 0.56 2.7 0.55 860 d 56.0 910 d 55.0 ND 0.55 ND 0.56 ND 0.55 68 d 5.6 79 d 5.5 5.5	2/22/16 13:55 2/22/16 14:05 2/24/16 9:59 2/24/16 10:54 160224GC3A1 160224GC3A1 AS AS 2.8 2.7 Result ppmv ppmv ppmv ppmv RL ppmv ppmv ppmv 36 d 5.6 43 d 5.5 ND 0.56 ND 0.55 170 d 5.6 200 d 5.5 2.6 0.56 2.7 0.55 0.55 860 d 56.0 910 d 55.0 ND 0.55 68 d 5.6 79 d 5.5

ND	= Not	Detected	(below	KL)	

RL = Reporting Limit

d = Reported from a secondary dilution

Reviewed/Approved By: **Operations Manager**

Page 4 of 5

H022302

Page 5 of 5 H022302

QC Batch No.:

160224GC3A1

Matrix: Units:

Air

ppmv

QC for Sulfur Compounds by EPA 15/16

Lab No.:	Method I	Method Blank		LCS		LCSD		
Date/Time Analyzed:	2/24/16	2/24/16 8:55		2/24/16 8:30		2/24/16 8:42		
Analyst Initials:	AS	AS		AS	9	AS		- 1
Datafile:	24feb003		24feb003 24feb001		24feb002			
Dilution Factor:	1.0			1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen Sulfide	ND	0.20	91	70-130%	89	70-130%	2.3	<30
Carbonyl Sulfide	ND	0.20	115	70-130%	113	70-130%	1.7	<30
Methyl Mercaptan	ND	0.20	86	70-130%	84	70-130%	1.6	<30
Ethyl Mercaptan	ND	0.20	113	70-130%	111	70-130%	1.8	<30
Dimethyl Sulfide	ND	0.20	99	70-130%	97	70-130%	1.9	<30
Carbon Disulfide	ND	0.20	97	70-130%	94	70-130%	3.3	<30
Dimethyl Disulfide	ND	0.20	103	70-130%	104	70-130%	0.8	<30

ND = Not Detected (Below RL)

RL = Reporting Limit

Reviewed/Approved By:		Moll	1	Date:	2/25/16	
	Mark J. Johnson Operations Manager	000		1000E NOTES	<	

Kurz FM =	3,184	scfm		
Fleetzoom Total =	3,301	scfm	Δ=	3.5%

	PARAMETER	Outlet A	Outlet B
Date	Test Date		2/17/1
Time	Start - Finish	14:32	14:4
%CH₄	Methane, %	11.70	10.3
%CO ₂	Carbon Dioxide, %	38.30	36.4
%O ₂	Oxygen, %	7.60	8.3
%Balance	Assumed as Nitorgen, %	30.40	32.8
%H ₂	Hydrogen, %	11.20	10.6
%CO	Carbon Monoxide, %	0.110	0.1
P_{g}	Flue Gas Static Pressure, inches of H ₂ O	23.94	23.9
ts	Blower Outlet LFG Temperature, °F	82	
\mathbf{Q}_{sd}	Dry Volumetric Flow Rate, dry scfm (assumes 5%H2O)	3,025	
Q_s	Kurz FM, Standard Volumetric Flow Rate, scfm	3,184	
NHV	Net Heating Value, Btu/scf	156.7	152.5
LFG _{CH4}	Methane, lb/hr	884.3	778
Li OCH4	Methane, grains/dscf	34.11	30.
LFG _{CO2}	Carbon Dioxide, lb/hr	7,941.6	7,547
Li O _{CO2}	Carbon Dioxide, grains/dscf	306.32	291.
LFG ₀₂	Oxygen, lb/hr	1,145.8	1,251
LI G ₀₂	Oxygen, grains/dscf	44.20	48.
LFG _{N2}	Balance gas as Nitrogen, lb/hr	4,012.4	4,329
LI G _{N2}	Balance gas as Nitrogen, grains/dscf	154.77	166.
LFG _{H4}	Hydrogen, lb/hr	106.4	100
Li O _{H4}	Hydrogen, grains/dscf	4.10	3.
LFG _{co}	Carbon Monoxide, lb/hr	14.5	14
LI G _{CO}	Carbon Monoxide, grains/dscf	0.53	0.

		Outlet A	Outlet B
	Hydrogen Sulfide Concentration, ppmd	26.00	21
H ₂ S	Hydrogen Sulfide Rate, lb/hr	0.42	0
	Hydrogen Sulfide Rate, grains/dscf	0.016	0.0
	Carbonyl Sulfide Concentration, ppmd	0.56	0
cos	Carboynl Sulfide Rate, lb/hr	0.02	C
	Carbonyl Sulfide Rate, grains/dscf	0.001	0.0
	Methyl Mercaptan Concentration, ppmd	180.00	160
CH ₄ S	Methyl Mercaptan Rate, lb/hr	4.08	3
	Methyl Mercaptan Rate, grains/dscf	0.157	0.
	Ethyl Mercaptan Concentration, ppmd	2.50	2
C ₂ H ₆ S	Ethyl Mercaptan Rate, lb/hr	0.07	(
	Ethyl Mercaptan Rate, grains/dscf	0.003	0.
	Dimethyl Sulfide Concentration, ppmd	970.00	900
(CH ₃) ₂ S	Dimethyl Sulfide Rate, lb/hr	28.40	26
	Dimethyl Sulfide Rate, grains/dscf	1.095	1.
	Carbon Disulfide Concentration, ppmd	0.56	C
CS ₂	Carbon Disulfide Rate, lb/hr	0.02	(
	Carbon Disulfide Rate, grains/dscf	0.001	0.
	Dimethyl Disulfide Concentration, ppmd	66.00	75
$C_2H_6S_2$	Dimethyl Disulfide Rate, lb/hr	2.93	3
	Dimethyl Disulfide Rate, grains/dscf	0.113	0.
	TRS>SO2 Emission Concentration, ppmd	1,300.00	1,200
●E _{TRS-SO2}	TRS>SO2 Emission Rate, lb/hr	39.24	36
	TRS>SO2 Emission Rate, grains/dscf	1.514	1.3
	TPY =	171.87	158

February 25, 2016

Republic Services

ATTN: Jim Getting

Bridgeton, MO 63044

13570 St. Charles Rock Rd.

ADE-1461 EPA Methods TO3 TO14A, TO15 SIM & SCAN **ASTM D1946**

TX Cert T104704450-14-6 EPA Methods TO14A, TO15

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

LABORATORY TEST RESULTS

Project Reference: Bridgeton Landfill

Lab Number:

H021907-01/02

Enclosed are results for sample(s) received 2/19/16 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Complete reanalysis of both samples was conducted, per client's request.
- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the NELAC Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Jim Getting, Mike Lambrich, Ryan Ayers and David Randall, Weaver Consultants Group, on 2/24/16.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely.

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

Enclosures

					19501 E. C.	ala Ava Suita 120			CH	AIN (OF C	USTO	DY RE	CORD			
Air	TECI	HNOL	DGY			ale Ave., Suite 130 stry, CA 91748	TUR	NAROUN	D TIME		DE	LIVERA	BLES	PAGE:	1	OF	1
IAAAA	Labo	ratories, Inc.			Ph: 626-964 Fx: 626-964		Standard		48 hours			EDD		Condition	upon rece	ipt:	
POUC					FX. 020-904	-563Z	Same Day		72 hours						Sealed	Yes 🗌	No 🗌
Project No.:							24 hours		96 hours						Intact	Yes 🗌	No 🗌
Project Name:	Bridgeton I	_andfill					Other:		5 day			Level 4			Chilled		deg C
Report To:	Jim Getting	9						BILL	.ING				A	NALYSIS	REQUE	ST .	
Company:	Republic S	ervices					P.O. No.:	PO554	4106			46					
Street:	13570 St. 0	Charles Rock Rd.					Bill to: Republic Services										
City/State/Zip:	Bridgeton , MO 63044							Attn: Ji	m Gettin	ıg		& ASTM1946	n.				
Phone& Fax:	314-683-39	921					13570 St.	Charles	Rock I	Rd.		≪ ∞	BTU/SCF				
e-mail:	JGetting@	prepublicservice	es.com				Bridgeton,	MO 63	044			TRS	ΙΣ				
								7				+					
		Canis	ter Pressi	ures ("hg)		3 3	ч	NE NE	×	RVA-	5/16	194				
LAB USE	ONLY	Canister ID	Sample Start	Sample End	Lab Receive	SAMPLE IDENTIFICATION	SAMPLE	SAMPLE TIME	CONTAINER QTY/TYPE	MATRIX	PRESERVA- TION	EPA 15/16 - + H2+ CO	ASTM 1946,				
to2196	1-01	1619	-20.1	-3.5	-3	Outlet A	2/17/2016	1432	С	LFG	NA	х	Х				
, 1	-62	1536	-19.8	-3.5	-3	Outlet B	2/17/2016	1443	С	LFG	NA	Х	Х				
			j	1													
							Î										
						8											
AUTHORIZATION TO PE	RFORM WORK:	ave Penoyer				COMPANY: Republic Services	DATE/TIME:		СОММЕ	NTS							
SAMPLED BY: Ryan	Ayers					COMPANY: Republic Services	DATE/TIME										
RELINQUISHED BY	2. 1		2-	17-16	152-	DATE/RECEIVED BY	DATE/TIME										
RELINQUISHED BY	11000	geno N	d-	17-16	1530	DATE RECEIVED BY	PIG &	345									
RELINQUISHED BY	IVI	7				DATE/RECEIVED BY	DATE/TIME	4)									
METHOD OF TR	RANSPORT (c	ircle one): Walk-	In FedEx	UPS Co	urier ATLI	Other											

Page 2 of 5 H021907

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

02/19/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H0219	907-01	H0219	907-02			
Client Sample I.D.:	Out	let A	Out	let B			
Date/Time Sampled:	2/17/1	6 14:32	2/17/1	6 14:43			
Date/Time Analyzed:	2/19/10	6 17:24	2/19/10	6 17:38			
QC Batch No.:	160219	GC8A2	160219	GC8A2			9
Analyst Initials:	N	IJ	N	1J			
Dilution Factor:	2	.8	2	.8			
ANALYTE	Result % v/v	RL % v/v	Result % v/v	RL % v/v			
Hydrogen	11.2	2.8	10.6	2.8		ASSECTATION NO CONTRA	
Carbon Dioxide	38.3	0.028	36.4	0.028			
Oxygen/Argon	7.6	1.4	8.3	1.4			
Nitrogen	30.4	2.8	32.8	2.8			
Methane	11.3	0.0028	10.7	0.0028			
Carbon Monoxide	0.11	0.0028	0.11	0.0028			
Net Heating Value (BTU/ft3)	156.7	2.8	152.5	2.8			
Gross Heating Value (BTU/ft3)	177.8	2.8	172.8	2.8			
					<u> </u>	<u> </u>	

Results normalized including non-methane hydrocarbons

BTU values based on D1946 analysis and non-methane analysis assumed as propane

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

Date 2-24-16

Date: Z-Z4-16

QC Batch No.: 160219GC8A2

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method	Blank	I	CS	L	CSD		
Date/Time Analyzed:	2/19/16 17:09		2/19/1	16 16:19	2/19/	16 16:34		
Analyst Initials:	M	J	MJ			MJ		
Datafile:	19feb	036	196	eb033	191	eb034		and the second s
Dilution Factor:	1.	1.0 1.0 1.0		1.0				
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	109	70-130%	110	70-130%	0.4	<30
Carbon Dioxide	ND	0.010	102	70-130%	102	70-130%	0.4	<30
Oxygen/Argon	ND	0.50	101	70-130%	102	70-130%	0.5	<30
Nitrogen	ND	1.0	101	70-130%	102	70-130%	0.6	<30
Methane	ND	0.0010	99	70-130%	97	70-130%	2.4	<30
Carbon Monoxide	ND	0.0010	122	70-130%	120	70-130%	2.2	<30
	8							81

ND = Not Detected (Below RL)

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

02/19/16

Matrix:

Air

Reporting Units:

ppmv

EPA 15/16

Lab No.:	H02	190	07-01	H02	2190	07-02		
Client Sample I.D.:	Ot	utle	t A	0	utle	t B		16 to
Date/Time Sampled:	2/17/	16	14:32	2/17	/16	14:43		У.
Date/Time Analyzed:	2/22/	16	12:05	2/22	/16	13:06		
QC Batch No.:	16022	22G	C3A1	1602	22G	C3A1		
Analyst Initials:		AS			AS			
Dilution Factor:		2.8			2.8			
	Resul	t	RL	Resul	t	RL		
ANALYTE	ppmv	7	ppmv	ppm	V	ppmv		
Hydrogen Sulfide	26	d	5.6	21	d	5.6		
Carbonyl Sulfide	ND		0.56	ND		0.56		
Methyl Mercaptan	180	d	5.6	160	d	5.6		
Ethyl Mercaptan	2.5		0.56	2.0		0.56		
Dimethyl Sulfide	970	d	56.0	900	d	56.0		
Carbon Disulfide	ND		0.56	ND		0.56		
Dimethyl Disulfide	66	d	5.6	75	d	5.6		
Total Reduced Sulfur	1,300		0.56	1,200		0.56		
ND - Not Detected (heleny DI)							 	

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary dilution

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

AirTECHNOLOGY Laboratories, Inc.

Date 2-24-16

Page 4 of 5

H021907

Page 5 of 5 H021907

QC Batch No.:

160222GC3A1

Matrix: Units:

Air ppmv

QC for Sulfur Compounds by EPA 15/16

Lab No.:	Method I	Blank	l I	LCS	L	CSD		
Date/Time Analyzed:	2/22/16 1	2/22/16 11:48		16 11:23	2/22/	16 11:35		
Analyst Initials:	AS			AS		AS		
Datafile:	22feb0	05	22	feb003	22	feb004		Manager to Asset to Company
Dilution Factor:	1.0			1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen Sulfide	ND	0.20	89	70-130%	89	70-130%	0.6	<30
Carbonyl Sulfide	ND	0.20	108	70-130%	109	70-130%	0.4	<30
Methyl Mercaptan	ND	0.20	83	70-130%	85	70-130%	1.5	<30
Ethyl Mercaptan	ND	0.20	107	70-130%	108	70-130%	0.8	<30
Dimethyl Sulfide	ND	0.20	94	70-130%	92	70-130%	1.9	<30
Carbon Disulfide	ND	0.20	93	70-130%	91	70-130%	2.5	<30
Dimethyl Disulfide	ND	0.20	101	70-130%	100	70-130%	1.4	<30

ND = Not Detected (Below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark J. Johnson Operations Manager Date: 2-24-16

 $\Delta = 0.1\%$ Outlet A sample results void from the evaluation due to apparent ambient intrusion of the sample

	PARAMETER	Outlet A	Outlet B
Date	Test Date		2/11/16
Time	Start - Finish		16:30
%CH ₄	Methane, %		9.65
%CO ₂	Carbon Dioxide, %		33.95
%O ₂	Oxygen, %		9.30
%Balance	Assumed as Nitorgen, %		36.45
%H ₂	Hydrogen, %		9.95
%CO	Carbon Monoxide, %		0.095
P_{g}	Flue Gas Static Pressure, inches of H ₂ O		23.80
t _s	Blower Outlet LFG Temperature, °F		77
\mathbf{Q}_{sd}	Dry Volumetric Flow Rate, dry scfm (assumes 5%H2O)	2,852	2
$\mathbf{Q_s}$	Kurz FM, Standard Volumetric Flow Rate, scfm	3,002	<u> </u>
NHV	Net Heating Value, Btu/scf		128.8
LFG _{CH4}	Methane, lb/hr	0.0	687.8
LI OCH4	Methane, grains/dscf	0.00	28.13
LFG _{CO2}	Carbon Dioxide, lb/hr	0.0	6,638.5
Li 0002	Carbon Dioxide, grains/dscf	0.00	271.53
LFG ₀₂	Oxygen, lb/hr	0.0	1,322.2
Li 0 ₀₂	Oxygen, grains/dscf	0.00	54.08
LFG _{N2}	Balance gas as Nitrogen, lb/hr	0.0	4,536.8
Li O _{N2}	Balance gas as Nitrogen, grains/dscf	0.00	185.57
LFG _{H4}	Hydrogen, lb/hr	0.0	89.1
Li OH4	Hydrogen, grains/dscf	0.00	3.65
LFG _{co}	Carbon Monoxide, lb/hr	0.0	11.8
	Carbon Monoxide, grains/dscf	0.00	0.46

		Outlet A	Outlet B
	Hydrogen Sulfide Concentration, ppmd		36.00
H ₂ S	Hydrogen Sulfide Rate, lb/hr	0.00	0.55
	Hydrogen Sulfide Rate, grains/dscf	0.000	0.022
	Carbonyl Sulfide Concentration, ppmd		0.60
cos	Carboynl Sulfide Rate, lb/hr	0.00	0.02
	Carbonyl Sulfide Rate, grains/dscf	0.000	0.001
	Methyl Mercaptan Concentration, ppmd		150.00
CH₄S	Methyl Mercaptan Rate, lb/hr	0.00	3.21
	Methyl Mercaptan Rate, grains/dscf	0.000	0.131
	Ethyl Mercaptan Concentration, ppmd		2.20
C₂H ₆ S	Ethyl Mercaptan Rate, lb/hr	0.00	0.06
	Ethyl Mercaptan Rate, grains/dscf	0.000	0.002
	Dimethyl Sulfide Concentration, ppmd		725.00
(CH ₃) ₂ S	Dimethyl Sulfide Rate, lb/hr	0.00	20.01
	Dimethyl Sulfide Rate, grains/dscf	0.000	0.819
	Carbon Disulfide Concentration, ppmd		0.60
CS ₂	Carbon Disulfide Rate, lb/hr	0.00	0.02
	Carbon Disulfide Rate, grains/dscf	0.000	0.001
	Dimethyl Disulfide Concentration, ppmd		45.00
$C_2H_6S_2$	Dimethyl Disulfide Rate, lb/hr	0.00	1.88
	Dimethyl Disulfide Rate, grains/dscf	0.000	0.077
	TRS>SO2 Emission Concentration, ppmd		1,000.00
●E _{TRS-SO2}	TRS>SO2 Emission Rate, lb/hr	0.00	28.46
	TRS>SO2 Emission Rate, grains/dscf	0.000	1.164
	TP	Y = 0.00	124.67
TRS assumed moeld	cular mass = SO2, 64.06 gram/mole, I.e. 1 TRS in LFG assumed to = 1	SO2 emitted from the stack	

February 19, 2016

Republic Services

ADE-1461 EPA Methods TO3, TO14A, TO15 SIM & SCAN

TX Cert T104704450-14-6 EPA Methods TO14A, TO15

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

ATTN: Jim Getting 13570 St. Charles Rock Rd. Bridgeton, MO 63044

LABORATORY TEST RESULTS

Project Reference: Bridgeton Landfill

Lab Number:

H021201-01/02

Enclosed are results for sample(s) received 2/12/16 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Complete reanalysis of both samples was conducted, per client's request.
- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the NELAC Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Jim Getting, Mike Lambrich, Ryan Ayers and David Randall, Weaver Consultants Group, on 2/12/16 (TRS only), 2/15/16 and 2/16/16.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

Enclosures

H 621201-01/02

					40F04 F O	ala Arra Crita 100			CH	AIN (OF C	USTO	DY RE	CORD			
Air	TECI	HNOL	OGY			ale Ave., Suite 130 stry, CA 91748	TUR	NAROUN				LIVERA		PAGE:	1	OF	1
I A A A	Labo	ratories, Inc.			Ph: 626-964		Standard		48 hours					Condition	upon rece		
PLOCK				-	Fx: 626-964	-5832	Same Day		72 hours						Sealed	Yes 🗌	No 🗌
Project No.:							24 hours		96 hours						Intact	Yes	No 🗌
Project Name:	Bridgeton L	andfill					Other: 5 day Level 4							Chilled		deg C	
Report To:	Jim Getting	3						BILL	ING				A	NALYSIS	REQUE	ST	
Company:	Republic S	ervices					P.O. No.: PO5544106 9										
Street:	13570 St. 0	Charles Rock Ro	I.				Bill to: Republic Services										
City/State/Zip:	Bridgeton , MO 63044							Attn: Jii	m Gettin	ıg		& ASTM1946	n.				
Phone& Fax:	314-683-39	314-683-3921							Rock I	Rd.		Ø Ø	BTU/SCF				
e-mail:	JGetting@	grepublicservic	es.com				Bridgeton,	MO 63	044			+ TRS) Į				
								·			-	+	, E				
		Cani	ster Press	ures ("hg)		ā m	当	NER (PE	×	-KA-	5/16	194				
LAB USE	ONLY	Canister ID	Sample Start	Sample End	Lab Receive	SAMPLE IDENTIFICATION	SAMPLE	SAMPLE	CONTAINER QTY/TYPE	MATRIX	PRESERVA- TION	EPA 15/16 + + H2+ CO	ASTM 1946,				
402120	1-01	J1719	-18.6	-3.5	-1.0	Outlet A	2/11/2016	1621	С	LFG	1	Х	Х				
	-2	1535	-20.3	-3.5	-1.0	Outlet B	2/11/2016	1630	С	LFG	NA	Х	х				
从 线点高速																	
10-11						,											
							1										
		B				COMPANY: Republic Services	DATE/TIME:		СОММЕ	NTC							
AUTHORIZATION TO PE	100000000000000000000000000000000000000	ave Penoyer							COMINE	ENIS							
SAMPLED BY: Ryan	Ayers					COMPANY: Republic Services	DATE/TIME										
RELINQUISHED BY	A.	yeu)	2-	-11-16	1700	DATE/RECEIVED BY	DATE/TIME										
RELINQUISHED BY	THON G	7	2/1	2/16	0885	DATE/ RECEIVED BY	212/16 O	五	1								
RELINQUISHED BY	1 CINON			16	~~~	DATE/RECEIVED BY	DATE/TIME										
METHOD OF TR	RANSPORT (c	ircle one): Walk	-In FedEx	UPS Co	urier ATLI	Other											

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

02/12/16

Matrix:

Air

Reporting Units: % v/v

Outlet A results void from the evaluation due to apparent ambient intrusion of the sample.

ASTM D1946

*	

Page 2 of 7

H021201

Lab No.:	H0212	201-01	H0212	01-01R	H0212	201-02	H0212	01-02R	
Client Sample I.D.:	Out	Outlet A		let A	Out	let B	Outlet B		
Date/Time Sampled:	2/11/1	6 16:21	2/11/1	6 16:21	2/11/10	6 16:30	2/11/10	6 16:30	
Date/Time Analyzed:	2/12/1	6 13:57	2/16/1	6 8:27	2/12/10	6 14:12	2/16/1	6 8:42	
QC Batch No.:	160212	GC8A1	160216	GC8A2	160212	GC8A1	160216	GC8A2	
Analyst Initials:	A	S	A	is	A	S	A	S	
Dilution Factor:	2	.5	2	.5	2	.5	2	.5	
ANALYTE	Result % v/v	RL % v/v							
Hydrogen	8.2	2.5	8.1	2.5	10.0	2.5	9.9	2.5	
Carbon Dioxide	28.2	0.025	28.1	0.025	34.0	0.025	33.9	0.025	
Oxygen/Argon	11.4	1.3	11.5	1.3	9.3	1.3	9.3	1.3	
Nitrogen	43.7	2.5	43.8	2.5	36.4	2.5	36.5	2.5	
Methane	8.1	0.0025	8.0	0.0025	9.7	0.0025	9.6	0.0025	
Carbon Monoxide	0.075	0.0025	0.076	0.0025	0.091	0.0025	0.090	0.0025	
Net Heating Value (BTU/ft3)	104.2	2.5	104.4	2.5	128.9	2.5	128.6		
Gross Heating Value (BTU/ft3)	118.6	2.5	118.8	2.5	146.6	2.5	146.3	2.5	

Results normalized including non-methane hydrocarbons

BTU values based on D1946 analysis and non-methane analysis assumed as propane

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:		Date	
	Mark Johnson		
	Operations Manager		

Date: Z-15-16

QC Batch No.: 160212GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method Blank		LCS		LCSD			
Date/Time Analyzed:	2/12/16 10:50		2/12/1	16 10:06	2/12/	2/12/16 10:21		
Analyst Initials:	A	S		AS	F-	AS		
Datafile:	12fel	800	12f	12feb005		12feb006		
Dilution Factor:	1.	0		1.0 1.0				
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	107	70-130%	108	70-130%	0.6	<30
Carbon Dioxide	ND	0.010	99	70-130%	100	70-130%	8.0	<30
Oxygen/Argon	ND	0.50	100	70-130%	100	70-130%	0.3	<30
Nitrogen	ND	1.0	100	70-130%	101	70-130%	0.2	<30
Methane	ND	0.0010	101	70-130%	100	70-130%	0.7	<30
Carbon Monoxide	ND	0.0010	107	70-130%	107	70-130%	0.1	<30

ND = Not Detected (Below RL)

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

The cover letter is an integral part of this analytical report.

Lul

AirTECHNOLOGY Laboratories, Inc. -

QC Batch No.:

160216GC3A1

Matrix: Units:

Air

ppmv

QC for Sulfur Compounds by EPA 15/16

Lab No.:	Method Blank		LCS		LCSD			
Date/Time Analyzed:	2/16/16 9:03		2/16/16 8:38		2/16/16 8:50			
Analyst Initials:	AS		191	AS		AS		
Datafile:	16feb0	16feb003		16feb001		16feb002		
Dilution Factor:	1.0			1.0	1.0			
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen Sulfide	ND	0.20	74	70-130%	73	70-130%	2.0	<30
Carbonyl Sulfide	ND	0.20	96	70-130%	95	70-130%	0.4	<30
Methyl Mercaptan	ND	0.20	76	70-130%	76	70-130%	0.8	<30
Ethyl Mercaptan	ND	0.20	79	70-130%	79	70-130%	0.6	<30
Dimethyl Sulfide	ND	0.20	90	70-130%	90	70-130%	0.7	<30
Carbon Disulfide	ND	0.20	86	70-130%	85	70-130%	1.0	<30
Dimethyl Disulfide	ND	0.20	101	70-130%	101	70-130%	0.4	<30

ND = Not Detected (Below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

Date: 2-16-16

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

02/12/16

Matrix:

Air

Reporting Units: ppmv

Outlet A results void from the evaluation due to apparent ambient intrusion of the

Page 5 of 7

H021201

sample.

EPA 15/16

Lab No.:	H02	2120	1-01	H021	20	1-01R	H02	2120	01-02	H021	1201	1-02R
Client Sample I.D.:	Outlet A		Ou	Outlet A			Outlet B			Outlet B		
Date/Time Sampled:	2/11/	/16 1	16:21	2/11/	16	16:21	2/11	/16	16:30	2/11/	16	16:30
Date/Time Analyzed:	2/12/	/16 1	12:20	2/16/	16	11:55	2/12	/16	13:24	2/16/	16	12:07
QC Batch No.:	1602	12G	C3A1	16021	6G	C3A1	1602	120	C3A1	1602	16G	C3A1
Analyst Initials:		AS			AS			AS	3		AS	
Dilution Factor:	2.5				3.4	<i>i</i> 0.	2.5		5	3.4		98
2 43	Resul	t	RL	Result		RL	Resu	lt	RL	Resul	t	RL
ANALYTE	ppmy	v	ppmv	ppmv		ppmv	ppm	V	ppmv	ppmv	7	ppmv
Hydrogen Sulfide	30	d	5.1	25	d	6.8	39	d	5.1	33	d	6.8
Carbonyl Sulfide	ND		0.51	ND		0.68	ND		0.51	ND		0.68
Methyl Mercaptan	120	d	5.1	110	d	6.8	160	. d	5.1	140	d	6.8
Ethyl Mercaptan	1.6		0.51	1.5		0.68	2.3		0.51	2.1		0.68
Dimethyl Sulfide	580	d	51.0	560	d	68.0	720	d	51.0	730	d	68.0
Carbon Disulfide	ND		0.51	ND		0.68	ND		0.51	ND		0.68
Dimethyl Disulfide	23		0.51	25		0.68	43	d	5.1	48	d	*10
Total Reduced Sulfur	780		0.51	750		0.68	1,000		0.51	1,000		0.68

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary dilution

Reviewed/Approved By:		Date
8.	Mark Johnson	
	Operations Manager	

QC Batch No.:

160212GC3A1

Matrix: Units:

Air

ppmv

QC for Sulfur Compounds by EPA 15/16

Method Blank		1	LCS		LCSD		
2/12/16 9:13		2/12/16 8:48		2/12/16 9:00			
AS			AS		AS		
12feb003		12	12feb001		feb002		
1.0			1.0	1.0			
Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
ND	0.20	87	70-130%	88	70-130%	1.1	<30
ND	0.20	107	70-130%	106	70-130%	1.1	<30
ND	0.20	86	70-130%	86	70-130%	0.2	<30
ND	0.20	85	70-130%	85	70-130%	0.1	<30
ND	0.20	96	70-130%	96	70-130%	0.5	<30
ND	0.20	98	70-130%	98	70-130%	0.5	<30
ND	0.20	105	70-130%	104	70-130%	0.8	<30
	AS 12feb00 1.0 Results ND	AS 12feb003 1.0 Results RL ND 0.20 ND 0.20	AS 12feb003 12 1.0 Results RL % Rec. ND 0.20 87 ND 0.20 107 ND 0.20 86 ND 0.20 85 ND 0.20 96 ND 0.20 98	AS AS 12feb003 12feb001 1.0 1.0 Results RL % Rec. Criteria ND 0.20 87 70-130% ND 0.20 107 70-130% ND 0.20 86 70-130% ND 0.20 85 70-130% ND 0.20 96 70-130% ND 0.20 98 70-130%	AS AS 12feb003 12feb001 12f 1.0 1.0 Results RL % Rec. Criteria % Rec. ND 0.20 87 70-130% 88 ND 0.20 107 70-130% 106 ND 0.20 86 70-130% 86 ND 0.20 85 70-130% 85 ND 0.20 96 70-130% 96 ND 0.20 98 70-130% 98	AS AS 12feb003 12feb001 12feb002 1.0 1.0 1.0 1.0 Results RL % Rec. Criteria % Rec. Criteria ND 0.20 87 70-130% 88 70-130% ND 0.20 107 70-130% 106 70-130% ND 0.20 86 70-130% 86 70-130% ND 0.20 85 70-130% 85 70-130% ND 0.20 96 70-130% 96 70-130% ND 0.20 98 70-130% 98 70-130%	AS AS 12feb003 12feb001 12feb002 1.0 1.0 1.0 Results RL % Rec. Criteria % Rec. Criteria %RPD ND 0.20 87 70-130% 88 70-130% 1.1 ND 0.20 107 70-130% 106 70-130% 1.1 ND 0.20 86 70-130% 86 70-130% 0.2 ND 0.20 85 70-130% 85 70-130% 0.1 ND 0.20 96 70-130% 96 70-130% 0.5 ND 0.20 98 70-130% 98 70-130% 0.5

ND = Not Detected (Below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark J. Johnson **Operations Manager**

Date: 2-12-16

QC Batch No.: 160215GC8A2

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method Blank		LCS		LCSD			
Date/Time Analyzed:	2/15/16 18:54		2/15/1	16 18:10	2/15/16 18:25			
Analyst Initials:	М	J	1	MJ	MJ			
Datafile:	15fel	042	15feb039		15feb040			
Dilution Factor:	1.	0	74 S	1.0	1.0			
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	116	70-130%	116	70-130%	0.0	<30
Carbon Dioxide	ND	0.010	103	70-130%	103	70-130%	0.4	<30
Oxygen/Argon	ND	0.50	99	70-130%	99	70-130%	0.1	<30
Nitrogen	ND	1.0	100	70-130%	100	70-130%	0.1	<30
Methane	ND	0.0010	89	70-130%	88	70-130%	1.1	<30
Carbon Monoxide	ND	0.0010	107	70-130%	104	70-130%	2.3	<30

ND = Not Detected (Below RL)

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

The cover letter is an integral part of this analytical report.

LLL

AirTECHNOLOGY Laboratories, Inc.

	PARAMETER	Blower Out
Date	Test Date	2/2/16
Start	Run Start Time	9:08
	Run Finish Time	11:05
	Net Traversing Points	16 (2 x 8)
Θ	Net Run Time, minutes	1:56:20
$\mathbf{C}_{\mathbf{p}}$	Pitot Tube Coeficient	0.99
P_{Br}	Barometric Pressure, inches of Mercury	29.08
% H₂O	Moisture Content of LFG, %	1.34
% RH	Relative Humidity, %	47.90
M_{fd}	Dry Mole Fraction	0.987
%CH₄	Methane, %	12.30
%CO ₂	Carbon Dioxide, %	39.20
%O ₂	Oxygen, %	8.40
%Balance	Assumed as Nitorgen, %	29.30
%H ₂	Hydrogen, %	10.70
%CO	Carbon Monoxide, %	0.10
M _d	Dry Molecular Weight, lb/lb-Mole	30.36
Ms	Wet Molecular weight, lb/lb-Mole	30.20
P_{g}	Flue Gas Static Pressure, inches of H ₂ O	30.22
P _s	Absolute Flue Gas Pressure, inches of Mercury	31.30
t _s	Average Stack Gas Temperature, °F	75
ΔP_{avg}	Average Velocity Head, inches of H ₂ O	0.269
v _s	Average LFG Velocity, feet/second	33.03
A _s	Stack Crossectional Area, square feet	1.35
\mathbf{Q}_{sd}	Dry Volumetric Flow Rate, dry scfm	2,730
Q_s	Standard Volumetric Flow Rate, scfm	2,767
Q_{aw}	Actual Wet Volumetric Flue Gas Flow Rate, acfm	2,682
Q _{lb/hr}	Dry Air Flow Rate at Standard Conditions, lb/hr	12,908
NHV	Net Heating Value, Btu/scf	158
LFG _{CH4}	Methane, lb/hr	839.1
CH4	Methane, grains/dscf	35.86
LFG _{CO2}	Carbon Dioxide, lb/hr Carbon Dioxide, grains/dscf	7,336.1 313.52
150	Oxygen, lb/hr	1143.0
LFG ₀₂	Oxygen, grains/dscf	48.85
LFG _{N2}	Balance gas as Nitrogen, lb/hr	3,490.3
	Balance gas as Nitrogen, grains/dscf	149.17
LFG _{H4}	Hydrogen, lb/hr Hydrogen, grains/dscf	91.7 3.92
LEC	Carbon Monoxide, lb/hr	11.9
LFG _{co}	Carbon Monoxide, grains/dscf	0.51

		Blower Out Sample #1	Blower Out Sample #2
	Hydrogen Sulfide Concentration, ppmd	48.00	43.
H ₂ S	Hydrogen Sulfide Rate, lb/hr	0.70	0.
	Hydrogen Sulfide Rate, grains/dscf	0.030	0.0
	Carbonyl Sulfide Concentration, ppmd	0.63	0.
cos	Carboynl Sulfide Rate, lb/hr	0.02	0.
	Carbonyl Sulfide Rate, grains/dscf	0.001	0.0
	Methyl Mercaptan Concentration, ppmd	180.00	150.
CH ₄ S	Methyl Mercaptan Rate, lb/hr	3.68	3.
	Methyl Mercaptan Rate, grains/dscf	0.157	0.1
	Ethyl Mercaptan Concentration, ppmd	2.50	2.
C₂H ₆ S	Ethyl Mercaptan Rate, lb/hr	0.07	0.
	Ethyl Mercaptan Rate, grains/dscf	0.003	0.0
	Dimethyl Sulfide Concentration, ppmd	880.00	810.
(CH ₃) ₂ S	Dimethyl Sulfide Rate, lb/hr	23.25	21.
	Dimethyl Sulfide Rate, grains/dscf	0.994	0.9
	Carbon Disulfide Concentration, ppmd	0.63	0.
CS ₂	Carbon Disulfide Rate, lb/hr	0.02	0.
	Carbon Disulfide Rate, grains/dscf	0.001	0.0
	Dimethyl Disulfide Concentration, ppmd	67.00	64.
$C_2H_6S_2$	Dimethyl Disulfide Rate, lb/hr	2.68	2.
	Dimethyl Disulfide Rate, grains/dscf	0.115	0.0
	TRS>SO2 Emission Concentration, ppmd	1,200.00	1,100.
●E _{TRS-SO2}	TRS>SO2 Emission Rate, lb/hr	32.69	29.
	TRS>SO2 Emission Rate, grains/dscf	1.397	1.2

Tuesday, February 02, 2016

LOCATION	TIME	F	FLOW -SCFM		Method 2	Method 2 vs
		Method 2	FleetZoom	Kurz FM	Fleetzoom	Kurz
BLOWER OUT	9:08	2,767	3,259	2,904	-17.8%	-5.0%

February 10, 2016

Republic Services

ATTN: Jim Getting

Bridgeton, MO 63044

13570 St. Charles Rock Rd.

ADE-1461 EPA Methods TO3. TO14A, TO15 SIM & SCAN ASTM D1946

TX Cert T104704450-14-6 EPA Methods TO14A, TO15

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

LABORATORY TEST RESULTS

Project Reference: Bridgeton Landfill

Lab Number:

H020311-01/03

Enclosed are results for sample(s) received 2/03/16 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the NELAC Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Jim Getting, Mike Lambrich, Ryan Ayers, Nicholas Bauer and David Randall, Weaver Consultants Group, on 2/05/16 (ASTM D1946) and 2/09/16 (EPA 15/16).

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely.

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

Enclosures

					18501 F. G	ale Ave., Suite 130			СН	AIN (OF C	USTO	DY RE	CORD			
AIT	CORS RETURNED HOUSENING	HOL	UGY		City of Indus	stry, CA 91748	TUR	NAROUN	D TIME		Di	ELIVERA		PAGE:	1	OF	1
	Labor	atories, Inc.			Ph: 626-964 Fx: 626-964		Standard		48 hours					Condition	upon rece	aipt:	
				-	1 70 020 001	. V4V4	Same Day		72 hours							d Ves 🔲	No 🗌
Project No.:		No.					24 hours		96 hours			Level 3			Intac	t Yes 🗌	No _
Project Name:	Bridgeton L						Other:		5 day		<u> </u>	Level 4		1	Chilled		deg C
Report To:	Jim Getting				пределинения принципальный при	приорантичного противности по при			ING				Ā	NALYSIS	REQUE	EST	
Company:	Republic So	li industriali in a constanti de la constanti d				0	P.O. No.:	PO486	2452 5			46					
Street:	13570 St. C	harles Rock R					Bill to:	Repub	lic Servi	ces	248/11	M139			=		
City/State/Zip:	Bridgeton,					No.		Attn: Ji	m Gettir	ng		ASTM1946	1 11	4	D. Randal		
Phone& Fax:	314-683-39	and w		un and a second	······································		13570 St.	Charles	Rock	Rd.		හි	SCI	700			
e-mail:	JGetting@	republicservic)	ces.com	***************************************	***************************************		Bridgeton	MO 63	044	***************************************		+TRS	BTU/SCF		. je	•	
LAB USE	ONLY	Cani Canister ID	ster Press	ures ("hg Sample End) Lab Receive	SAMPLE IDENTIFICATION	SAMPLE	SAMPLE	CONTAINER	MATRIX	PRESERVA- TION	EPA 15/16 + + H2+ CO	ASTM 1946,	ASTM D5504			
40200	31(-4)	5960	-19.4	-3.96	-5	Blower Outlet 1	2/2/2016	931	C	LFG	NA	X X	X	X			
	-02	4431	-19.61	-3.95	-2	Blower Outlet 2	2/2/2016	1026	C	LFG	NA	X	X	17			
	43	5958	-20.97	-3,96	-4	LFG CSU EP14	2/2/2016	811	С	LFG		X	X	T			
					-					Sine Silvery	-55						
					<u></u>	A control of the cont											
		1	_		ļ					1,							i .
PRESTA DE PROPERT		***************************************			<u> </u>			_	ļ						ļ		
	100 (100 A) (100 A) 100 (100 A) (100 A)				 			ļ	ļ	ļ		_	ļ		 		·
Buch sixing	(6 co shubbel			<u> </u>	L		1	<u> </u>			L			<u></u>			
AUTHORIZATION TO P		ave Penoyer				COMPANY: Republic Services	DATE/TIME:		COMM	NTS				Dannous Research		mananananananananananananananananananan	*************************************
SAMPLED BY: Ryan	Ayers	4		Marin mananananana	инимини ния и политиона (и по	COMPANY: Republic Services	OATE/TIME										
1	2-1	400		2-3	-16 160	DATE/RECEIVED BY FELLEX	DATE/TIME										
RELINQUISHED BY	***************************************	0		*	136 7	DATE RECEIVED BY	PATE/TIME	5705									
						DATE RECEIVED BY	DATE/TIME						_*				
METHOD OF TO	RANSPORT (c	rcle one): Wal	k-In FedEx	UPS Co	urier ATLI	Other											

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

02/03/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H0203	311-01	H0203	311-02	H0203	311-03	
Client Sample I.D.:	Blower	Outlet 1	Blower	Outlet 2	LFG CS	SU EP14	
Date/Time Sampled:	2/2/10	6 9:31	2/2/16	10:26	2/2/10	8:11	
Date/Time Analyzed:	2/4/16	12:43	2/4/16	12:58	2/4/16	13:12	
QC Batch No.:	160204	GC8A1	160204	GC8A1	160204	GC8A1	
Analyst Initials:	A	S	A	S	A	S	
Dilution Factor:	3	.2	2	.7	3	.0	
ANALYTE	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v	
Hydrogen	10.8	3.2	10.9	2.7	11	3.0	
Carbon Dioxide	37.3	0.032	38.0	0.027	33	0.030	
Oxygen/Argon	7.9	1.6	7.7	1.3	9.3	1.5	
Nitrogen	31.3	3.2	30.6	2.7	38	3.0	
Methane	11.7	0.0032	11.8	0.0027	7.3	0.0030	
Carbon Monoxide	0.10	0.0032	0.11	0.0027	0.083	0.0030	
Net Heating Value (BTU/ft3)	157.8	3.2	157.6	2.7	119	3.0	
Gross Heating Value (BTU/ft3)	178.9	3.2	178.6	2.7	136	3.0	

Results normalized including non-methane hydrocarbons

BTU values based on D1946 analysis and non-methane analysis assumed as propane

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date _ Z-5-16

Page 2 of 5

H020311

QC Batch No.: 160204GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method	Blank	L	CS	L	CSD		
Date/Time Analyzed:	2/4/16	10:45	2/4/1	6 10:00	2/4/1	6 10:15		4
Analyst Initials:	A	S		AS		AS		
Datafile:	04feb	010	04f	eb007	041	feb008	ā	đ
Dilution Factor:	1.	0	=	1.0		1.0		- X6
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	112	70-130%	111	70-130%	0.0	<30
Carbon Dioxide	ND	0.010	100	70-130%	99	70-130%	0.8	<30
Oxygen/Argon	ND	0.50	100	70-130%	99	70-130%	0.8	<30
Nitrogen	ND	1.0	100	70-130%	100	70-130%	0.6	<30
Methane	ND	0.0010	93	70-130%	93	70-130%	0.9	<30
Carbon Monoxide	ND	0.0010	112	70-130%	111	70-130%	0.6	<30
				W.			Name of the second	

ND = Not Detected (Below RL)

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

The cover letter is an integral part of this analytical report.

Page 4 of 5 H020311

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

02/03/16

Matrix:

Air

Reporting Units: ppmv

EPA 15/16

Lab No.:	H0203	11-01	H0203	11-02	H0203	11-03		
Client Sample I.D.:	Blower (Outlet 1	Blower (Outlet 2	LFG CS	U EP14		
Date/Time Sampled:	2/2/16	9:31	2/2/16	10:26	2/2/16	8:11		-
Date/Time Analyzed:	2/8/16	16:02	2/8/16	17:38	2/9/16	8:20		
QC Batch No.:	1602080	GC3A1	1602080	GC3A1	1602080	GC3A1		
. Analyst Initials:	A	5	A	S	AS	S		
Dilution Factor:	3.2	2	2.	7	3.0			
	Result	RL	Result	RL	Result	RL		
ANALYTE	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	=	
Hydrogen Sulfide	48 d	6.3	43 d	5.3	13	0.59		
Carbonyl Sulfide	ND -	0.63	ND	0.53	ND	0.59		
Methyl Mercaptan	180 d	6.3	150 d	5.3	150 d	5.9		
Ethyl Mercaptan	2.5	0.63	2.4	0.53	1.6	0.59		
Dimethyl Sulfide	880 d	63.0	810 d	53.0	980 d	59.0		
Carbon Disulfide	ND	0.63	ND	0.53	ND	0.59		
Dimethyl Disulfide	67 d	6.3	64 d	5.3	89 d	5.9		
Total Reduced Sulfur	1,200	0.63	1,100	0.53	1,300	0.59		

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary dilution

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

QC Batch No.:

160208GC3A1

Matrix: Units:

Air

ppmv

QC for Sulfur Compounds by EPA 15/16

Lab No.:	Method 1	Blank]	LCS	L	CSD		
Date/Time Analyzed:	2/8/16 1	3:51	2/8/1	2/8/16 13:23		16 13:38		
Analyst Initials:	AS	AS		AS		AS		
Datafile:	08feb0	08	08	feb006	08feb007 1.0			
Dilution Factor:	1.0			1.0				
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen Sulfide	ND	0.20	94	70-130%	95	70-130%	0.3	<30
Carbonyl Sulfide	ND .	0.20	110	70-130%	109	70-130%	0.6	<30
Methyl Mercaptan	ND	0.20	90	70-130%	89	70-130%	0.3	<30
Ethyl Mercaptan	ND	0.20	90	70-130%	87	70-130%	3.0	<30
Dimethyl Sulfide	ND	0.20	100	70-130%	101	70-130%	1.2	<30
Carbon Disulfide	ND	0.20	104	70-130%	103	70-130%	1.2	<30
Dimethyl Disulfide	ND	0.20	108	70-130%	108	70-130%	0.5	<30

ND = Not Detected (Below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

Date: 2-9-16

The cover letter is an integral part of this analytical report.

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270 www.alsglobal.com

LABORATORY REPORT

February 5, 2016

David Randall Weaver Consultants Group 6301 East HWY AB Columbia. MO 65201

RE: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

Dear David:

Enclosed are the results of the samples submitted to our laboratory on February 3, 2016. For your reference, these analyses have been assigned our service request number P1600503.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

Vamantha Deningsen

By Samantha Henningsen at 2:16 pm, Feb 05, 2016

Samantha Henningsen Project Manager

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270

www.alsglobal.com

Client: Weaver Consultants Group Service Request No: P1600503

Project: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

CASE NARRATIVE

The samples were received intact under chain of custody on February 3, 2016 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

BTU and CHONS Analysis

The results for BTU and CHONS were generated according to ASTM D 3588-98. The following analyses were performed and used to calculate the BTU and CHONS results. This method is not included on the laboratory's NELAP, DoD-ELAP, or AIHA-LAP scope of accreditation.

C2 through C6 Hydrocarbon Analysis

The samples were analyzed according to modified EPA Method TO-3 for C2 through >C6 hydrocarbons using a gas chromatograph equipped with a flame ionization detector (FID). This method is included on the laboratory's DoD-ELAP scope of accreditation, however it is not part of the NELAP or AIHA-LAP accreditation.

Fixed Gases Analysis

The samples were also analyzed for fixed gases (hydrogen, oxygen/argon, nitrogen, carbon monoxide, methane and carbon dioxide) according to modified EPA Method 3C (single injection) using a gas chromatograph equipped with a thermal conductivity detector (TCD). This method is included on the laboratory's DoD-ELAP scope of accreditation, however it is not part of the NELAP or AIHA-LAP accreditation.

Sulfur Analysis

The samples were analyzed for twenty sulfur compounds per ASTM D 5504-12 using a gas chromatograph equipped with a sulfur chemiluminescence detector (SCD). All compounds with the exception of hydrogen sulfide and carbonyl sulfide are quantitated against the initial calibration curve for methyl mercaptan. This method is included on the laboratory's NELAP scope of accreditation, however it is not part of the DoD-ELAP or AIHA-LAP accreditation.

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270

www.alsglobal.com

Client: Weaver Consultants Group Service Request No: P1600503

Project: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

The analysis of Blower Out-Bag 5 Cal and Blower Out-Tedlar were performed past the holding time. The results have been flagged accordingly.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161

F: +1 805 526 7270 www.alsglobal.com

ALS Environmental - Simi Valley

CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

		1
Agency	Web Site	Number
AIHA	http://www.aihaaccreditedlabs.org	101661
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0694
DoD ELAP	http://www.pjlabs.com/search-accredited-labs	L15-398
Florida DOH (NELAP)	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E871020
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/labcert.htm	2014025
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	977273
New Jersey DEP (NELAP)	http://www.nj.gov/dep/oga/	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oregon PHD (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	4068-001
Pennsylvania DEP	http://www.depweb.state.pa.us/labs	68-03307 (Registration)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704413- 15-6
Utah DOH (NELAP)	http://www.health.utah.gov/lab/labimp/certification/index.html	CA01627201 5-5
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at www.alsglobal.com, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

DETAIL SUMMARY REPORT

Client:	Weaver Consult	tants Grou	ıp					Service Req	uest:	P160	0050	3			
Project ID:	Bridgeton LF M	Ionthly Pe	rmit Flare L	FG Testing-S	SPL / 0120-1	31-10-0	53								
·	-	•							Can	Can	Can	Can	Can	g	Bag
Date Received:	2/3/2016								Ϋ́	Fxd Gases Can			ır C	+ Bag	
Time Received:	09:45								-92	g g	Gases	H2S	Sulfur	C1C6+	Gases
									CI	1	xd C	- 1	1	C1	yd C
									- p	-90(2006)	- FX	4-01	⊦ 12	ģ.	- FX
									lifie	2)06-	ę	5504	5504-12	lifie	eg
									Modified	1946	Modified	Д		Modified	Modified
			Date	Time	Container	Pi1	Pf1		5	ASTM D1946		ASTM	STM D	6	Mo
Client Sample ID	Lab Code	Matrix	Collected	Collected	ID	(psig)	(psig)		TO	AST	3C	AS	AS	TO	3C
Blower Out #1 (Can)	P1600503-001	Air	2/2/2016	09:31	SSC00163	0.65	3.53		X	X	X	X	X		
Blower Out #2 (Can)	P1600503-002	Air	2/2/2016	10:26	SSC00230	1.21	3.64		X	X	X	X	X		
Blower Out-Bag 5 Cal	P1600503-003	Air	2/2/2016	11:10										X	X
Blower Out-Tedlar	P1600503-004	Air	2/2/2016	11:00										X	X

Blower Out-Bag 5 Cal sample results void from evaluation due to apparent sample tubing and/or lab GC injection leak or ambient intrusion

Air - Chain of Custody Record & Analytical Service Request

2655 Park Center Drive, Suite A Simi Valley, California 93065 Phone (805) 526-7161

À

Project Requirements (MRLs, QAPP) specific instructions Preservative or Comments e.g. Actual 50500710 ALS Project No Analysis Method INTACT BROKEN ABSENT CO, & Btu > Chain of Custody Seal: (Circle) ASTM 1946, fixed gases, + H2, ALS Contact: > SAT + 40330 MTSA > 1 Day (100%) 2 Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (25%) 10 Day-Standard Sample Volume Requested Turnaround Time in Business Days (Surcharges) please circle 0.5L 0.5L End Pressure Canister "Hg/psig Bill to WCG with reference project no. ¥ X Bridgeton LF Monthly Permit Flare LFG Testing - SPLIT Canister Start Pressure Units: * EDD required Yes / No AN Ž Now Controller ID (Bar code # -FC #) Type: P.O. # / Billing Information ¥ ž Sampler (Print & Sign) Canister ID ((Bar code # -AC, SC, etc.) Tier III (Results + QC & Calibration Summaries) 0120-131-10-63 Project Number Jenny Holt Project Name Tier IV (Data Validation Package) 10% Surcharge ۲ ¥ Collected 1026 100 110 931 Report Tier Levels - please select Collected 2/2/2016 2/2/2016 Date 2/2/2016 2/2/2016 Fax (805) 526-7270 Weaver Consultants Group Laboratory ID Number drandall@wcgrp.com 6301 East Highway AB Company Name & Address (Reporting Information) Columbia, MO 65201 N 7 ۲1 Fax Tier I - Results (Default if not specified) Email Address for Result Reporting Tier II (Results + QC Summaries) প্তীower Out - Bag 5 Cal Blower Out # 1 (Can) Blower Out #2 (Can) Rower Out - Tedlar David A. Randall Client Sample ID Project Manager 573-645-2650 Phone

ပွ

Cooler / Blank Temperature

Time:

Datg. / 2/2// 2

Received by: (Signature)

Time:

Date:

Relinquished by: (Signature)

Time:

Received by: (Signature)

ALS Environmental

	Weaver Consu		•	е Ассериансе	_		P1600503			
		Monthly Permit Flare	LFG Testing-			0/0/4/5		*****		
Sample(s) received on:	2/3/16			Date opened:	2/3/16	by:	KKEL	PE	
<i>Note:</i> This	form is used for all	samples received by ALS.	The use of this f	orm for custody so	eals is strictly me	eant to indicate presen	ce/absence and no	ot as an ir	dication	of
compliance	or nonconformity.	Thermal preservation and	pH will only be e	valuated either at	the request of th	e client and/or as requ	ired by the metho	d/SOP. Yes	<u>No</u>	<u>N/A</u>
1	_	containers properly n		ient sample ID	?			X		
2	Did sample co	ontainers arrive in goo	od condition?					X		
3	Were chain-of	f-custody papers used	and filled out	?				X		
4	Did sample co	ontainer labels and/or	tags agree wi	th custody pap	ers?			X		
5	Was sample v	olume received adequ	ate for analys	is?				X		
6	Are samples w	vithin specified holding	g times?					X		
7	Was proper te	mperature (thermal p	reservation) o	of cooler at rec	eipt adhered t	to?				\boxtimes
8	·	seals on outside of co Location of seal(s)? e and date included?		tainer?			Sealing Lid?			
	Were seals int	act?								X
9	Do containe	rs have appropriate pr	eservation, a	ccording to me	ethod/SOP or	Client specified in	nformation?			X
	Is there a clie	nt indication that the s	ubmitted samp	ples are pH pro	eserved?					X
	Were VOA v	ials checked for prese	nce/absence of	f air bubbles?						X
	Does the clien	t/method/SOP require	that the analy	st check the sa	mple pH and	if necessary alter	it?			X
10	Tubes:	Are the tubes capp	ed and intact	?						X
11	Badges:	Are the badges pr	operly capped	and intact?						X
		Are dual bed badg	ges separated a	and individuall	y capped and	intact?				X
Lab	Sample ID	Container Description	Required pH *	Received pH	Adjusted pH	VOA Headspace (Presence/Absence)		ot / Prese		1
P1600503		6.0 L Silonite Can								
P1600503		6.0 L Silonite Can								
P1600503		1.0 L Tedlar Bag								
1000303	5-004.01	1.0 L Tedlar Bag								
Explair	n any discrepanci	ies: (include lab sample l	ID numbers):							

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

RESULTS OF ANALYSIS

Page 1 of 1

Client: Weaver Consultants Group

ALS Project ID: P1600503

Client Sample ID: Blower Out #1 (Can)

ALS Sample ID: P1600503-001

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

Test Code: ASTM D3588-98

Analyst: Mike Conejo Date Collected: 2/2/16 Sample Type: 6.0 L Silonite Canister Date Received: 2/3/16

		Canister Dilution	Factor: 2.01
Components	Result	Result	Data
	Volume %	Weight %	Qualifier
Hydrogen	9.11	0.60	
Oxygen	8.26	8.62	
Nitrogen	31.98	29.21	
Carbon Monoxide	0.09	0.09	
Methane	12.25	6.41	
Carbon Dioxide	38.16	54.76	
Hydrogen Sulfide	< 0.01	< 0.01	
C2 as Ethane	< 0.01	< 0.01	
C3 as Propane	< 0.01	0.01	
C4 as n-Butane	0.03	0.06	
C5 as n-Pentane	0.06	0.15	
C6 as n-Hexane	0.02	0.07	
> C6 as n-Hexane	< 0.01	< 0.01	
TOTALS	99.99	99.99	
Components	Mole %	Weight %	
Carbon	18.34	19.89	
Hydrogen	24.89	2.27	
Oxygen	33.62	48.57	
Nitrogen	23.14	29.27	
Sulfur	< 0.10	< 0.10	
Specific Gravity (Air = 1)		1.0587	
Specific Volume	ft3/lb	12.38	
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	159.0	
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	141.7	
Gross Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	156.0	
Net Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	139.0	
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	1,968.3	
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	1,753.9	
Compressibility Factor "Z" (60 F, 14.696 psia)		0.9982	

RESULTS OF ANALYSIS

Page 1 of 1

Client: Weaver Consultants Group

ALS Project ID: P1600503

Client Sample ID: Blower Out #2 (Can)

ALS Sample ID: P1600503-002

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

Test Code: ASTM D3588-98

Analyst: Mike Conejo Date Collected: 2/2/16 Sample Type: 6.0 L Silonite Canister Date Received: 2/3/16

		Canister Dilution	Factor: 1.91
Components	Result	Result	Data
	Volume %	Weight %	Qualifier
Hydrogen	9.17	0.60	
Oxygen	8.23	8.58	
Nitrogen	31.85	29.09	
Carbon Monoxide	0.09	0.08	
Methane	12.29	6.43	
Carbon Dioxide	38.23	54.86	
Hydrogen Sulfide	< 0.01	< 0.01	
C2 as Ethane	< 0.01	< 0.01	
C3 as Propane	< 0.01	< 0.01	
C4 as n-Butane	0.02	0.03	
C5 as n-Pentane	0.03	0.06	
C6 as n-Hexane	0.03	0.09	
> C6 as n-Hexane	0.04	0.14	
TOTALS	99.99	99.99	
Components	Mole %	Weight %	
Carbon	18.42	20.00	
Hydrogen	24.99	2.28	
Oxygen	33.59	48.58	
Nitrogen	23.01	29.13	
Sulfur	< 0.10	< 0.10	
Specific Gravity (Air = 1)		1.0589	
Specific Volume	ft3/lb	12.37	
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	160.1	
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	142.7	
Gross Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	157.1	
Net Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	140.0	
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	1,981.7	
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	1,766.0	
Compressibility Factor "Z" (60 F, 14.696 psia)		0.9982	

RESULTS OF ANALYSIS

Page 1 of 1

Client: Weaver Consultants Group ALS Project ID: P1600503 Client Sample ID: Blower Out-Bag 5 Cal ALS Sample ID: P1600503-003

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

Test Code: ASTM D3588-98

VOID DUE TO AMBIENT Analyst: Mike Conejo Date Collected: 2/2/16 **INTRUSION/BIAS** Sample Type: 1.0 L Tedlar Bag Date Received: 2/3/16

Test Notes:

Components	Result	Result	Data
	Volume %	Weight %	Qualifier
Hydrogen	5.32	0.36	-
Oxygen	13.84	14.78	
Nitrogen	50.49	<mark>47.18</mark>	
Carbon Monoxide	0.05	0.04	
Methane	7.35	3.94	
Carbon Dioxide	22.92	33.65	
Hydrogen Sulfide	< 0.01	< 0.01	H1
C2 as Ethane	< 0.01	< 0.01	
C3 as Propane	< 0.01	< 0.01	
C4 as n-Butane	< 0.01	< 0.01	
C5 as n-Pentane	< 0.01	0.02	
C6 as n-Hexane	< 0.01	< 0.01	
> C6 as n-Hexane	< 0.01	< 0.01	
TOTALS	99.99	99.99	
Components	Mole %	Weight %	
Carbon	12.38	12.17	
Hydrogen	16.43	1.35	
Oxygen	30.00	39.28	
Nitrogen	41.18	47.20	
Sulfur	< 0.10	< 0.10	H1
Specific Gravity (Air = 1)		1.0349	
Specific Volume	ft3/lb	12.66	
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	92.5	
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	82.4	
Gross Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	90.8	
Net Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	80.9	
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	1,171.4	
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	1,043.0	
Compressibility Factor "Z" (60 F, 14.696 psia)		0.9989	

H1 = Sample analysis performed past holding time. See case narrative.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Weaver Consultants Group ALS Project ID: P1600503 Client Sample ID: Blower Out-Tedlar ALS Sample ID: P1600503-004

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

Test Code: ASTM D3588-98

Analyst: Mike Conejo Date Collected: 2/2/16 Sample Type: 1.0 L Tedlar Bag Date Received: 2/3/16

Test Notes:

Components	Result	Result	Data
-	Volume %	Weight %	Qualifier
Hydrogen	8.59	0.57	_
Oxygen	8.74	9.13	
Nitrogen	33.33	30.46	
Carbon Monoxide	0.09	0.08	
Methane	12.31	6.44	
Carbon Dioxide	36.68	52.66	
Hydrogen Sulfide	< 0.01	< 0.01	H1
C2 as Ethane	0.01	< 0.01	
C3 as Propane	< 0.01	0.01	
C4 as n-Butane	0.04	0.07	
C5 as n-Pentane	0.07	0.16	
C6 as n-Hexane	0.03	0.09	
> C6 as n-Hexane	0.08	0.32	
TOTALS	99.99	99.99	
Components	Mole %	Weight %	
Carbon	18.02	19.61	
Hydrogen	25.14	2.30	
Oxygen	32.80	47.56	
Nitrogen	24.05	30.53	
Sulfur	< 0.10	< 0.10	H1
Specific Gravity (Air = 1)		1.0584	
Specific Volume	ft3/lb	12.38	
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	163.9	
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	146.3	
Gross Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	160.7	
Net Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	143.5	
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	2,028.6	
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	1,811.3	
Compressibility Factor "Z" (60 F, 14.696 psia)		0.9982	

H1 = Sample analysis performed past holding time. See case narrative.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Blower Out #1 (Can)

ALS Project ID: P1600503

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

ALS Sample ID: P1600503-001

Test Code:ASTM D1946Date Collected: 2/2/16Instrument ID:HP5890 II/GC1/TCDDate Received: 2/3/16Analyst:Mike ConejoDate Analyzed: 2/4/16

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.10 ml(s)

Test Notes:

Canister Dilution Factor: 2.01

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	9.11	0.20	
7782-44-7	Oxygen*	8.26	0.20	
7727-37-9	Nitrogen	32.0	0.20	
630-08-0	Carbon Monoxide	ND	0.20	
74-82-8	Methane	12.2	0.20	
124-38-9	Carbon Dioxide	38.1	0.20	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Blower Out #2 (Can)

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

ALS Project ID: P1600503

ALS Sample ID: P1600503-002

Test Code: ASTM D1946 Date Collected: 2/2/16
Instrument ID: HP5890 II/GC1/TCD Date Received: 2/3/16
Analyst: Mike Conejo Date Analyzed: 2/4/16

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.10 ml(s)

Test Notes:

Canister Dilution Factor: 1.91

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	9.17	0.19	
7782-44-7	Oxygen*	8.23	0.19	
7727-37-9	Nitrogen	31.9	0.19	
630-08-0	Carbon Monoxide	ND	0.19	
74-82-8	Methane	12.3	0.19	
124-38-9	Carbon Dioxide	38.2	0.19	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Blower Out-Bag 5 Cal

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

ALS Project ID: P1600503

ALS Sample ID: P1600503-003

Test Code: ASTM D1946 Date Collected: 2/2/16
Instrument ID: HP5890 II/GC1/TCD VOID DUE TO AMBIENT Date Received: 2/3/16
Analyst: Mike Conejo VOID DUE TO AMBIENT Date Analyzed: 2/3/16

Sample Type: 1.0 L Tedlar Bag INTRUSION/BIAS Volume(s) Analyzed: 0.10 ml(s)

Test Notes:

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	5.32	0.10	
7782-44-7	Oxygen*	13.8	0.10	
7727-37-9	Nitrogen	50.5	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
74-82-8	Methane	7.36	0.10	
124-38-9	Carbon Dioxide	22.9	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Blower Out-Tedlar

ALS Project ID: P1600503

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

ALS Sample ID: P1600503-004

Test Code: ASTM D1946 Date Collected: 2/2/16
Instrument ID: HP5890 II/GC1/TCD Date Received: 2/3/16
Analyst: Mike Conejo Date Analyzed: 2/4/16

Sample Type: 1.0 L Tedlar Bag Volume(s) Analyzed: 0.10 ml(s)

Test Notes:

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	8.61	0.10	
7782-44-7	Oxygen*	8.76	0.10	
7727-37-9	Nitrogen	33.4	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
74-82-8	Methane	12.3	0.10	
124-38-9	Carbon Dioxide	36.8	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Method Blank

ALS Project ID: P1600503

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

ALS Sample ID: P160203-MB

Test Code: ASTM D1946 Date Collected: NA
Instrument ID: HP5890 II/GC1/TCD Date Received: NA
Analyst: Mike Conejo Date Analyzed: 2/03/16

Sample Type: 1.0 L Tedlar Bag Volume(s) Analyzed: 0.10 ml(s)

Test Notes:

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	ND	0.10	
7782-44-7	Oxygen*	ND	0.10	
7727-37-9	Nitrogen	ND	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
74-82-8	Methane	ND	0.10	
124-38-9	Carbon Dioxide	ND	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Method Blank

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

ALS Project ID: P1600503

ALS Sample ID: P160204-MB

Test Code: ASTM D1946 Date Collected: NA
Instrument ID: HP5890 II/GC1/TCD Date Received: NA
Analyst: Mike Conejo Date Analyzed: 2/04/16

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.10 ml(s)

Test Notes:

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	ND	0.10	
7782-44-7	Oxygen*	ND	0.10	
7727-37-9	Nitrogen	ND	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
74-82-8	Methane	ND	0.10	
124-38-9	Carbon Dioxide	ND	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client:Weaver Consultants GroupALS Project ID: P1600503Client Sample ID:Lab Control SampleALS Sample ID: P160204-LCS

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

Test Code: ASTM D1946 Date Collected: NA
Instrument ID: HP5890 II/GC1/TCD Date Received: NA
Analyst: Mike Conejo Date Analyzed: 2/04/16

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: NA ml(s)

					ALS	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ppmV	\mathbf{ppmV}		Limits	Qualifier
1333-74-0	Hydrogen	40,000	37,500	94	83-114	
7782-44-7	Oxygen*	25,000	25,300	101	84-121	
7727-37-9	Nitrogen	50,000	50,500	101	88-122	
630-08-0	Carbon Monoxide	50,000	49,800	100	87-118	
74-82-8	Methane	40,000	40,600	102	85-116	
124-38-9	Carbon Dioxide	50,000	48,400	97	84-117	

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client:Weaver Consultants GroupALS Project ID: P1600503Client Sample ID:Lab Control SampleALS Sample ID: P160203-LCS

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

Test Code: ASTM D1946 Date Collected: NA
Instrument ID: HP5890 II/GC1/TCD Date Received: NA
Analyst: Mike Conejo Date Analyzed: 2/03/16

Sample Type: 1.0 L Tedlar Bag Volume(s) Analyzed: NA ml(s)

					ALS	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ppmV	\mathbf{ppmV}		Limits	Qualifier
1333-74-0	Hydrogen	40,000	38,200	96	83-114	
7782-44-7	Oxygen*	25,000	25,300	101	84-121	
7727-37-9	Nitrogen	50,000	49,600	99	88-122	
630-08-0	Carbon Monoxide	50,000	50,600	101	87-118	
74-82-8	Methane	40,000	41,600	104	85-116	
124-38-9	Carbon Dioxide	50,000	49,200	98	84-117	

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Blower Out #1 (Can)
ALS Project ID: P1600503
Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63
ALS Sample ID: P1600503-001

Test Code: ASTM D 5504-12

Instrument ID: Agilent 6890A/GC13/SCD

Analyst: Mike Conejo

Sample Type: 6.0 L Silonite Canister

Test Notes:

Date Analyzed: 2/4/16 Time Analyzed: 08:00

Date Collected: 2/2/16

Date Received: 2/3/16

Time Collected: 09:31

Volume(s) Analyzed: 0.050 ml(s)

Canister Dilution Factor: 2.01

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	35,000	280	25,000	200	
463-58-1	Carbonyl Sulfide	620	490	250	200	
74-93-1	Methyl Mercaptan	250,000	400	130,000	200	
75-08-1	Ethyl Mercaptan	3,000	510	1,200	200	
75-18-3	Dimethyl Sulfide	2,200,000	510	860,000	200	
75-15-0	Carbon Disulfide	340	310	110	100	
75-33-2	Isopropyl Mercaptan	1,300	630	430	200	
75-66-1	tert-Butyl Mercaptan	ND	740	ND	200	
107-03-9	n-Propyl Mercaptan	ND	630	ND	200	
624-89-5	Ethyl Methyl Sulfide	15,000	630	4,700	200	
110-02-1	Thiophene	20,000	690	5,800	200	
513-44-0	Isobutyl Mercaptan	1,300	740	360	200	
352-93-2	Diethyl Sulfide	ND	740	ND	200	
109-79-5	n-Butyl Mercaptan	2,700	740	740	200	
624-92-0	Dimethyl Disulfide	110,000	390	28,000	100	
616-44-4	3-Methylthiophene	990	810	250	200	
110-01-0	Tetrahydrothiophene	2,200	720	620	200	
638-02-8	2,5-Dimethylthiophene	ND	920	ND	200	
872-55-9	2-Ethylthiophene	ND	920	ND	200	
110-81-6	Diethyl Disulfide	ND	500	ND	100	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Blower Out #2 (Can) ALS Project ID: P1600503 Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63 ALS Sample ID: P1600503-002

Test Code: ASTM D 5504-12

Instrument ID: Agilent 6890A/GC13/SCD

Analyst: Mike Conejo

Sample Type:

Test Notes:

Date Received: 2/3/16 6.0 L Silonite Canister Date Analyzed: 2/4/16

Time Analyzed: 08:17 Volume(s) Analyzed: $0.050 \, \text{ml(s)}$

Date Collected: 2/2/16

Time Collected: 10:26

Canister Dilution Factor: 1.91

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	44,000	270	31,000	190	
463-58-1	Carbonyl Sulfide	600	470	240	190	
74-93-1	Methyl Mercaptan	350,000	380	180,000	190	
75-08-1	Ethyl Mercaptan	3,800	490	1,500	190	
75-18-3	Dimethyl Sulfide	2,400,000	490	930,000	190	
75-15-0	Carbon Disulfide	330	300	100	96	
75-33-2	Isopropyl Mercaptan	1,600	590	520	190	
75-66-1	tert-Butyl Mercaptan	ND	700	ND	190	
107-03-9	n-Propyl Mercaptan	ND	590	ND	190	
624-89-5	Ethyl Methyl Sulfide	18,000	590	5,600	190	
110-02-1	Thiophene	25,000	660	7,300	190	
513-44-0	Isobutyl Mercaptan	1,600	700	440	190	
352-93-2	Diethyl Sulfide	ND	700	ND	190	
109-79-5	n-Butyl Mercaptan	4,100	700	1,100	190	
624-92-0	Dimethyl Disulfide	150,000	370	38,000	96	
616-44-4	3-Methylthiophene	1,900	770	480	190	
110-01-0	Tetrahydrothiophene	3,700	690	1,000	190	
638-02-8	2,5-Dimethylthiophene	ND	880	ND	190	
872-55-9	2-Ethylthiophene	ND	880	ND	190	
110-81-6	Diethyl Disulfide	ND	480	ND	96	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Blower Out-Bag 5 Cal
ALS Project ID: P1600503
Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63
ALS Sample ID: P1600503-003

Test Code: ASTM D 5504-12

Instrument ID: Agilent 6890A/GC13/SCD

Analyst: Mike Conejo Sample Type: 1.0 L Tedlar Bag

Test Notes: H1

VOID DUE TO AMBIENT

INTRUSION/BIAS

Date Collected: 2/2/16 Time Collected: 11:10 Date Received: 2/3/16 Date Analyzed: 2/3/16

Time Analyzed: 15:57

Volume(s) Analyzed: 0.010 ml(s)

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	\mathbf{ppbV}	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	44,000	700	32,000	500	_
463-58-1	Carbonyl Sulfide	ND	1,200	ND	500	
74-93-1	Methyl Mercaptan	260,000	980	130,000	500	
75-08-1	Ethyl Mercaptan	2,900	1,300	1,100	500	
75-18-3	Dimethyl Sulfide	1,500,000	1,300	580,000	500	
75-15-0	Carbon Disulfide	ND	780	ND	250	
75-33-2	Isopropyl Mercaptan	ND	1,600	ND	500	
75-66-1	tert-Butyl Mercaptan	ND	1,800	ND	500	
107-03-9	n-Propyl Mercaptan	ND	1,600	ND	500	
624-89-5	Ethyl Methyl Sulfide	8,100	1,600	2,600	500	
110-02-1	Thiophene	9,800	1,700	2,900	500	
513-44-0	Isobutyl Mercaptan	ND	1,800	ND	500	
352-93-2	Diethyl Sulfide	ND	1,800	ND	500	
109-79-5	n-Butyl Mercaptan	ND	1,800	ND	500	
624-92-0	Dimethyl Disulfide	34,000	960	9,000	250	
616-44-4	3-Methylthiophene	ND	2,000	ND	500	
110-01-0	Tetrahydrothiophene	ND	1,800	ND	500	
638-02-8	2,5-Dimethylthiophene	ND	2,300	ND	500	
872-55-9	2-Ethylthiophene	ND	2,300	ND	500	
110-81-6	Diethyl Disulfide	ND	1,200	ND	250	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

H1 = Sample analysis performed past holding time. See case narrative.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Blower Out-Tedlar ALS Project ID: P1600503
Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63 ALS Sample ID: P1600503-004

Test Code: ASTM D 5504-12

Instrument ID: Agilent 6890A/GC13/SCD

Analyst: Mike Conejo Sample Type: 1.0 L Tedlar Bag

Test Notes: H1

Date Collected: 2/2/16
Time Collected: 11:00

Date Received: 2/3/16 Date Analyzed: 2/3/16

Time Analyzed: 15:34

Volume(s) Analyzed: 0.010 ml(s)

CAS#	Compound	Result	MRL	Result	MRL	Data
	_	$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	66,000	700	47,000	500	
463-58-1	Carbonyl Sulfide	ND	1,200	ND	500	
74-93-1	Methyl Mercaptan	340,000	980	170,000	500	
75-08-1	Ethyl Mercaptan	4,300	1,300	1,700	500	
75-18-3	Dimethyl Sulfide	2,100,000	1,300	840,000	500	
75-15-0	Carbon Disulfide	ND	780	ND	250	
75-33-2	Isopropyl Mercaptan	2,000	1,600	650	500	
75-66-1	tert-Butyl Mercaptan	ND	1,800	ND	500	
107-03-9	n-Propyl Mercaptan	ND	1,600	ND	500	
624-89-5	Ethyl Methyl Sulfide	16,000	1,600	5,200	500	
110-02-1	Thiophene	28,000	1,700	8,200	500	
513-44-0	Isobutyl Mercaptan	ND	1,800	ND	500	
352-93-2	Diethyl Sulfide	ND	1,800	ND	500	
109-79-5	n-Butyl Mercaptan	5,900	1,800	1,600	500	
624-92-0	Dimethyl Disulfide	140,000	960	37,000	250	
616-44-4	3-Methylthiophene	3,000	2,000	750	500	
110-01-0	Tetrahydrothiophene	5,700	1,800	1,600	500	
638-02-8	2,5-Dimethylthiophene	ND	2,300	ND	500	
872-55-9	2-Ethylthiophene	ND	2,300	ND	500	
110-81-6	Diethyl Disulfide	ND	1,200	ND	250	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

H1 = Sample analysis performed past holding time. See case narrative.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Consultants Group

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63 ALS Project ID: P1600503

Total Reduced Sulfur as Hydrogen Sulfide

Test Code: ASTM D 5504-12

Instrument ID: Agilent 6890A/GC13/SCD Date(s) Collected: 2/2/16
Analyst: Mike Conejo Date Received: 2/3/16
Sample Type: 6.0 L Silonite Canister(s) Date Analyzed: 2/4/16

Client Sample ID	ALS Sample ID	Canister Dilution	Injection Volume	Time	Result	MRL	Result	MRL	Data
	_	Factor	ml(s)	Analyzed	$\mu g/m^3$	$\mu g/m^3$	${f ppbV}$	ppbV	Qualifier
Blower Out #1 (Can)	P1600503-001	2.01	0.050	08:00	1,500,000	280	1,100,000	200	
Blower Out #2 (Can)	P1600503-002	1.91	0.050	08:17	1,800,000	270	1,300,000	190	
Method Blank	P160204-MB	1.00	1.0	07:24	ND	7.0	ND	5.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Consultants Group

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63 ALS Project ID: P1600503

Total Reduced Sulfur as Hydrogen Sulfide

Test Code: ASTM D 5504-12

Instrument ID: Agilent 6890A/GC13/SCD Date(s) Collected: 2/2/16
Analyst: Mike Conejo Date Received: 2/3/16
Sample Type: 1.0 L Tedlar Bag(s) Date Analyzed: 2/3/16

		Injection						
Client Sample ID	ALS Sample ID	Volume	Time	Result	MRL	Result	MRL	Data
		ml(s)	Analyzed	$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
Blower Out-Bag 5 Cal	P1600503-003	0.010	15:57	1,100,000	700	780,000	500	H1
Blower Out-Tedlar	P1600503-004	0.010	15:34	1,700,000	700	1,200,000	500	H1
Method Blank	P160203-MB	1.0	14:32	ND	7.0	ND	5.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

H1 = Sample analysis performed past holding time. See case narrative.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Method Blank ALS Project ID: P1600503
Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63 ALS Sample ID: P160203-MB

Test Code: ASTM D 5504-12

Instrument ID: Agilent 6890A/GC13/SCD

Analyst: Mike Conejo
Sample Type: 1.0 L Tedlar Bag

Test Notes:

Time Analyzed: 14:32 Volume(s) Analyzed: 1.0 ml(s)

Date Analyzed: 2/03/16

Date Collected: NA

Time Collected: NA

Date Received: NA

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	ND	7.0	ND	5.0	
463-58-1	Carbonyl Sulfide	ND	12	ND	5.0	
74-93-1	Methyl Mercaptan	ND	9.8	ND	5.0	
75-08-1	Ethyl Mercaptan	ND	13	ND	5.0	
75-18-3	Dimethyl Sulfide	ND	13	ND	5.0	
75-15-0	Carbon Disulfide	ND	7.8	ND	2.5	
75-33-2	Isopropyl Mercaptan	ND	16	ND	5.0	
75-66-1	tert-Butyl Mercaptan	ND	18	ND	5.0	
107-03-9	n-Propyl Mercaptan	ND	16	ND	5.0	
624-89-5	Ethyl Methyl Sulfide	ND	16	ND	5.0	
110-02-1	Thiophene	ND	17	ND	5.0	
513-44-0	Isobutyl Mercaptan	ND	18	ND	5.0	
352-93-2	Diethyl Sulfide	ND	18	ND	5.0	
109-79-5	n-Butyl Mercaptan	ND	18	ND	5.0	
624-92-0	Dimethyl Disulfide	ND	9.6	ND	2.5	
616-44-4	3-Methylthiophene	ND	20	ND	5.0	
110-01-0	Tetrahydrothiophene	ND	18	ND	5.0	
638-02-8	2,5-Dimethylthiophene	ND	23	ND	5.0	
872-55-9	2-Ethylthiophene	ND	23	ND	5.0	
110-81-6	Diethyl Disulfide	ND	12	ND	2.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Method Blank ALS Project ID: P1600503
Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63 ALS Sample ID: P160204-MB

Test Code: ASTM D 5504-12

Instrument ID: Agilent 6890A/GC13/SCD

Analyst: Mike Conejo

Sample Type: 6.0 L Silonite Canister

Test Notes:

Date Received: NA
Date Analyzed: 2/04/16
Time Analyzed: 07:24

Date Collected: NA

Time Collected: NA

Volume(s) Analyzed: 1.0 ml(s)

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	ND	7.0	ND	5.0	_
463-58-1	Carbonyl Sulfide	ND	12	ND	5.0	
74-93-1	Methyl Mercaptan	ND	9.8	ND	5.0	
75-08-1	Ethyl Mercaptan	ND	13	ND	5.0	
75-18-3	Dimethyl Sulfide	ND	13	ND	5.0	
75-15-0	Carbon Disulfide	ND	7.8	ND	2.5	
75-33-2	Isopropyl Mercaptan	ND	16	ND	5.0	
75-66-1	tert-Butyl Mercaptan	ND	18	ND	5.0	
107-03-9	n-Propyl Mercaptan	ND	16	ND	5.0	
624-89-5	Ethyl Methyl Sulfide	ND	16	ND	5.0	
110-02-1	Thiophene	ND	17	ND	5.0	
513-44-0	Isobutyl Mercaptan	ND	18	ND	5.0	
352-93-2	Diethyl Sulfide	ND	18	ND	5.0	
109-79-5	n-Butyl Mercaptan	ND	18	ND	5.0	
624-92-0	Dimethyl Disulfide	ND	9.6	ND	2.5	
616-44-4	3-Methylthiophene	ND	20	ND	5.0	
110-01-0	Tetrahydrothiophene	ND	18	ND	5.0	
638-02-8	2,5-Dimethylthiophene	ND	23	ND	5.0	
872-55-9	2-Ethylthiophene	ND	23	ND	5.0	
110-81-6	Diethyl Disulfide	ND	12	ND	2.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Lab Control Sample

ALS Project ID: P1600503

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

ALS Sample ID: P160203-LCS

Test Code: ASTM D 5504-12 Date Collected: NA
Instrument ID: Agilent 6890A/GC13/SCD Date Received: NA
Analyst: Mike Conejo Date Analyzed: 2/03/16

Sample Type: 1.0 L Tedlar Bag Volume(s) Analyzed: NA ml(s)

					ALS	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ppbV	${f ppbV}$		Limits	Qualifier
7783-06-4	Hydrogen Sulfide	2,000	2,510	126	65-138	
463-58-1	Carbonyl Sulfide	2,000	2,390	120	60-135	
74-93-1	Methyl Mercaptan	2,000	2,450	123	57-140	

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Lab Control Sample

ALS Project ID: P1600503

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

ALS Sample ID: P160204-LCS

Test Code: ASTM D 5504-12 Date Collected: NA
Instrument ID: Agilent 6890A/GC13/SCD Date Received: NA
Analyst: Mike Conejo Date Analyzed: 2/04/16

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: NA ml(s)

					ALS	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ppbV	ppbV		Limits	Qualifier
7783-06-4	Hydrogen Sulfide	2,000	2,490	125	65-138	
463-58-1	Carbonyl Sulfide	2,000	2,340	117	60-135	
74-93-1	Methyl Mercaptan	2,000	2,370	119	57-140	

Hydrogen Data Map - February 2016 - Bridgeton Landfill

Carbon Monoxide Data Map - February 2016 - Bridgeton Landfill

Initial Temperature Maximums - February 2016 - Bridgeton Landfill

Well Name	Date Sampled	Methane	CO ₂	O ₂ /Argon	Nitrogen	Hydrogen	Carbon Monoxide	Comments
			ı	(%)	1		(ppm)	
				North Quarry				
GEW-002	10/12/2015	56	41	ND	ND	ND	ND	
GEW-002	11/13/2015	54	43	ND	ND	ND	ND	
GEW-002	12/14/2015	41	32	3.2	23	ND	35	See Note 3
GEW-002	12/31/2015	53	40	ND	5.7	0.1	ND	Resample
GEW-002	1/14/2016	55	43	ND	ND	ND	ND	
GEW-002	2/15/2016	52	41	1.7	5.8	ND	ND	See Note 3
GEW-003	10/12/2015	47	35	2.9	15	0.1	ND	See Note 1 and 3
GEW-003	11/10/2015	50	40	ND	8.7	0.1	ND	
GEW-003	12/14/2015	42	37	ND	20	ND	ND	
GEW-003	1/14/2016	52	39	ND	6.7	0.1	ND	
GEW-003	2/15/2016	56	42	ND	ND	0.1	ND	
GEW-004	10/12/2015	54	40	ND	5.8	0.1	ND	
GEW-004	11/10/2015	49	40	ND	10	0.1	ND	
GEW-004	12/14/2015	45	37	ND	16	ND	ND	
GEW-004	1/14/2016	52	40	ND	6.7	0.1	ND	
GEW-004	2/15/2016	52	41	1.7	5.8	ND	ND	
GEW-005	10/12/2015	47	35	1.7	16	ND	ND	See Note 3
GEW-005	11/10/2015	44	36	ND	19	0.03	ND	
GEW-005	12/15/2015	41	34	ND	23	ND	ND	
GEW-005	1/14/2016	42	34	ND	24	ND	ND	
GEW-005	2/15/2016	54	38	ND	7.6	0.07	ND	
GEW-006	11/10/2015	51	40	ND	8.1	ND	ND	
GEW-006	1/14/2016	52	37	ND	10	ND	ND	
GEW-007	11/11/2015	56	41	ND	ND	ND	ND	
GEW-007	1/14/2016	57	41	ND	ND	ND	ND	
GEW-007	1/27/2016	56	39	ND	4	ND	ND	
GEW-008	10/12/2015	50	46	ND	ND	1.3	ND	
GEW-008	11/11/2015	49	47	ND	ND	2.1	ND	
GEW-008	12/15/2015	42	42	1.8	8.6	1.4	ND	See Note 3
GEW-008	1/27/2016	50	47	ND	ND	1.6	ND	
GEW-008	2/15/2016	50	47	ND	ND	0.7	ND	
GEW-009	10/12/2015	52	41	ND	5.1	0.8	ND	
GEW-009	11/11/2015	46	39	2	12	0.4	ND	See Note 1 and 3
GEW-009	12/15/2015	39	40	ND	19	0.3	ND	
GEW-009	1/27/2016	51	41	ND	6.7	0.5	ND	
GEW-009	2/17/2016	54	43	ND	ND	0.7	ND	
GEW-040	10/12/2015	57	40	ND	ND	ND	ND	
GEW-040	11/10/2015	52	37	2.4	8.5	ND	ND	See Note 1 and 3
GEW-040	12/14/2015	54	38	1.9	6.6	ND	ND	See Note 3
GEW-040	1/14/2016	57	41	ND	ND	ND	ND	
GEW-040	2/15/2016	55	38	1.4	5.2	ND	ND	See Note 3
GEW-041R	11/10/2015	47	37	1.6	15	ND	ND	See Note 3
GEW-041R	1/14/2016	56	42	ND	ND	ND	ND	
GEW-042R	10/12/2015	56	41	ND	ND	ND	ND	
GEW-042R	11/10/2015	42	35	5	18	ND	ND	See Note 1 and 3
GEW-042R	12/14/2015	49	40	2.3	8.3	ND	ND	See Note 3
GEW-042R	1/14/2016	55	42	ND	ND	ND	ND	
GEW-042R	2/15/2016	56	41	ND	ND	0.04	ND	
GEW-043R	11/11/2015	53	44	ND	ND	ND	ND	
GEW-043R	1/14/2016	55	43	ND	ND	0.2	ND	
GEW-044	11/10/2015	47	37	ND	15	ND	ND	
GEW-044	1/14/2016	56	40	ND	ND	ND	ND	

Well Name	Date Sampled	Methane	CO ₂	O ₂ /Argon	Nitrogen	Hydrogen	Carbon Monoxide	Comments
	·		l	(%)	•	•	(ppm)	1
GEW-045R	10/12/2015	58	38	ND	ND	ND	ND	
GEW-045R	11/10/2015	58	39	ND	ND	ND	ND	
GEW-045R	12/14/2015	57	38	ND	3.9	ND	ND	
GEW-045R	1/14/2016	56	43	ND	ND	ND	ND	
GEW-045R	2/15/2016	57	39	ND	ND	ND	ND	
GEW-046R	10/12/2015	56	41	ND	ND	0.1	ND	
GEW-046R	11/10/2015	53	41	ND	4.7	0.1	ND	
GEW-046R	12/14/2015	47	39	ND	13	ND	ND	
GEW-046R	1/14/2016	54	41	ND	4.7	0.1	ND	
GEW-046R	2/15/2016	55	40	ND	4.3	0.1	ND	
GEW-047R	10/12/2015	47	37	ND	15	ND	ND	
GEW-047R	11/10/2015	41	37	ND	21	0.1	ND	
GEW-047R	12/14/2015	37	33	ND	29	ND	ND	
GEW-047R	1/14/2016	40	35	ND	24	0.05	ND	
GEW-047R	2/15/2016	50	38	ND	11	0.2	ND	
GEW-048	10/12/2015	55	39	ND	4.9	ND	ND	
GEW-048	11/10/2015	53	40	ND	5.7	ND	ND	
GEW-048	12/15/2015	49	38	ND	12	ND	ND	
GEW-048	1/14/2016	52	39	ND	8.4	ND	ND	
GEW-048	2/15/2016	56	40	ND	3.8	0.03	ND	
GEW-049	10/12/2015	54	39	ND	6.2	0.1	ND	
GEW-049	11/10/2015	46	37	ND	15	0.1	ND	
GEW-049	12/15/2015	46	37	ND	16	ND	ND	
GEW-049	1/27/2016	45	34	ND	20	0.1	ND	
GEW-049	2/15/2016	55	37	ND	6.3	0.1	ND	
GEW-050	11/10/2015	48	37	ND	13	ND	ND	
GEW-050	1/14/2016	53	39	ND	7.9	0.1	ND	
GEW-051	11/10/2015	53	42	ND	3.3	1	ND	
GEW-051	1/27/2016	55	41	ND	ND	1	ND	
GEW-052	11/11/2015	43	37	1.7	18	0.04	ND	See Note 1 and
GEW-052	1/14/2016	45	36	ND	19	0.04	ND	
GEW-053	10/12/2015	50	41	ND	ND	5.7	64	
GEW-053	11/11/2015	49	42	ND	3.3	4.8	55	
GEW-053	12/15/2015	49	41	ND	4.8	4.5	51	
GEW-053	1/27/2016	50	41	ND	3.9	4.7	49	
GEW-053	2/15/2016	50	41	ND	ND	5.8	57	
GEW-054	10/28/2015	52	41	ND	3.5	2.2	ND	
GEW-054	11/11/2015	52	43	ND	ND	2.6	ND	
GEW-054	12/15/2015	50	42	ND	ND	5.1	39	
GEW-054	1/27/2016	53	42	ND	ND	4.0	ND	
GEW-054	2/15/2016	51	41	ND	3.4	4.3	ND	
GEW-055	10/12/2015	50	40	2	7.3	1.4	30	See Note 3
GEW-055	11/11/2015	52	43	ND	3.2	1.2	ND	
GEW-055	12/15/2015	51	41	ND	5.8	1.8	ND	
GEW-055	1/27/2016	54	42	ND	ND	1.0	ND	
GEW-055	2/15/2016	54	43	ND	ND	1.4	ND	
	on the comparison							+

Notes: (1) Based on the comparison of field to laboratory readings, oxygen to balance gas ratios, and historical concentrations, the sample was determined to be suspect due to oxygen introduction which likely occurred during sample collection or laboratory analytical methods. (2) MDNR also collected duplicate LFG samples at these locations during this sampling period. (3) Based on the oxygen verification readings taken with an Envision meter, it was determined there is a sample train leak. (4) Based on the oxygen verification readings taken with an Envision meter, it was determined that the readings are accurate. (5) Flare station gas concentration data is an average of FL-100, FL-120, and FL-140. (6) Flare station gas concentration data is an average of Outlets 1 & 2. (7) Flare station gas concentration based on data from Outlet B.

Well Name	Date Sampled	Methane	CO ₂	O ₂ /Argon	Nitrogen	Hydrogen	Carbon Monoxide	Comments
vven ivallie	Date Sampled			(%)			(ppm)	Comments
				South Quarry			(PP111)	
GEW-010	10/14/2015	42	44	2.9	11	0.6	79	See Note 4
GEW-010	11/11/2015	53	42	ND	3.9	0.6	50	Goo Hote 1
GEW-010	12/16/2015	54	40	ND	4.4	ND	35	
GEW-010	1/26/2016	53	43	ND	3.0	0.2	ND	
GEW-010	2/16/2016	50	41	1.6	6.5	0.2	31	See Note 4
GEW-022R	11/12/2015	0.8	65	ND	ND	30	4,800	
GEW-028R	11/13/2015	0.1	59	ND	4.9	34	3,600	
GEW-028R	1/26/2016	0.1	60	1.5	5.1	33	3,600	
GEW-038	10/14/2015	0.3	45	5.6	20	28	3,000	See Note 4
GEW-038	11/11/2015	0.2	33	9.8	35	21	2,100	
GEW-038	12/16/2015	0.2	33	10	36	20	2,100	See Note 4
GEW-038	1/26/2016	0.3	56	2.2	8	33	3,200	
GEW-038	2/16/2016	0.3	44	6.6	24	25	2,600	See Note 4
GEW-039	10/14/2015	39	53	ND	3.9	2.4	170	
GEW-039	11/11/2015	39	55	ND	ND	2.7	170	
GEW-039	12/16/2015	37	54	ND	4.5	3.3	150	
GEW-039	1/26/2016	42	56	ND	ND	0.7	52	
GEW-039	2/16/2016	42	55	ND	ND	0.9	75	
GEW-056R	10/14/2015	12	42	ND	23	22	1,300	
GEW-056R	11/11/2015	14	42	ND	24	18	1,100	
GEW-056R	12/16/2015	1.8	54	ND	5.8	37	2,000	
GEW-056R	1/26/2016	16	39	ND	31	13	700	
GEW-056R	2/16/2016	20	38	ND	30	10	620	
GEW-057R	11/11/2015	0.5	53	ND	3.8	40	2,800	
GEW-057R	1/14/2016	0.4	54	ND	ND	40	2,200	
GEW-058	11/11/2015	3.5	48	3.6	14	30	2,100	See Note 3
GEW-058	1/14/2016	3.8	54	ND	5.5	35	2,100	
GEW-058A	11/11/2015	0.4	49	3.3	12	35	2,500	
GEW-058A	1/14/2016	0.3	51	2	7.1	39	2,500	
GEW-059R	11/11/2015	0.8	51	ND	4.4	41	1,800	
GEW-059R	1/14/2016	0.9	48	1.9	6.9	41	1,900	See Note 3
GEW-065A	11/12/2015	0.4	58	ND	ND	37	3,200	
GEW-065A	1/14/2016	0.4	58	ND	ND	36	2,900	
GEW-082R	11/12/2015	0.9	55	ND	ND	40	2,300	
GEW-082R	1/14/2016	0.8	56	ND	ND	40	2,000	
GEW-086	11/12/2015	10	34	8.7	44	2.7	430	
GEW-090	11/12/2015	5.5	49	ND	3.6	40	2,200	
GEW-090	1/26/2016	5	50	ND	ND	42	1,900	
GEW-102	11/13/2015	2.1	59	ND	3.3	34	2,100	
GEW-102	1/14/2016	2.3	60	ND	ND	34	1,700	
GEW-104	11/13/2015	0.4	43	5.7	21	29	1,500	
GEW-109	10/14/2015	5.3	50	ND	12	30	2,000	
GEW-109	11/11/2015	5.6	60	ND	ND	31	2,400	
GEW-109	12/16/2015	3.6	42	5	24	25	1,500	See Note 3
GEW-109	1/26/2016	2.3	36	7.9	34	19	1,300	See Note 4
GEW-109	2/16/2016	3.4	63	ND	ND	32	2,300	
GEW-110	10/15/2015	3.8	15	14	62	5.2	380	See Note 4
GEW-110	11/11/2015	7.8	43	4.1	23	22	1,400	
GEW-110	12/16/2015	6	33	8.7	39	13	990	See Note 4
GEW-110	1/26/2016	4.2	23	11	51	11	630	See Note 4
GEW-110	2/16/2016	7	34	9	36	14	810	See Note 4
GEW-116	11/12/2015	2.8	50	6.2	22	17	1,800	
GEW-117	11/12/2015	3.7	66	ND	4.8	22	2,600	
GEW-120	11/12/2015	7.6	68	ND	ND	21	2,100	
GEW-120	1/14/2016	15	69	ND	ND	11	880	

Well Name	Date Sampled	Methane	CO ₂	O₂/Argon	Nitrogen	Hydrogen	Carbon Monoxide	Comments
			<u> </u>	(%)	1		(ppm)	†
GEW-121	11/12/2015	2.3	46	5	18	28	2,200	See Note 3
GEW-121	1/14/2016	3.8	60	ND	ND	33	2,600	
GEW-122	11/12/2015	5.3	55	ND	ND	35	2,800	
GEW-122	1/14/2016	3.5	57	ND	ND	37	3,000	
GEW-123	11/12/2015	1.6	51	4.9	17	24	3,200	See Note 3
GEW-124	11/13/2015	7	61	ND	ND	28	2,100	
GEW-124	1/15/2016	6.8	62	ND	ND	27	1,900	
GEW-125	11/12/2015	0.5	59	ND	ND	36	3,600	
GEW-126	11/12/2015	8.2	54	ND	ND	33	3,300	
GEW-126	1/14/2016	6.2	54	ND	ND	36	3,500	
GEW-127	11/13/2015	0.4	62	ND	ND	33	4,100	
GEW-127	1/14/2016	0.3	65	ND	ND	32	4,400	
GEW-128	11/13/2015	0.7	61	ND	ND	34	3,800	
GEW-128	1/14/2016	0.9	64	ND	ND	32	3,600	
GEW-129	11/13/2015	0.7	58	ND	3.3	36	3,400	
GEW-129	1/14/2016	1.0	62	ND	ND	34	3,300	
GEW-131	11/12/2015	20	47	ND	4.6	26	1,700	
GEW-131	1/26/2016	15	51	ND	ND	31	2,100	
GEW-132	11/12/2015	6.9	43	5.9	26	17	1,200	See Note 4
GEW-132	1/14/2016	8.7	50	2.9	15	23	1,700	
GEW-133	11/12/2015	0.4	53	3	11	32	3,800	
GEW-134	11/12/2015	11	43	5.8	28	11	770	See Note 1 and
GEW-134	1/14/2016	17	58	ND	13	11	750	_
GEW-135	11/13/2015	4.8	47	4.2	15	28	1,500	See Note 3
GEW-137	11/12/2015	11	29	6.6	52	0.6	71	See Note 3
GEW-137	1/14/2016	13	36	ND	49	0.3	36	
GEW-138	11/12/2015	2.8	23	10	56	8	670	
GEW-138	1/15/2016	13	50	2.2	25	9.2	730	See Note 4
GEW-139	11/13/2015	0.9	47	4	19	29	3,300	
GEW-139	1/14/2016	1.4	54	1.8	6.6	35	3,600	
GEW-140	1/15/2016	1.7	60	ND	ND	35	3,300	
GEW-141	11/13/2015	1.7	60	1.6	5.5	30	3,500	See Note 1 and 3
GEW-141	1/14/2016	1.1	60	ND	ND	33	3,300	
GEW-142	11/13/2015	0.2	51	4.1	15	29	3,500	
GEW-143	11/13/2015	0.2	49	3.3	12	35	3,200	
GEW-144	11/13/2015	0.8	56	1.9	6.6	33	3,500	
GEW-145	11/13/2015	1.7	52	2.9	10	32	2,700	See Note 3
GEW-146	11/12/2015	3.1	18	13	64	2	220	
GEW-147	11/13/2015	5.1	51	ND	3.6	38	2,300	
GEW-147	1/15/2016	4.9	54	ND	3.5	36	2,000	
GEW-149	11/12/2015	9.6	55	2.4	14	18	1,600	See Note 1
GEW-150	11/13/2015	9	60	2	7.9	20	1,600	
GEW-150	1/14/2016	4	63	1.9	6.6	23	1,700	See Note 3
GEW-151	11/12/2015	11	56	ND	ND	28	2,200	
GEW-152	11/13/2015	4.1	49	2.3	8.2	35	2,900	See Note 1 and 3
GEW-153	11/13/2015	20	45	ND	19	15	580	
GEW-154	1/15/2016	21	33	ND	20	24	850	
GEW-156	11/12/2015	4.6	37	9.1	40	9.4	1,100	See Note 1 and
GIW-01 GIW-01	10/14/2015 11/13/2015	2.6	56 66	3.7 ND	13	24	2,800 2,700	3
	+		66			25		+
GIW-01 GIW-01	12/9/2015	2.5	68	ND 17	ND 60	26	2,500	Coo Note 4
G177-U1	1/26/2016	0.5	16	17	60	6.6	580	See Note 4

Well Name	Date Sampled	Methane	CO ₂	O ₂ /Argon	Nitrogen	Hydrogen	Carbon Monoxide	Comments
Well Hallie	Date Sampled			(%)			(ppm)	Comments
GIW-02	10/14/2015	7.8	63	ND ND	ND	25	2,300	
GIW-02	11/13/2015	4.7	22	12	55	5.8	370	See Note 1
GIW-02	12/10/2015	5.7	33	9	44	8.5	610	See Note 4
GIW-02	1/26/2016	6.4	28	9.7	47	8.3	510	See Note 4
GIW-02	2/17/2016	8	40	7.8	33	10	620	See Note 4
GIW-03	10/14/2015	0.3	41	7.5	27	24	2,300	See Note 4
GIW-03	11/13/2015	0.2	38	8.3	30	23	2,200	
GIW-03	12/10/2015	0.1	24	13	47	14	1,300	See Note 4
GIW-03	1/26/2016	0.4	48	4.7	17	29	2,500	See Note 4
GIW-03	2/17/2016	0.3	36	9.3	33	21	2,100	See Note 4
GIW-04	10/14/2015	0.5	43	4.4	16	36	2,200	See Note 4
GIW-04	11/13/2015	0.5	41	5	18	35	2,200	
GIW-04	12/10/2015	0.5	35	6.9	25	32	1,900	See Note 4
GIW-04	1/26/2016	0.5	50	1.8	6.3	41	2,300	See Note 4
GIW-04	2/17/2016	0.6	43	4.2	15	36	2,300	See Note 3
GIW-05	10/14/2015	1.9	32	10.0	37	18	1,100	See Note 4
GIW-05	11/13/2015	2.6	58	ND	ND	37	1,900	
GIW-05	12/09/2015	2.3	51	2.3	8.2	35	1,700	See Note 3
GIW-05	1/26/2016	1.7	56	1.7	5.9	34	1,400	See Note 4
GIW-05	2/16/2016	2.2	57	ND	4.7	34	1,700	
GIW-06	10/14/2015	0.9	57	1.7	6.1	34	1,700	See Note 4
GIW-06	11/13/2015	0.9	56	1.8	6.2	34	1,700	
GIW-06	12/10/2015	1	56	1.8	6.3	34	1,600	See Note 4
GIW-06	1/27/2016	1	59	ND	ND	36	1,500	
GIW-06	2/17/2016	1.1	59	ND	ND	36	1,500	
GIW-07	10/14/2015	31	54	1.7	5.8	7.1	700	See Note 4
GIW-07	11/13/2015	30	53	2.2	7.9	6.9	660	
GIW-07	12/10/2015	26	58	ND	4.5	9.6	870	
GIW-07	1/27/2016	29	59	ND	3	8.6	660	
GIW-07	2/17/2016	15	68	ND	ND	15	1,500	
GIW-08	10/14/2015	19	62	2.8	12	5.0	740	See Note 4
GIW-08	11/13/2015	19	56	4	15	5.4	740	
GIW-08	12/09/2015	24	59	2	10	4.7	570	
GIW-08	12/10/2015	24	63	ND	4.9	6.7	860	See Note 2
GIW-08	1/27/2016	26	59	ND	13	2.2	320	
GIW-08	2/17/2016	25	62	ND	10	2.2	360	
GIW-09	10/14/2015	3	13	15	66	2.2	260	See Note 4
GIW-09	11/13/2015	3.9	13	16	64	2.4	220	
GIW-09	12/10/2015	5	21	14	55	5.4	340	See Note 4
GIW-09	1/27/2016	11	31	9.3	40	8.9	590	See Note 4
GIW-09	2/17/2016	6.2	17	14	57	4.9	320	See Note 4
GIW-10	10/14/2015	3.6	51	ND	ND	42	2,900	
GIW-10	11/13/2015	1.3	50	ND	4.5	42	3,200	
GIW-10	12/10/2015	0.4	42	5.1	18	34	2,500	See Note 1
GIW-10	1/26/2016	0.3	31	7.7	28	32	2,100	See Note 4
GIW-10	2/17/2016	0.4	53	ND	ND	44	3,200	
GIW-11	10/14/2015	2.9	47	4.8	19	26	2,500	See Note 4
GIW-11	11/13/2015	3.2	48	4.2	17	27	2,500	
GIW-11	12/09/2015	2.4	53	2.7	12	29	2,500	See Note 4
GIW-11	1/26/2016	4	46	4.1	19	27	1,900	See Note 4
GIW-11	2/16/2016	4.4	39	6	29	21	1,700	See Note 4
GIW-12	10/14/2015	5.2	20	11	57	5.9	510	See Note 4
GIW-12	11/13/2015	4.3	21	12	56	6.5	530	
GIW-12	12/09/2015	4.2	24	10	55	6.5	470	See Note 4
GIW-12	1/26/2016	4.2	20	11	61	4.9	320	See Note 4
GIW-12	2/16/2016	5.3	20	12	60	2.6	240	See Note 4

Well Name	Date Sampled	Methane	CO ₂	O₂/Argon	Nitrogen	Hydrogen	Carbon Monoxide	Comments
				(%)			(ppm)	
GIW-13	10/14/2015	8.5	57	ND	7	25	2,000	
GIW-13	11/13/2015	4.3	63	ND	3.2	28	2,500	
GIW-13	12/09/2015	10	58	ND	5.7	25	1,700	
GIW-13	1/26/2016	11	58	ND	6.8	22	1,500	
GIW-13	2/16/2016	13	58	ND	7.6	21	1,500	
Flare Station ²	10/6/2015	9.4	33.3	9	37.0	9.9	933	See Note 5
Flare Station ²	11/3/2015	10.7	37.3	8	32.0	10.7	1,100	See Note 5
Flare Station ²	12/1/2015	10.6	36.2	8.1	33.6	10.5	1000	See Note 6
Flare Station ²	1/5/2016	11.2	37.6	7.7	32.1	10.7	1,000	See Note 6
Flare Station ²	2/2/2016	11.8	37.7	7.8	31.0	10.9	1,050	See Note 6
Flare Station ²	3/2/2016	10.7	34.6	8.8	35.3	9.6	910	See Note 7

Notes: (1) Based on the comparison of field to laboratory readings, oxygen to balance gas ratios, and historical concentrations, the sample was determined to be suspect due to oxygen introduction which likely occurred during sample collection or laboratory analytical methods. (2) MDNR also collected duplicate LFG samples at these locations during this sampling period. (3) Based on the oxygen verification readings taken with an Envision meter, it was determined there is a sample train leak. (4) Based on the oxygen verification readings taken with an Envision meter, it was determined that the readings are accurate. (5) Flare station gas concentration data is an average of FL-100, FL-120, and FL-140. (6) Flare station gas concentration data is an average of Outlets 1 & 2. (7) Flare station gas concentration based on data from Outlet B.

ND = Analyte not detected in sample.

² = Flare Station Inlet measured at EPA Method 2 flow port (blower outlet)

February 29, 2016

Republic Services

ATTN: Jim Getting

Bridgeton, MO 63044

13570 St. Charles Rock Rd.

ADE-1461 EPA Methods TO3, TO14A, TO15 SIM & SCAN **ASTM D1946**

TX Cert T104704450-14-6 EPA Methods TO14A, TO15

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

LABORATORY TEST RESULTS

Project Reference: Bridgeton Landfill

Lab Number:

H021912-01/35

Enclosed are results for sample(s) received 2/19/16 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Complete reanalysis of both samples was conducted, per client's request.
- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the NELAC Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Jim Getting, Mike Lambrich, Ryan Ayers and David Randall, Weaver Consultants Group, on 2/26/16.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely,

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

Enclosures

	CLL	1014	200		18501 E. G	le Ave., Suite 130	31.		SE CE	Ö Z	CHAIN OF CUSTODY RECORD	KEC.	223	- 1	
		ALLI ECHNOLOGY	うりつ		City of Indus	itry, CA 91748	TURN	TURNAROUND TIME	TIME		DELIVERABLES	T	PAGE: 1	P	4
	Labor	Laboratories, Inc.			Ph: 626-964	Ph; 626-964-4032	Standard		48 hours		EDD	တ	Condition upon receipt:	pt:	
3					Fx: 626-964	-5832	Same Day		72 hours				Sealed Yes	П	□ 8
Project No.:							24 hours	<u>"</u>	96 hours		Level 3		Intact	Intact Yes	□ 2
Project Name:	Bridgeton Landfill	andfill		120			Other:	, L	5 day		Level 4		Chilled		- deg C
Report To:	Jim Getting							BILLING	NG			ANA	ANALYSIS REQUEST	ST	
Company:	Republic Services	ivices					P.O. No.:	PO4862452-554410	452-5E	34HC	0			17	
Street:	13570 St. C	13570 St. Charles Rock Rd.	- 20				Bill to:	Republic Services	Service	Se Se					
City/State/Zip:	Bridgeton, MO 63044	MO 63044						Attn: Jim Getting	1 Getting						
Phone& Fax:	314-683-3921	21					13570 St. C	Charles Rock Rd	Rock R	d.			11		
e-mail:	JGetting@	JGetting@republicservices.com	es.com				Bridgeton, MO 63044	MO 630	44		-15				
											H 'O				
LAB USE ONLY	ONLY	Canis	Canister Pressures ("hg)	rres ("hg)	g go W	SAMPLE IDENTIFICATION	3J9W ATE	MPLE	AEINER PYTYPE	XIRIX -AVA38	ф + С юи			H	
		Canister ID	Sample Start	Sample End	Lab Receive						T				
HO2 1972	10-2	5811	-20.8	-5	5	GEW-40	2/15/2016	951	ပ	LFG	X AN				
	70-	3159	-20.5	-5	+	GEW-46R	2/15/2016	1016	O	LFG N	NA X				
	-03	A8080	-20	ςγ	15	GEW-2	2/15/2016	1103	၁	LFG N	X X				
	170-	5307	-20	ιģ	++	GEW-4	2/15/2016	1117	ပ	LFG N	NA X				
	50-	A7820	-20.4	τ̈́	+-	GEW-5	2/15/2016	1135	S	LFG	NA X				
	90-	5924	-20.1	rģ	+	GEW-49	2/15/2016	1442	ပ	LFG N	NA X				
	20-	A8085	-20.2	ιģ	+	GEW-48	2/15/2016	1450	O	LFG N	NA X				
	00-	5918	-19.9	ιç	4-	GEW-53	2/15/2016	1519	ပ	LFG N	NA X				
7	10-	A8092	-20	ιģ	-4	GEW-54	2/15/2016	1528	O	LFG	X AN				
AUTHORIZATION TO PERFORM WORK: Dave Penoyer	ве В Мови В	ive Penoyer		0		company: Republic Services	DATE/TIME:		COMMENTS	TS					
SAMPLED BY: Ryan Ayers	Ayers					COMPANY: Republic Services	DATE/TIME								
RELINQUISHED BY	1/4	CANA	. 0	2-17-16			DATE/TIME								
RELINQUISHED BY	000		1.01.0		*	DATE/RECEIVED BY	G DATE/TIME								

METHOD OF TRANSPORT (circle one): Walk-In FedEx UPS Courier DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy

Other

ATLI

Preservation: H=HCI N=None / Container: B=Bag C=Can V=VOA O=Other Rev. 03 - 5/7/09

					18501 F. G	ale Ave Suite 130			CE	ON	F CUST	CHAIN OF CUSTODY RECORD	CORD		
V		JI ECHNOLOGY	750		City of Indu	City of Industry, CA 91748	TUR	TURNAROUND TIME	TIME		DELIVE	DELIVERABLES	PAGE:	2 OF	4
	Labor	Laboratories, Inc.			Ph: 626-964-4032	4-4032	Standard		48 hours		EDD		Condition upon receipt:	on receipt:	,
אאון				720	Fx: 626-96	1-5832	Same Day		72 hours		EDF			Sealed Yes □	□ %
Project No.:							24 hours		96 hours		Level 3	3		Intact Yes	2
Project Name:	Bridgeton Landfill	andfill					Other:		5 day		Level 4	4		Chilled	deg C
Report To:	Jim Getting	اليو						BILLING	NG			A	ANALYSIS REQUEST	EQUEST	
Company:	Republic Services	rvices					P.O. No.:	PO4862452	452						
Street:	13570 St. C	13570 St. Charles Rock Rd.					Bill to:	Republi	Republic Services	Se				-0	
City/State/Zip:	Bridgeton, MO 63044	MO 63044						Attn: Jin	Attn: Jim Getting	ı					
Phone& Fax:	314-683-3921	21					13570 St. Charles Rock Rd	Charles	Rock R	Ġ.					
e-mail:	JGetting@	JGetting@republicservices.com	es.com				Bridgeton, MO 63044	MO 630	44		CH				
											10				-
LAB USE ONLY	UNLY	Canis	Canister Pressures ("hg)	res ("hg)		SAMPLE IDENTIFICATION	ajam ata	IME Wbre	ЯЭИІАТ УЛҮРЕ	XIATA	46 + С 10И 3ERVA-				
		Canister ID	Sample Start	Sample End	Lab Receive						1				
HOZIGR	01-	A7671	-20.1	-5	ヤ	GEW-55	2/15/2016	1539	ပ	LFG	NA ×				
	1	A7797	-20.6	ς	-3.5	GEW-42R	2/15/2016	1003	၁	LFG	NA ×				
	21-	2900	-20.5	-5	4-	GEW-45R	2/15/2016	1017	ပ	LFG	NA X	12. E			
	~1-	A8094	-20.7	5	+-	GEW-3	2/15/2016	1123	ပ	LFG	NA X				
	71-	A7765	-20.15	ς	14	GEW-47R	2/15/2016	1141	ပ	LFG	NA ×				
	-15	A7798	-20.1	-5	-4.5	GEW-8	2/15/2016	1531	O	LFG	NA ×	1. 2			
11	91-	A7663	-20	-5	7-	GEW-109	2/16/2016	1438	၁	LFG	NA ×				
	-17	A7760	-20	-Çı	+	GEW-38	2/16/2016	1449	O	LFG	NA X	8.2			
7	18	3441	-20.2	ιģ	+-	GEW-56R	2/16/2016	1515	ပ	LFG	NA ×				
NUTHORIZATION TO PERFORM WORK: Dave Penoyer	ови мовк: Ва	ive Penoyer				COMPANY: Republic Services	DATE/TIME:		COMMENTS	STN					
SAMPLED BY: Ryan Ayers	/ers					COMPANY: Republic Services	DATE/TIME								

Preservation: H=HCl N=None / Container: B=Bag C=Can V=VOA O=Other Rev. 03 - 5/7/09

2-19-16 8:45

DATE/ RECEIVED BY

0011

2-17-16

91-61-2

RELINQUISHED BY

ELINQUISHED BY

DATE/ RECEIVED BY

METHOD OF TRANSPORT (circle one): Walk-In FedEx UPS Courier ATLI Other

DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy

DATE/TIME

		VAC LOUIS OF THE	700		18501 E. G	18501 E. Gale Ave., Suite 130			5		200	CHAIN OF COSTODY RECORD	OROS COR			
V			2		City of Indu	City of Industry, CA 91748	TUR	TURNAROUND TIME	D TIME		DELIVE	DELIVERABLES	PAGE:	m	PF	4
	Labora	Laboratories, Inc.			Ph: 626-964-4032	-4032	Standard		48 hours		EDD		Condition	Condition upon receipt:		
7187					FX: 626-964-5832	-5832	Same Day		72 hours	П	딤			Sealed Yes	_	□ 8
roject No.:							24 hours		96 hours		Level 3	» ا		Intact Yes	_	□ 8
Project Name: B	Bridgeton Landfill	ındfill					Other:		5 day		Level 4	4		Chilled		deg (
Report To:	Jim Getting							BILI	BILLING			A	ANALYSIS REQUEST	REQUEST	72	
Company: R	Republic Services	rvices					P.O. No.:	PO4862452	2452							
treet:	13570 St. Cl	13570 St. Charles Rock Rd.					Bill to:	Repub	Republic Services	es		-11				
Sity/State/Zip: B	Bridgeton, MO 63044	AO 63044						Attn: Ji	Attn: Jim Getting							
hone& Fax: 3	314-683-3921	Σ					13570 St.	Charles	Charles Rock Rd.	j.						
-mail:	JGetting@r	JGetting@republicservices.com	s.com				Bridgeton, MO 63044	MO 63	044		СН	200		,		
											-					
LAB USE ONLY	INLY	Canist	Canister Pressures ("hg)	res ("hg)		SAMPLE IDENTIFICATION	∃J9N ∃TA	NPLE	TAINER JAYTY	XIRIX -AVA3	te + Со	NO SINO				
		Canister ID	Sample Start	Sample End	Lab Receive						Щ					
H02192-	19	5928	-20.1	-5	+-	GEW-10	2/16/2016	1539	O	LFG.	×					
	-20	A7795	-20.3	-5	-4	GEW-110	2/16/2016	1548	U	LFG	× ×					
	12-	A7781	-20	-5	+-4	GEW-39	2/16/2016	1442	U	LFG	× ×					
	-22	A8073	-20.2	-5	7-4	GIW-5	2/16/2016	1453	O	LFG	NA ×	10. 10.		a		
	-23	A8067	-20.15	-5	4	GIW-11	2/16/2016	1520	O	LFG	NA ×					
	h2-	A8082	-20.35	ç	+	GIW-12	2/16/2016	1545	၁	LFG	NA X					
	-25	A7779	-20.3	-5	++	GIW-13	2/16/2016	1554	၁	LFG	× ×	W 20				
	22-	5819	-20.25	-5	++	GIW-1	2/16/2016	1608	ပ	LFG	NA					
7	12-	5319	-20.3	-5	74	GIW-9	2/17/2016	820	ပ	LFG	NA X					
ЛТНОRIZATION TO PERFORM WORK: Dave Penoyer	ови мовк: Da	ve Penoyer				COMPANY: Republic Services	DATE/TIME:		COMMENTS	NTS						
AMPLED BY: Ryan Ayers	rers					COMPANY: Republic Services	DATE/TIME									
ELINQUISHED BY	Ma	4000	2-1	2-17-16	90//	DATE/RECEIVED BY	DATE/TIME									
ELINQUISHED BY	0	91-61-2	()	ST. 8		DATE/RECEIVED BY UL 2-1	19-16-8:	154	050							
ELINQUISHED BY						DATE/RECEIVED BY	DATE/TIME									
TETHOD OF TRANSPORT (circle one):	NSPORT (cir.	cle one): Walk-In	n FedEx	UPS Courier	rier ATLI	Other										

DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy

Preservation: H=HCI N=None / Container: B=Bag C=Can V=VOA O=Other Rev. 03 - 5/7/09

		10141	700		18501 E. G	le Ave Suite 130			CH	S N	CHAIN OF CUSTODY RECORD	RECORD	- 1	
7	して	ALLI ECHNOLOGY	トラフ		City of Indus	City of Industry, CA 91748	TUR	TURNAROUND TIME	TIME		DELIVERABLES	PAGE:	4 OF	4
	Labor	Laboratories, Inc.			Ph: 626-964-4032	-4032	Standard		48 hours		EDD	Condition	Condition upon receipt:	
5					FX: 626-964	-5832	Same Day		72 hours		EDF		Sealed Yes	□ ≗
Project No.:							24 hours		96 hours		Level 3		Intact Yes	□ ≗
Project Name:	Bridgeton Landfill	andfill					Other:		5 day		Level 4		Chilled	O geb —
Report To:	Jim Getting							BILLING	NG			ANALYSIS REQUEST	REQUEST	
Company:	Republic Services	rvices					P.O. No.:	PO4862452	452					
Street:	13570 St. C	13570 St. Charles Rock Rd.					Bill to:	Republi	Republic Services	SS				
City/State/Zip:	Bridgeton, MO 63044	MO 63044						Attn: Jin	Attn: Jim Getting					
Phone& Fax:	314-683-3921	21					13570 St. Charles Rock Rd	Charles	Rock R	Ö.				
e-mail:	JGetting@	JGetting@republicservices.com	ss.com				Bridgeton, MO 63044	MO 630	44		71			
											H 'O			
X 1140 Had 1	> 1140	Canis	Canister Pressures ("hg)	ıres ("hg	(
EAB GAL	ONE	Canister ID	Sample Start	Sample End	Lab Receive	SAMPLE IDENTIFICATION	IMAS 'AQ	imas Vit	CONT ΩTY/T	ITAM B2B99	D1946			
716120H	82-2	A8066	-20.6	-5	14	GIW-8	2/17/2016	829	U	LFG	×			
	62-	A8083	-20.9	-5	4-	GIW-7	2/17/2016	836	ပ	LFG	X ×			
	-30	5836	-20	-5	4	GIW-6	2/17/2016	845	O	LFG	×			
	18-	A7766	-20.4	-5	1-4	GIW-10	2/17/2016	853	O	LFG N	NA X			
	-32	A7769	-20.3	ç,	4-	GIW-4	2/17/2016	903	O	LFG	×			
	-33	5912	-20.3	ç,	+-	GIW-3	2/17/2016	910	O	LFG N	×			
	-34	6141	-20.6	ιĊ	+-	GIW-2	2/17/2016	918	ပ	LFG	X ×			
>	-35	A8070	-20.6	-Ç	17	GEW-9	2/17/2016	954	၁	LFG N	NA X			
AUTHORIZATION TO PERFORM WORK: Dave Penoyer	вгови мовк: Da	ve Penoyer				company: Republic Services	DATE/TIME:		COMMENTS	TS				
SAMPLED BY: Ryan Ayers	Ayers					COMPANY: Republic Services	DATE/TIME							
RELINQUISHED BY	Hy	CM3.	7	2-17-16	100	DATE/RECEIVED BY	DATE/TIME							
RELINQUISHED BY	Fod Kx	2-19-1	9	8:1	1	DATE/RECEIVED BY LAST	00	Sh:						
RELINQUISHED BY						DATE/RECEIVED BY	DATE/TIME							
METHOD OF TRANSPORT (circle one):	ANSPORT (cir	cle one): Walk-In	In FedEx		Courier ATLI	Other								
DISTRIBUTION:	White & Yellow	DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy	ık - Customer	. Copy			Preservat	ion: H =HC	N=Non	e / Cont	Preservation: H=HCl N=None / Container: B=Bag C=Can V=VOA O=Other	an V=VOA (Rev. 03 - 5/7/09

Page 2 of 14 H021912

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

02/19/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H0219	12-01	H0219	12-02	H02191	12-03	H0219	12-04
Client Sample I.D.:	GEW	-40	GEW-	-46R	GEV	V-2	GEV	V-4
Date/Time Sampled:	2/15/16	9:51	2/15/16	10:16	2/15/16	11:03	2/15/16	11:17
Date/Time Analyzed:	2/25/16	16:03	2/25/16	16:18	2/25/16	16:32	2/25/16	16:47
QC Batch No.:	160225G	C8A1	1602250	GC8A1	160225G	C8A1	1602250	C8A1
Analyst Initials:	AS		AS	3	AS		AS	
Dilution Factor:	2.8	3	3.0)	3.2		3.0)
ANALYTE	Result % v/v	RL % v/v						
Hydrogen	ND d	0.028	0.11 d	0.030	ND d	0.032	0.064 d	0.030
Carbon Dioxide	38	0.028	40	0.030	41	0.032	41	0.030
Oxygen/Argon	1.4	1.4	ND	1.5	1.7	1.6	ND	1.5
Nitrogen	5.2	2.8	4.3	3.0	5.8	3.2	3.3	3.0
Methane	55	0.0028	55	0.0030	52	0.0032	55	0.0030
Carbon Monoxide	ND	0.0028	ND	0.0030	ND	0.0032	ND	0.0030

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch 160226GC8A2

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 2-26-16

Page 3 of 14 H021912

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

02/19/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H02191	12-05	H02191	12-06	H02191	12-07	H0219	912-08
Client Sample I.D.:	GEW	V-5	GEW	-49	GEW	-48	GEV	W-53
Date/Time Sampled:	2/15/16	11:35	2/15/16	14:42	2/15/16	14:50	2/15/1	6 15:19
Date/Time Analyzed:	2/25/16	17:01	2/25/16	17:16	2/25/16	17:30	2/25/1	6 17:45
QC Batch No.:	160225G	C8A1	160225G	C8A1	160225G	C8A1	160225	GC8A1
Analyst Initials:	AS		AS	,	AS		A	S
Dilution Factor:	3.0)	3.0)	3.0)	3	.0
ANALYTE	Result % v/v	RL % v/v						
Hydrogen	0.073 d	0.030	0.10 d	0.030	0.033 d	0.030	5.8	3.0
Carbon Dioxide	38	0.030	37	0.030	40	0.030	41	0.030
Oxygen/Argon	ND	1.5	ND ·	1.5	ND	1.5	ND	1.5
Nitrogen	7.6	3.0	6.3	3.0	3.8	3.0	ND	3.0
Methane	54	0.0030	55	0.0030	56	0.0030	50	0.0030
Carbon Monoxide	ND	0.0030	ND	0.0030	ND	0.0030	0.0057	0.0030

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch 160226GC8A2

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 7-76-16

Page 4 of 14 H021912

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

02/19/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Tab Na.	170216	112.00	TI0210:	12 10	170210	12 11	TT0210:	10.10
Lab No.:	H0215	912-09	H0219	12-10	H0219	12-11	H0219	14-14
Client Sample I.D.:	GEV	W-54	GEW	-55	GEW-	42R	GEW-	45R
Date/Time Sampled:	2/15/10	5 15:28	2/15/16	15:39	2/15/16	10:03	2/15/16	10:17
Date/Time Analyzed:	2/25/10	5 18:00	2/25/16	18:14	2/25/16	18:29	2/25/16	18:43
QC Batch No.:	160225	GC8A1	1602250	C8A1	160225G	C8A1	160225G	C8A1
Analyst Initials:	A	S	AS		AS		AS	
Dilution Factor:	3.	.0	3.0)	2.9)	3.0)
	Result	RL	Result	RL	Result	RL	Result	RL
ANALYTE	% v/v	% v/v	% v/v	% v/v	% v/v	% v/v	% v/v	% v/v
Hydrogen	4.3	3.0	1.4 d	0.030	0.041 d	0.029	ND d	0.030
Carbon Dioxide	41	0.030	43	0.030	41	0.029	39	0.030
Oxygen/Argon	ND	1.5	ND	1.5	ND	1.4	ND	1.5
Nitrogen	3.4	3.0	ND	3.0	ND	2.9	ND	3.0
Methane	51	0.0030	54	0.0030	56	0.0029	57	0.0030
Carbon Monoxide	ND	0.0030	ND	0.0030	ND	0.0029	ND	0.0030

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch 160226GC8A2

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 2-26-16

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

02/19/16

Matrix:

Air

Reporting Units:

% v/v

ASTM D1946

QC Batch No.: 160225GC8A1 160225GC8A1 160225GC8A2 160225GC8A2 160225GC8A2 Analyst Initials: AS AS MJ MJ Dilution Factor: 3.0 3.1 3.0 Result ANALYTE REsult % V/v RL % V/v Result % V/v RL % V/v % V/v <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
Date/Time Sampled: 2/15/16 11:23 2/15/16 11:41 2/15/16 15:31 2/16/16 14:38	Lab No.:	H02191	12-13	H02191	12-14	H02191	2-15	H0219	912-16
Date/Time Analyzed: 2/25/16 18:58 2/25/16 19:12 2/25/16 21:24 2/25/16 21:39	Client Sample I.D.:	GEW	/-3	GEW-	47R	GEW	7-8	GEW-109	
QC Batch No.: 160225GC8A1 160225GC8A1 160225GC8A2 160225GC8A2 160225GC8A2 Analyst Initials: AS AS MJ MJ Dilution Factor: 3.0 3.1 3.0 Result ANALYTE REsult % v/v RL % v/v Result % v/v RL % v/v % v/v <th>Date/Time Sampled:</th> <th>2/15/16</th> <th>11:23</th> <th>2/15/16</th> <th>11:41</th> <th>2/15/16</th> <th>15:31</th> <th>2/16/10</th> <th>6 14:38</th>	Date/Time Sampled:	2/15/16	11:23	2/15/16	11:41	2/15/16	15:31	2/16/10	6 14:38
Analyst Initials: AS AS MJ MJ	Date/Time Analyzed:	2/25/16	18:58	2/25/16	19:12	2/25/16	21:24	2/25/16 21:39	
Dilution Factor: 3.0 3.0 3.1 3.0	QC Batch No.:	160225GC8A1		160225G	C8A1	160225G	C8A2	160225GC8A	
Result RL Result Ru Ru Ru Ru Ru Ru Ru R	Analyst Initials:	AS		AS	7	MJ		MJ	
ANALYTE % v/v <	Dilution Factor:	3.0		3.0)	3.1			
Carbon Dioxide 42 0.030 38 0.030 47 0.031 63 0.030 Oxygen/Argon ND 1.5 ND 1.5 ND 1.5 ND 1.5 Nitrogen ND 3.0 11 3.0 ND 3.1 ND 3.0 Methane 56 0.0030 50 0.0030 50 0.0031 3.4 0.003	ANALYTE		6-440-941 -011		NAME OF THE PARTY		Water to		RL % v/v
Oxygen/Argon ND 1.5 ND 1.5 ND 1.5 Nitrogen ND 3.0 11 3.0 ND 3.1 ND 3.0 Methane 56 0.0030 50 0.0030 50 0.0031 3.4 0.003	Hydrogen	0.14 d	0.030	0.16 d	0.030	0.68 d	0.031	32	3.0
Nitrogen ND 3.0 11 3.0 ND 3.1 ND 3.0 Methane 56 0.0030 50 0.0030 50 0.0031 3.4 0.003	Carbon Dioxide	42	0.030	38	0.030	47	0.031	63	0.030
Methane 56 0.0030 50 0.0030 50 0.0031 3.4 0.003	Oxygen/Argon	ND	1.5	ND	1.5	ND	1.5	ND	1.5
	Nitrogen	ND	3.0	11	3.0	ND	3.1	ND	3.0
Carbon Monoxide ND 0.0030 ND 0.0030 ND 0.0031 0.23 0.003	Methane	56	0.0030	50	0.0030	50	0.0031	3.4	0.0030
	Carbon Monoxide	ND	0.0030	ND	0.0030	ND	0.0031	0.23	0.0030
							5		

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch 160226GC8A2

Reviewed/Approved By:

Mark Johnson **Operations Manager**

The cover letter is an integral part of this analytical report

Date _ Z-Z 6-16

Page 5 of 14

H021912

Page 6 of 14 H021912

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

02/19/16

Matrix:

Air

Reporting Units:

% V/V

ASTM D1946

								
Lab No.:	H0219	912-17	H021	912-18	H0219	12-19	H0219	912-20
Client Sample I.D.:	GEW-38		GEW	V-56R	GEW	⁷ -10	GEV	V-110
Date/Time Sampled:	2/16/10	5 14:49	2/16/1	6 15:15	2/16/16	15:39	2/16/1	6 15:48
Date/Time Analyzed:	2/,25/10	5 21:54	2/25/1	6 22:08	2/25/16	22:23	2/25/1	6 22:37
QC Batch No.:	160225	GC8A2	160225	GC8A2	1602250	GC8A2	160225	GC8A2
Analyst Initials:	M	IJ	N	1J	M	J	N	IJ
Dilution Factor:	3.0		3	.0	3.0)	3	.0
	Result	RL	Result	RL	Result	RL	Result	RL
ANALYTE	% v/v	% v/v	% v/v	% V/V	% v/v	% V/V	% v/v	% V/V
Hydrogen	25	3.0	10	3.0	0.18 d	0.030	14	3.0
Carbon Dioxide	44	0.030	38	0.030	41	0.030	34	0.030
Oxygen/Argon	6.6	1.5	ND	-1.5	. 1.6	1.5	9.0	1.5
Nitrogen	24	3.0	30	3.0	6.5	3.0	36	3.0
Methane	0.28	0.0030	20	0.0030	50	0.0030	7.0	0.0030
Carbon Monoxide	0.26	0.0030	0.062	0.0030	0.0031	0.0030	0.081	0.0030

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch 160226GC8A2

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 2-26-16

Page 7 of 14 H021912

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

02/19/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H0219	12.21	11021	912-22	II0216	912-23	H02191	12.24
Lau No.:	H0219	12-21	11021	714-44	11021	714-43	1102191	12-24
Client Sample I.D.:	GEW	-39	GI	W-5	GIV	V-11	GIW	-12
Date/Time Sampled:	2/16/16	14:42	2/16/1	6 14:53	2/16/10	5 15:20	2/16/16	15:45
Date/Time Analyzed:	2/25/16	22:52	2/25/1	6 23:06	2/25/10	5 23:21	2/25/16 23:36	
QC Batch No.:	1602250	C8A2	160225	GC8A2	160225	GC8A2	160225G	C8A2
Analyst Initials:	M.	ſ	N	1 J	N	IJ	MJ	ſ
Dilution Factor:	3.0)	3	.0	3	.0	3.0)
ANALYTE	Result % v/v	RL % v/v						
Hydrogen	0.86 d	0.030	34	3.0	21	3.0	2.6 d	0.030
Carbon Dioxide	55	0.030	57	0.030	39	0.030	20	0.030
Oxygen/Argon	ND	1.5	ND	1.5	6.0	1.5	12	1.5
Nitrogen	ND	3.0	4.7	3.0	29	3.0	60	3.0
Methane	42	0.0030	2.2	0.0030	4.4	0.0030	5.3	0.0030
Carbon Monoxide	0.0075	0.0030	0.17	0.0030	0.17	0.0030	0.024	0.0030

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch 160226GC8A2

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 7-26-16

Page 8 of 14 H021912

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

02/19/16

Matrix:

Air

Reporting Units:

% V/V

ASTM D1946

Lab No.:	H0219	912-25	H0219	912-26	H0219	912-27	H021912-28		
20071000	11021				11021		110217		
Client Sample I.D.:	GIW-13		GI	GIW-1		W-9	GIW-8		
Date/Time Sampled:	2/16/16 15:54		2/16/1	6 16:08	2/17/1	6 8:20	2/17/16	8:29	
Date/Time Analyzed:	2/25/10	5 23:50	2/26/1	6 0:05	2/26/1	6 0:19	2/26/16 0:34		
QC Batch No.:	160225	GC8A2	160225	GC8A2	160225	GC8A2	160225GC8A2		
Analyst Initials:	N	IJ	IV.	1J	N	IJ	M.	ſ	
Dilution Factor:	3	.0	3	.0	3	.0	3.0)	
	Result	RL	Result	RL	Result	RL	Result	RL	
ANALYTE	% v/v	% V/V	% v/v	% v/v	% v/v	% v/v	% v/v	% v/v	
Hydrogen	21	3.0	24	3.0	4.9	3.0	2.2 d	0.030	
Carbon Dioxide	58	0.030	61	0.030	17	0.030	62	0.030	
Oxygen/Argon	ND	1.5	2.7	1.5	14	1.5	ND	1.5	
Nitrogen	7.6	3.0	9.8	3.0	57	3.0	10	3.0	
Methane	13	0.0030	1.7	0.0030	6.2	0.0030	25	0.0030	
Carbon Monoxide	0.15	0.0030	0.25	0.0030	0.032	0.0030	0.036	0.0030	

Results normalized including non-methane hydrocarbons

The cover letter is an integral part of this analytical report

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch 160226GC8A2

Reviewed/Approved By:

Mark Johnson Operations Manager

Date 2-76-16

Page 9 of 14 H021912

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

02/19/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	T0210	912-29	17021	912-30	110210	912-31	H021912-32	
Dau 140	11021	フェルールフ	11021	714-30	11021	714-31	11021712-32	
Client Sample I.D.:	GI	W-7	GI	GIW-6		V-10	GIV	W-4
Date/Time Sampled:	2/17/1	6 8:36	2/17/1	6 8:45	2/17/16 8:53		2/17/1	6 9:03
Date/Time Analyzed:	2/26/1	6 0:48	2/26/1	6 1:03	2/26/1	61:17	2/26/1	6 1:32
QC Batch No.:	160225GC8A2		160225	GC8A2	160225	GC8A2	160225	GC8A2
Analyst Initials:	N	IJ	N	1J	N	1J	MJ	
Dilution Factor:	3	.0	3	.0	3	.0	3.0	
ANALYTE	Result % v/v	RL % v/v						
Hydrogen	15	3.0	36	3.0	44	3.0	36	3.0
Carbon Dioxide	68	0.030	59	0.030	53	0.030	43	0.030
Oxygen/Argon	ND	1.5	ND	1.5	ND	1.5	4.2	1.5
Nitrogen	ND	3.0	ND	3.0	ND	3.0	15	3.0
Methane	- 15	0.0030	1.1	0.0030	0.36	0.0030	0.56	0.0030
Carbon Monoxide	0.15	0.0030	0.15	0.0030	0.32	0.0030	0.23	0.0030
							L	

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 2-26-16

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

02/19/16

Matrix:

Air

Reporting Units:

% v/v

ASTM D1946

W-3 6 9:10 6 9:48 GC8A1 s .0 RL	2/17/1 2/26/10 160226	W-2 6 9:18 6 10:03 GC8A1 .S .0	2/17 2/26/ 16022	/16 26G AS 3.0	9:54 10:17 CC8A1		
6 9:48 GC8A1 .s	2/26/10 160226 A	6 10:03 GC8A1 .S	2/26/ 16022	/16 26G AS 3.0	10:17 C8A1		
GC8A1 .s	160226 A	GC8A1 S	16022	26G AS 3.0	C8A1		
.S	A 3	.0		AS 3.0		Part of the latest of the late	
.0	3	.0		3.0			
							7.
RL	Result	RI.	70 7				and the second second
% v/v	% v/v	% v/v	Resul % v/v		RL % v/v		
3.0	10	3.0	0.69	d	0.030		
0.030	40	0.030	43		0.030		
1.5	7.8	1.5	ND		1.5		
3.0	33	3.0	ND		3.0		
0.0030	8.0	0.0030	54		0.0030		
0.0030	0.062	0.0030	ND		0.0030		
	1.5 3.0 0.0030	1.5 7.8 3.0 33 0.0030 8.0	1.5 7.8 1.5 3.0 33 3.0 0.0030 8.0 0.0030	1.5 7.8 1.5 ND 3.0 33 3.0 ND 0.0030 8.0 0.0030 54	1.5 7.8 1.5 ND 3.0 33 3.0 ND 0.0030 8.0 0.0030 54	1.5 7.8 1.5 ND 1.5 3.0 33 3.0 ND 3.0 0.0030 8.0 0.0030 54 0.0030	1.5 7.8 1.5 ND 1.5 3.0 33 3.0 ND 3.0 0.0030 8.0 0.0030 54 0.0030

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch 160226GC8A2

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 2-26-16

2-26-16

Date:

QC Batch No.: 160225GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method	Blank	L	CS	L	CSD		
Date/Time Analyzed:	2/25/16	10:32	2/25/	16 9:48	2/25/	16 10:03		
Analyst Initials:	A	S		AS		AS		
Datafile:	25fet	25feb010		eb007	251	feb008		
Dilution Factor:	1.	1.0		1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	106	70-130%	105	70-130%	0.6	<30
Carbon Dioxide	ND	0.010	99	70-130%	98	70-130%	1.0	<30
Oxygen/Argon	ND	0.50	99	70-130%	98	70-130%	0.8	<30
Nitrogen	ND	1.0	99	70-130%	99	70-130%	0.6	<30
Methane	ND	0.0010	91	70-130%	91	70-130%	0.0	<30
Carbon Monoxide	ND	0.0010	107	70-130%	107	70-130%	0.1	<30

ND = Not Detected (Below RL)

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

Date: 2-26-16

QC Batch No.: 160225GC8A2

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method	Blank	I	CS	L	CSD		
Date/Time Analyzed:	2/25/16	21:10	2/25/1	16 20:25	2/25/1	16 20:40		
Analyst Initials:	M	J	I	MJ		MJ		
Datafile:	25fel	25feb053		eb050	251	feb051		
Dilution Factor:	1.	1.0		1.0		1.0		manuscriptor d'among a soci
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	102	70-130%	100	70-130%	1.9	<30
Carbon Dioxide	ND	0.010	97	70-130%	95	70-130%	1.7	<30
Oxygen/Argon	ND	0.50	98	70-130%	96	70-130%	2.0	<30
Nitrogen	ND	1.0	98	70-130%	96	70-130%	2.1	<30
Methane	ND	0.0010	114	70-130%	112	70-130%	1.3	<30
Carbon Monoxide	ND	0.0010	113	70-130%	113	70-130%	0.2	<30

ND = Not Detected (Below RL)

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

Date: 2-26-16

QC Batch No.: 160226GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method	Blank	I	CS	L	CSD		
Date/Time Analyzed:	2/26/10	6 9:21	2/26/	16 7:50	2/26/	16 8:51		
Analyst Initials:	A	S		AS		AS		
Datafile:	26fel	26feb009		eb003	261	feb007		
Dilution Factor:	1.0			1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	99	70-130%	101	70-130%	2.7	<30
Carbon Dioxide	ND	0.010	94	70-130%	97	70-130%	3.7	<30
Oxygen/Argon	ND	0.50	97	70-130%	99	70-130%	2.7	<30
Nitrogen	ND	1.0	97	70-130%	99	70-130%	2.6	<30
Methane	ND	0.0010	77	70-130%	97	70-130%	23.4	<30
Carbon Monoxide	ND	0.0010	92	70-130%	113	70-130%	20.6	<30
	2							

ND = Not Detected (Below RL)

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

Date: Z-Z6-16

QC Batch #

160226GC11A2

Matrix:

Air

Units:

% v/v

QC for Low Level Hydrogen Analysis

Lab No.:	Blank		LCS		LCSD			
Date Analyzed:	2/26/2016	2/26/2016 11:51		16 11:41	2/26/2016 11:46 AS			
Analyst Initials:	AS	3	AS					
Dilution Factor:	1.0		1.0		1.0		¥	
ANALYTE	Results	RL	%Rec	Criteria	%Rec	Criteria	RPD	Criteri
Hydrogen	ND	0.01	97	70-130	97	70-130	0.7	<20

ND = Not Detected (Below RL)

RL = PQL X Dilution Factor

Reviewed/Approved By:

Mark Johnson

Operations Manager

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
	Ī	•	(% v	ol)	•	°I	=	sci	m		H₂O	
GEW-002	2/4/2016 9:10	55.0	39.9	0.0	5.1	120.2		14	15	-0.4	-0.4	-13.3
GEW-002	2/9/2016 14:49	58.4	37.7	0.0	3.9	117.5		16	14	-0.6	-0.6	-12.7
GEW-002	2/9/2016 14:50	58.0	39.3	0.0	2.7	116.8		15	11	-0.4	-0.4	-12.8
GEW-002	2/15/2016 11:01	56.3	41.7	0.0	2.0	68.5		15	13	0.6	0.6	0.0
GEW-002	2/15/2016 11:06	56.7	42.2	0.0	1.1	76.2		9	10	0.4	0.4	-0.1
GEW-002	2/22/2016 11:17	60.4	35.7	0.0	3.9	118.0		15	16	-0.5	-0.5	-10.5
GEW-003	2/4/2016 9:14	50.3	37.5	0.0	12.2	109.8		16	15	-0.6	-0.6	-12.4
GEW-003	2/9/2016 15:06	57.3	35.3	0.1	7.3	107.0		34	32	-0.3	-0.3	-12.7
GEW-003	2/15/2016 11:18	56.8	40.3	0.0	2.9	89.0		0	0	0.7	0.7	-0.3
GEW-003	2/15/2016 11:25	56.8	40.1	0.0	3.1	88.7		0	0	0.8	0.8	-0.3
GEW-003	2/22/2016 11:21	55.2	39.6	0.0	5.2	110.9		13	13	-0.3	-0.3	-10.3
GEW-004	2/4/2016 9:18	50.5	36.0	0.0	13.5	112.5		16	16	-0.5	-0.5	-12.9
GEW-004	2/9/2016 15:07	56.5	38.5	0.1	4.9	104.3		21	20	-0.1	-0.1	-12.6
GEW-004	2/15/2016 11:16	56.4	40.8	0.0	2.8	78.9		0	0	0.6	0.6	-0.2
GEW-004	2/15/2016 11:20	57.4	36.2	0.0	6.4	78.8		0	0	0.7	0.7	-0.2
GEW-004	2/22/2016 11:24	55.3	39.2	0.0	5.5	106.8		0	0	-0.2	-0.2	-10.8
GEW-005	2/4/2016 9:49	43.1	36.4	0.0	20.5	90.1		0	0	-0.2	-0.2	-13.0
GEW-005	2/9/2016 15:10	48.3	36.6	0.0	15.1	89.2		16	15	-0.1	-0.1	-12.5
GEW-005	2/15/2016 11:34	53.7	39.5	0.0	6.8	93.8		0	0	0.5	0.5	-11.9
GEW-005	2/15/2016 11:38	53.6	35.0	0.0	11.4	96.2		0	0	0.4	0.4	-11.1
GEW-005	2/22/2016 11:30	44.9	36.5	0.0	18.6	95.2		0	0	-0.5	-0.4	-10.4
GEW-006	2/4/2016 9:57	46.7	34.1	0.0	19.2	84.7		19	12	-0.5	-0.5	-13.3
GEW-006	2/4/2016 9:58	48.1	35.4	0.0	16.5	83.3		9	10	-0.4	-0.4	-13.7
GEW-006	2/9/2016 15:25	53.3	39.4	0.0	7.3	84.0		17	15	-0.1	-0.1	-12.8
GEW-006	2/15/2016 14:36	46.7	30.9	0.2	22.2	86.4		0	0	0.2	0.2	-10.4
GEW-006	2/15/2016 14:37	58.8	36.7	0.0	4.5	89.9		3	0	0.0	-0.1	-10.4
GEW-006	2/22/2016 10:44	51.9	37.1	0.0	11.0	90.1		21	16	-0.6	-0.6	-9.7
GEW-007	2/4/2016 9:16	54.1	42.1	0.0	3.8	94.0		9	9	-4.0	-4.1	-12.4
GEW-007	2/4/2016 9:17	57.5	40.6	0.0	1.9	93.1		9	7	-3.6	-3.6	-12.4
GEW-007	2/11/2016 10:11	60.8	36.3	0.0	2.9	91.7		9	10	-3.0		
GEW-007	2/11/2016 10:13	60.0	38.6	0.0	1.4	90.7		8	7	-2.4	-2.4	-12.6
GEW-007	2/15/2016 15:21	59.1	39.6	0.0	1.3	90.3		28	28	-0.3	-0.3	-10.0
GEW-007	2/22/2016 11:02	59.0	38.7	0.0	2.3	91.2		17	19	-1.2	-1.2	-11.0
GEW-007	2/22/2016 11:03	59.2	39.1	0.0	1.7	90.3		7	8	-0.7	-0.7	-10.7
GEW-008	2/4/2016 9:11	52.6	40.7	0.1	6.6	111.8		20	19	-1.3	-1.3	-12.3
GEW-008	2/4/2016 9:12	52.6	43.0	0.0	4.4	111.3		12	16	-1.0	-1.0	-12.3
GEW-008	2/11/2016 10:17	55.4	39.8	0.0	4.8	109.9		7	10	-0.3	-0.2	-12.5
GEW-008	2/15/2016 15:26	51.5	44.6	0.0	3.9	109.9		0	0	0.6	0.6	-9.7
GEW-008	2/15/2016 15:35	51.8	43.6	0.0	4.6	112.5		0	0	-0.1	-0.1	-9.9
GEW-008	2/22/2016 11:07	55.8	40.4	0.0	3.8	112.9		12	20	-1.1	-1.1	-10.5
GEW-008	2/22/2016 11:09	50.9	45.2	0.0	3.9	112.5		37	38	-1.0	-1.0	-10.5
GEW-009	2/4/2016 9:08	52.0	41.2	0.2	6.6	121.5		33	28	-0.2	-0.1	-5.9

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
		•	(% v	ol)		°I	=	scfm		H₂O		
GEW-009	2/15/2016 15:40	52.9	44.0	0.0	3.1	56.4		0	3	0.5	0.5	0.6
GEW-009	2/17/2016 9:53	53.9	45.5	0.0	0.6	120.2		29	28	-0.1	-0.1	-10.9
GEW-009	2/17/2016 9:57	55.7	40.3	0.0	4.0	121.0		11	11	-0.1	-0.1	-11.3
GEW-009	2/22/2016 11:12	46.0	43.1	0.0	10.9	117.3		54	52	-4.2	-4.2	-23.5
GEW-009	2/22/2016 11:14	41.4	41.1	0.0	17.5	114.7		11	5	-0.9	-0.9	-22.8
GEW-010	2/1/2016 17:33	45.3	43.0	0.1	11.6	54.7		3	4	-2.8	-2.8	-11.7
GEW-010	2/11/2016 10:27	54.6	40.1	0.3	5.0	41.3		2	2	3.2	3.2	3.5
GEW-010	2/11/2016 10:30	56.3	39.9	0.0	3.8	49.9		2	2	-4.7	-4.6	-21.9
GEW-010	2/16/2016 15:37	46.5	35.9	2.8	14.8	45.0		4	5	-6.0	-6.1	-23.0
GEW-010	2/16/2016 15:41	54.6	42.1	0.3	3.0	45.9		5	4	-6.4	-6.5	-22.6
GEW-010	2/22/2016 11:18	53.7	42.2	0.2	3.9	69.2		1	0	-3.3	-3.3	-23.2
GEW-013A	2/4/2016 14:27	3.6	43.2	7.3	45.9	186.8				-11.8	-12.4	-11.9
GEW-013A	2/4/2016 14:28	3.7	45.5	7.1	43.7	186.8				-11.4	-11.9	-11.9
GEW-022R	2/19/2016 9:27	1.9	59.8	0.0	38.3	194.8				-20.8	-19.2	-21.4
GEW-022R	2/19/2016 9:27	1.3	62.9	0.1	35.7	194.6				-19.9	-16.5	-21.8
GEW-028R	2/4/2016 11:25	1.5	58.4	0.0	40.1	193.7				-12.5	-12.5	-13.2
GEW-028R	2/4/2016 11:25	0.6	61.3	0.0	38.1	193.7				-12.6	-12.6	-13.7
GEW-038	2/1/2016 17:06	1.5	56.0	0.1	42.4	56.1		7	4	0.0	0.0	-11.5
GEW-038	2/11/2016 10:27	0.5	38.8	14.9	45.8	34.6		4	4	-9.4	-9.4	-21.6
GEW-038	2/11/2016 10:27	0.3	30.6	15.4	53.7	35.8		6	9	-7.4	-7.2	-21.4
GEW-038	2/16/2016 14:48	0.7	49.2	7.7	42.4	40.2		5	12	-3.7	-3.6	-21.9
GEW-038	2/16/2016 14:52	0.3	42.0	8.7	49.0	39.7		4	11	-3.7	-3.6	-22.1
GEW-038	2/22/2016 11:43	0.9	47.6	6.4	45.1	54.3		8	3	-2.3	-2.3	-21.5
GEW-038	2/22/2016 11:43	0.6	47.1	6.2	46.1	54.9		3	9	-2.2	-2.3	-22.2
GEW-039	2/1/2016 10:22	43.0	54.2	0.2	2.6	126.6				0.1	0.1	-19.6
GEW-039	2/1/2016 10:24	42.7	54.3	0.1	2.9	128.9				-0.1	-0.1	-19.8
GEW-039	2/11/2016 10:22	40.4	51.3	0.0	8.3	128.4				0.0	0.0	-12.3
GEW-039	2/16/2016 14:37	47.2	46.3	0.2	6.3	130.2				-0.5	-0.5	-22.0
GEW-039	2/16/2016 14:43	43.9	49.5	0.1	6.5	129.9				-0.3	-0.3	-21.5
GEW-039	2/22/2016 11:46	40.8	52.0	0.0	7.2	132.5				-0.3	-0.3	-17.9
GEW-039	2/22/2016 11:47	41.9	50.7	0.0	7.4	132.7				-0.3	-0.3	-21.3
GEW-040	2/4/2016 8:12	58.5	40.7	0.1	0.7	83.6		0	0	-0.5	-0.5	-12.5
GEW-040	2/9/2016 14:09	55.7	37.8	0.1	6.4	81.9		29	34	-0.3	-0.3	-12.7
GEW-040	2/15/2016 9:48	59.9	39.7	0.0	0.4	84.6		9	8	-0.3	-0.3	-12.8
GEW-040	2/15/2016 9:54	59.6	39.8	0.0	0.6	84.1		0	0	-0.2	-0.2	-12.7
GEW-040	2/22/2016 9:34	60.7	39.1	0.0	0.2	85.5		33	33	-0.3	-0.3	-10.3
GEW-041R	2/4/2016 8:15	57.8	36.2	0.0	6.0	103.0		11	11	-0.7	-0.7	-11.9
GEW-041R	2/9/2016 14:17	53.9	43.0	0.0	3.1	26.6		17	18	0.3	0.3	1.4
GEW-041R	2/9/2016 14:18	54.5	42.0	0.0	3.5	26.7		19	16	0.4	0.4	1.0
GEW-041R	2/15/2016 9:48	53.9	37.5	0.3	8.3	103.2		14	10	-0.2	-0.2	-12.3
GEW-041R	2/22/2016 9:38	59.6	39.5	0.0	0.9	101.7		16	12	-0.2	-0.2	-10.1
GEW-042R	2/4/2016 8:20	59.2	38.1	0.0	2.7	112.6		20	17	-5.0	-5.0	-5.5

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
		<u>'</u>	(% v	ol)		°I	=	scfm			H₂O	
GEW-042R	2/4/2016 8:22	58.4	39.4	0.0	2.2	112.7		28	19	-4.9	-4.9	-5.9
GEW-042R	2/9/2016 14:25	58.6	37.5	0.1	3.8	105.4		35	40	-5.3	-5.3	-6.3
GEW-042R	2/9/2016 14:27	57.2	39.3	0.0	3.5	103.5		23	21	-2.7	-2.7	-6.2
GEW-042R	2/15/2016 9:58	58.1	36.6	0.2	5.1	102.4		15	12	-2.4	-2.4	-6.1
GEW-042R	2/15/2016 10:05	56.3	37.9	0.1	5.7	101.1		15	11	-1.8	-1.8	-5.0
GEW-042R	2/22/2016 9:42	57.4	41.2	0.0	1.4	75.1		63	64	-0.4	-0.4	-0.6
GEW-043R	2/4/2016 8:32	53.3	44.9	0.0	1.8	122.3		38	34	-1.4	-1.4	-12.5
GEW-043R	2/9/2016 14:30	56.6	40.4	0.0	3.0	129.9		22	23	0.0	0.0	-13.2
GEW-043R	2/15/2016 10:01	56.1	42.0	0.0	1.9	132.7		31	28	0.0	0.1	-12.1
GEW-043R	2/15/2016 10:02	55.9	42.7	0.0	1.4	133.3		20	20	-0.1	-0.1	-12.4
GEW-043R	2/22/2016 9:47	57.2	40.1	0.0	2.7	132.1		10	20	-0.5	-0.5	-9.5
GEW-043R	2/22/2016 9:48	57.5	40.9	0.0	1.6	131.1		19	8	-0.1	-0.1	-9.7
GEW-044	2/4/2016 8:47	58.1	36.6	0.0	5.3	69.7		17	17	-1.0	-1.0	-6.2
GEW-044	2/9/2016 14:33	58.3	38.6	0.0	3.1	59.6		16	21	-0.6	-0.6	-8.6
GEW-044	2/15/2016 10:06	58.7	40.5	0.0	0.8	81.3		18	18	-0.4	-0.5	-7.8
GEW-044	2/22/2016 9:52	58.1	39.4	0.0	2.5	71.9		5	5	-0.5	-0.5	-2.7
GEW-045R	2/4/2016 8:50	58.7	38.8	0.0	2.5	60.3		10	9	-3.5	-3.5	-12.7
GEW-045R	2/9/2016 14:36	56.7	41.4	0.0	1.9	76.4		14	8	-0.6	-0.6	-12.7
GEW-045R	2/15/2016 10:12	59.1	39.2	0.0	1.7	79.1		3	3	-2.2	-2.2	-12.4
GEW-045R	2/15/2016 10:21	58.8	39.1	0.0	2.1	76.5		7	8	-0.5	-0.5	-12.6
GEW-045R	2/22/2016 10:59	61.6	37.8	0.0	0.6	81.3		19	18	0.6	0.6	-10.4
GEW-045R	2/22/2016 11:00	57.9	40.5	0.0	1.6	82.9		10	12	-0.1	-0.1	-10.4
GEW-046R	2/4/2016 8:53	54.9	38.6	0.0	6.5	89.9		3	5	-0.5	-0.5	-12.9
GEW-046R	2/9/2016 14:37	55.6	37.9	0.1	6.4	90.1		17	20	-0.3	-0.3	-13.0
GEW-046R	2/15/2016 10:15	57.5	38.3	0.0	4.2	92.9		13	13	0.1	0.1	-12.9
GEW-046R	2/15/2016 10:19	56.8	38.1	0.0	5.1	93.8		0	0	0.0	0.0	-13.0
GEW-046R	2/22/2016 11:02	54.5	40.5	0.0	5.0	95.0		0	0	-0.4	-0.4	-11.0
GEW-047R	2/4/2016 9:46	46.3	33.5	0.5	19.7	97.5		0	0	-0.2	-0.2	-12.8
GEW-047R	2/9/2016 15:14	50.5	39.4	0.1	10.0	93.6		6	7	-0.1	0.0	-12.8
GEW-047R	2/9/2016 15:15	50.2	38.8	0.2	10.8	95.9		17	16	0.0	-0.1	-12.8
GEW-047R	2/15/2016 11:36	55.4	40.3	0.0	4.3	107.0		0	0	0.6	0.6	-12.0
GEW-047R	2/15/2016 11:44	50.3	37.4	0.0	12.3	124.3		35	24	-0.3	-0.3	-11.3
GEW-047R	2/22/2016 11:27	49.0	38.8	0.0	12.2	111.6		23	18	-0.8	-0.8	-10.3
GEW-048	2/4/2016 9:52	49.9	36.1	0.0	14.0	101.3		18	16	-0.6	-0.6	-8.3
GEW-048	2/9/2016 15:13	53.4	39.3	0.0	7.3	100.2		15	15	-0.3	-0.3	-11.4
GEW-048	2/15/2016 14:33	58.3	37.5	0.0	4.2	101.9		18	20	-0.1	-0.1	-9.2
GEW-048	2/15/2016 14:52	57.0	39.4	0.0	3.6	102.2		20	17	0.0	-0.1	-7.0
GEW-048	2/22/2016 11:33	56.1	38.3	0.0	5.6	102.0		0	0	-0.3	-0.3	-6.7
GEW-049	2/4/2016 10:12	46.6	36.7	0.1	16.6	105.1		6	11	-0.4	-0.4	-6.8
GEW-049	2/9/2016 15:39	51.7	36.2	0.0	12.1	106.1		17	17	-0.3	-0.3	-8.1
GEW-049	2/15/2016 14:40	56.8	41.1	0.0	2.1	107.3		0	0	0.1	0.1	-4.1
GEW-049	2/15/2016 14:45	57.7	40.9	0.0	1.4	109.9		0	0	0.0	0.0	-4.1

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
	•		(% v	ol)		٥	°F		fm		H₂O	
GEW-049	2/22/2016 9:55	51.4	36.6	0.0	12.0	105.6		11	11	-0.5	-0.4	-3.8
GEW-049	2/22/2016 9:56	48.6	36.5	0.0	14.9	104.5		5	9	-0.4	-0.4	-2.7
GEW-050	2/4/2016 10:01	47.1	35.8	0.0	17.1	105.4		10	19	-0.6	-0.7	-8.9
GEW-050	2/4/2016 10:02	49.4	36.9	0.0	13.7	103.7		0	0	-0.4	-0.4	-9.8
GEW-050	2/9/2016 15:40	56.0	37.5	0.0	6.5	100.6		20	18	-0.1	-0.1	-8.6
GEW-050	2/15/2016 14:43	56.8	39.0	0.0	4.2	100.4		6	10	0.3	0.3	-3.8
GEW-050	2/15/2016 14:45	56.8	39.0	0.0	4.2	106.4		0	17	-0.1	-0.1	-3.9
GEW-050	2/22/2016 10:52	56.9	37.2	0.0	5.9	105.6		16	14	-0.4	-0.4	-6.4
GEW-050	2/22/2016 10:55	55.7	38.3	0.0	6.0	105.0		27	26	-0.3	-0.3	-6.5
GEW-051	2/4/2016 10:07	55.8	39.0	0.1	5.1	122.6		15	15	-0.7	-0.7	-13.1
GEW-051	2/4/2016 10:08	56.7	40.4	0.0	2.9	121.8		15	12	-0.6	-0.6	-13.0
GEW-051	2/9/2016 15:41	57.1	38.2	0.0	4.7	121.6		19	18	-0.2	-0.2	-12.9
GEW-051	2/15/2016 14:55	54.6	40.7	0.0	4.7	123.2		13	11	0.4	0.4	-9.4
GEW-051	2/15/2016 14:56	55.7	41.4	0.0	2.9	124.1		0	0	0.3	0.3	-9.3
GEW-051	2/22/2016 9:59	56.5	39.4	0.0	4.1	123.7		14	16	-0.5	-0.5	-9.2
GEW-051	2/22/2016 10:02	56.5	41.2	0.0	2.3	121.0		9	13	-0.3	-0.4	-10.0
GEW-052	2/4/2016 10:05	41.7	34.1	0.0	24.2	109.2		11	12	-0.3	-0.3	-13.8
GEW-052	2/4/2016 10:05	40.5	33.6	0.0	25.9	108.3		8	8	-0.2	-0.2	-13.8
GEW-052	2/9/2016 15:43	48.2	35.8	0.0	16.0	107.3		5		-0.1	-0.1	-12.9
GEW-052	2/9/2016 15:44	47.0	36.0	0.0	17.0	106.3		6		-0.1	-0.1	-13.1
GEW-052	2/15/2016 14:50	55.9	39.9	0.0	4.2	109.1		5	5	0.2	0.2	-10.1
GEW-052	2/15/2016 14:52	55.3	40.1	0.0	4.6	115.0		20	16	0.0	0.0	
GEW-052	2/22/2016 10:58	51.0	36.3	0.0	12.7	112.1		32	34	-0.2	-0.2	-10.8
GEW-053	2/4/2016 9:58	51.9	40.7	0.0	7.4	136.6		20	18	-1.1	-1.1	-12.7
GEW-053	2/4/2016 10:00	51.7	40.8	0.0	7.5	135.0		11	9		-0.8	
GEW-053	2/11/2016 10:09	53.1	40.4	0.0	6.5	136.0		21	18	-0.2	-0.2	-12.7
GEW-053	2/11/2016 10:10	53.0	39.7	0.0	7.3	135.7		17	18	-0.2	-0.3	-12.8
GEW-053	2/15/2016 15:17	49.6	44.0	0.0	6.4	137.1		13	14	0.3	0.3	-9.6
GEW-053	2/15/2016 15:22	49.8	43.1	0.0	7.1	138.7		20	22	0.1	0.1	-9.6
GEW-053	2/22/2016 10:06	54.2	40.0	0.0	5.8	138.7		16	17	-0.9	-0.9	
GEW-053	2/22/2016 10:07	53.2	41.2	0.0	5.6	135.3		8			-0.6	
GEW-054	2/4/2016 9:53	53.9	41.0	0.0	5.1	147.1		28	25	-1.3	-1.3	
GEW-054	2/4/2016 9:55	54.0	41.5	0.0	4.5	146.6		17	21	-0.9	-0.9	
GEW-054	2/11/2016 10:16	55.3	36.5	0.0	8.2	126.3		0	_		1.5	
GEW-054	2/11/2016 10:17	54.8	38.4	0.0	6.8	129.6		0			1.4	
GEW-054	2/15/2016 15:27	52.6	43.1	0.0	4.3	145.1		0	_		0.0	
GEW-054	2/15/2016 15:32	52.3	43.4	0.0	4.3	145.1		0	_		0.0	
GEW-054	2/22/2016 10:17	54.9	37.8	0.0	7.3	141.1		19	19	-0.8	-0.8	
GEW-054	2/22/2016 10:19	54.7	41.4	0.0	3.9	139.3		15	15	-0.4	-0.4	-10.1
GEW-055	2/4/2016 9:46	55.8	39.3	0.1	4.8	121.5		14	8		-1.0	
GEW-055	2/4/2016 9:49	55.0	41.1	0.0	3.9	118.8		8		-0.7	-0.7	-12.5
GEW-055	2/11/2016 10:19	52.7	40.9	0.0	6.4	119.4		0	0	-0.1	-0.1	-13.0

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
		•	(% v	ol)		°I	•	scf	fm		H₂O	
GEW-055	2/15/2016 15:38	52.9	43.8	0.0	3.3	118.9		0	0	0.2	0.1	-9.7
GEW-055	2/15/2016 15:42	53.6	40.8	0.0	5.6	118.6		0	0	0.1	0.1	-9.6
GEW-055	2/22/2016 10:23	55.4	41.4	0.0	3.2	121.8		0	0	-0.6	-0.6	-10.2
GEW-055	2/22/2016 10:24	55.0	41.8	0.0	3.2	121.4		0	0	-0.6	-0.6	-10.5
GEW-056R	2/1/2016 17:13	13.9	44.4	0.1	41.6	163.6				-3.7	-3.7	-6.4
GEW-056R	2/1/2016 17:13	16.5	42.5	0.0	41.0	163.6				-3.7	-3.8	-6.3
GEW-056R	2/11/2016 10:30	2.0	48.9	0.3	48.8	173.1				-9.9	-9.9	-13.5
GEW-056R	2/11/2016 10:31	1.3	52.3	0.1	46.3	175.2				-10.2	-9.9	-18.0
GEW-056R	2/16/2016 15:13	20.8	41.1	0.3	37.8	159.6				-10.0	-9.9	-13.8
GEW-056R	2/16/2016 15:17	22.3	38.9	0.3	38.5	159.2				-9.3	-9.4	-19.5
GEW-056R	2/22/2016 11:30	11.5	39.2	0.5	48.8	160.0				-8.8	-8.5	-18.4
GEW-056R	2/22/2016 11:31	11.7	41.5	0.4	46.4	159.6				-8.8	-8.3	-15.4
GEW-057B	2/19/2016 8:49	1.7	50.1	1.4	46.8	98.7				-21.8	-21.8	-23.4
GEW-057R	2/19/2016 8:50	4.0	49.2	7.3	39.5	142.8				-22.3	-22.3	-23.8
GEW-057R	2/19/2016 8:51	5.2	46.3	7.8	40.7	143.2				-22.2	-21.9	-23.3
GEW-058	2/19/2016 8:42	3.2	51.6	6.4	38.8	177.7				-22.3	-22.8	-23.4
GEW-058	2/19/2016 8:43	4.1	44.3	6.9	44.7	177.7				-21.9	-21.8	-23.3
GEW-058A	2/19/2016 8:40	2.9	53.4	2.3	41.4	170.7				-13.0	-13.0	-15.1
GEW-058A	2/19/2016 8:40	1.3	54.8	2.2	41.7	169.2				-12.9	-13.0	-14.6
GEW-059R	2/19/2016 8:36	2.7	52.6	0.0	44.7	187.4				-5.3	-5.2	-0.9
GEW-059R	2/19/2016 8:37	1.5	52.6	0.0	45.9	187.1				-6.1	-6.1	-0.9
GEW-065A	2/19/2016 9:03	4.0	26.8	15.9	53.3	99.4				-20.5	-20.8	-22.1
GEW-065A	2/19/2016 9:03	1.9	22.0	16.4	59.7	99.2				-20.6	-20.5	-21.9
GEW-067A	2/19/2016 9:15	4.7	23.7	12.7	58.9	122.3				-3.9	-3.9	-9.7
GEW-067A	2/19/2016 9:16	5.6	27.1	12.2	55.1	121.8				-3.4	-3.2	-9.6
GEW-082R	2/4/2016 13:24	2.2	55.0	0.0	42.8	197.9				-6.5	-6.5	-9.0
GEW-082R	2/4/2016 13:25	0.9	58.1	0.0	41.0	197.8				-9.5	-10.0	-9.5
GEW-086	2/19/2016 8:57	11.8	39.1	6.2	42.9	84.7				-4.8	-4.9	-22.7
GEW-086	2/19/2016 8:58	13.3	38.5	6.2	42.0	84.7				-4.9	-4.7	-23.8
GEW-089	2/19/2016 9:12	2.9	23.4	15.8	57.9	94.6				-2.0	-2.0	-22.8
GEW-089	2/19/2016 9:13	3.1	21.7	15.9	59.3	94.6				-2.1	-2.1	-22.9
GEW-090	2/19/2016 9:18	8.5	23.4	0.7	67.4	184.5				-17.6	-18.1	-19.4
GEW-090	2/19/2016 9:18	9.9	43.5	0.4	46.2	185.2				-20.4	-19.4	-21.9
GEW-102	2/19/2016 9:06	2.8	60.4	0.1	36.7	189.1				-20.6	-21.3	-21.9
GEW-102	2/19/2016 9:07	2.9	61.3	0.0	35.8	189.1				-21.4	-20.8	-21.9
GEW-107	2/5/2016 13:32	0.0	0.6	21.3	78.1	48.2				-12.4	-12.4	-22.5
GEW-107	2/5/2016 13:34	0.5	54.6	1.2	43.7	55.6				-19.2	-19.2	-22.6
GEW-109	2/1/2016 17:09	3.5	46.1	6.2	44.2	56.4		1	3	-22.2	-22.2	-21.4
GEW-109	2/1/2016 17:10	4.4	45.6	6.0	44.0	56.7		2	2	-22.4	-22.5	-24.2
GEW-109	2/11/2016 10:24	6.3	51.3	1.7	40.7	32.9		4	4	-0.7	-0.7	-13.3
GEW-109	2/16/2016 14:36	3.9	61.6	0.0	34.5	48.2		12	12	41.6	42.0	-21.8
GEW-109	2/16/2016 14:40	4.0	56.8	0.1	39.1	89.2		11	10	24.5	24.4	-20.3

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
			(% v	ol)		°I	=	sci	fm		H₂O	
GEW-109	2/22/2016 11:45	10.2	49.6	0.4	39.8	113.1		8	3	-18.6	-18.6	-20.7
GEW-110	2/1/2016 17:37	7.4	18.6	14.7	59.3	61.6		13	11	-0.2	-0.1	-12.2
GEW-110	2/1/2016 17:38	6.4	16.2	14.9	62.5	61.4		9	12	-0.2	-0.2	-12.0
GEW-110	2/11/2016 10:35	21.5	32.1	9.8	36.6	59.1		12	13	-0.2	-0.2	-22.1
GEW-110	2/11/2016 10:36	14.6	29.6	9.4	46.4	57.6		5	8	-0.1	-0.1	-22.2
GEW-110	2/16/2016 15:46	10.0	33.6	9.8	46.6	50.2		6	5	-0.1	-0.1	-23.0
GEW-110	2/16/2016 15:50	6.8	31.8	10.8	50.6	50.3		5	2	-0.1	-0.1	-23.4
GEW-110	2/22/2016 11:21	19.2	44.9	4.1	31.8	71.3		1	4	-0.1	-0.1	-23.1
GEW-116	2/18/2016 9:45	6.5	22.7	16.2	54.6	49.9		3	9	-8.3	-8.4	-20.1
GEW-116	2/18/2016 9:46	2.1	19.7	15.2	63.0	51.2		2	2	-11.8	-11.8	-20.1
GEW-117	2/19/2016 9:31	6.3	55.1	2.0	36.6	83.3				-21.1	-21.1	-22.3
GEW-120	2/4/2016 11:00	11.3	62.3	0.1	26.3	184.1				0.3	0.3	-0.3
GEW-120	2/4/2016 11:01	8.5	63.8	0.0	27.7	183.5				0.3	0.3	-0.2
GEW-120	2/16/2016 10:36	19.9	60.2	1.0	18.9	146.6				-18.7	-18.7	-18.6
GEW-120	2/16/2016 10:38	19.8	61.9	1.3	17.0	146.5				-19.8	-19.8	-21.2
GEW-121	2/4/2016 11:00	19.4	37.5	0.2	42.9	187.9				-9.3	-9.7	-9.9
GEW-121	2/4/2016 11:02	7.3	54.9	0.1	37.7	187.9				-8.9	-9.3	-8.3
GEW-122	2/4/2016 11:05	5.3	51.6	0.0	43.1	190.8				-10.7	-10.7	-11.2
GEW-122	2/4/2016 11:06	4.8	57.4	0.0	37.8	190.8				-11.2	-10.9	-11.7
GEW-123	2/4/2016 11:08	3.3	51.6	0.3	44.8	193.0				-11.7	-11.7	-11.9
GEW-123	2/4/2016 11:09	3.9	63.2	0.2	32.7	193.1				-12.0	-11.8	-11.6
GEW-124	2/4/2016 11:12	7.2	58.0	0.3	34.5	119.0				-11.7	-11.7	-11.6
GEW-125	2/4/2016 11:09	2.4	52.4	0.1	45.1	193.1				-9.9	-10.4	-12.0
GEW-125	2/4/2016 11:09	0.7	58.5	0.1	40.7	193.1				-10.3	-9.3	-12.2
GEW-126	2/4/2016 11:16	8.0	55.2	0.1	36.7	191.3				-11.7	-11.7	-11.6
GEW-126	2/4/2016 11:17	9.7	55.1	0.1	35.1	191.3				-12.2	-12.2	-12.0
GEW-127	2/4/2016 11:21	2.0	56.9	0.2	40.9	186.8				-10.8	-10.8	-12.4
GEW-127	2/4/2016 11:22	0.5	62.8	0.1	36.6	186.4				-11.3	-10.8	-13.4
GEW-128	2/4/2016 11:20	4.4	61.6	0.0	34.0	182.4				-11.8	-12.1	-12.4
GEW-128	2/4/2016 11:20	5.2	65.5	0.0	29.3	182.4				-12.1	-12.1	-13.0
GEW-129	2/4/2016 11:22	2.5	56.8	0.0	40.7	159.2				-13.1	-13.3	-13.7
GEW-129	2/4/2016 11:23	2.2	59.9	0.0	37.9	159.6				-13.3	-13.6	-13.7
GEW-131	2/4/2016 11:34	12.1	56.8	0.0	31.1	178.7				-6.2	-6.0	-10.7
GEW-131	2/4/2016 11:35	16.0	55.9	0.0	28.1	179.8				-10.8	-10.3	-11.3
GEW-132	2/4/2016 13:21	8.7	47.2	2.5	41.6	173.6				-8.5	-9.0	-9.5
GEW-132	2/4/2016 13:22	8.5	51.2	2.4	37.9	173.6				-7.9	-7.5	-9.5
GEW-133	2/4/2016 13:24	0.4	5.6	16.2	77.8	53.4		7	12	-11.3	-11.8	-11.7
GEW-133	2/4/2016 13:25	0.7	25.4	10.6	63.3	56.5		6	5	-11.8	-11.4	-11.8
GEW-134	2/4/2016 13:28	12.0	49.7	1.3	37.0	155.4				-11.8	-11.8	-11.6
GEW-134	2/4/2016 13:29	14.3	54.6	1.2	29.9	155.6				-11.9	-11.8	-12.1
GEW-135	2/4/2016 13:33	7.4	51.8	2.6	38.2	147.0				-3.9	-4.0	-7.8
GEW-135	2/4/2016 13:35	5.9	46.7	2.7	44.7	146.6				-4.0	-4.0	

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
			(% v	ol)		٥	=	sc	fm		H₂O	
GEW-136	2/4/2016 13:27	1.3	26.4	15.0	57.3	110.9				-4.5	-4.4	-6.1
GEW-136	2/4/2016 13:28	1.7	17.6	16.1	64.6	110.9				-4.5	-4.5	-6.5
GEW-137	2/4/2016 11:41	11.9	38.4	1.3	48.4	91.9				-10.4	-10.7	-11.0
GEW-138	2/4/2016 11:43	18.3	53.9	0.7	27.1	147.4				-1.4	-1.5	-6.9
GEW-138	2/4/2016 11:44	16.9	56.0	0.7	26.4	147.4				-1.6	-1.2	-5.6
GEW-139	2/4/2016 11:31	1.5	58.3	1.3	38.9	180.3				-5.0	-5.0	-9.3
GEW-139	2/4/2016 11:31	2.3	58.6	1.4	37.7	180.3				-6.0	-6.0	-10.3
GEW-140	2/4/2016 11:42	1.1	57.2	0.1	41.6	60.0				18.2	18.2	18.2
GEW-140	2/16/2016 10:43	10.5	57.1	0.0	32.4	191.3				-4.6	-4.9	-4.8
GEW-140	2/16/2016 10:44	10.8	56.9	0.0	32.3	191.3				-6.6	-6.6	-6.5
GEW-141	2/4/2016 11:27	1.3	61.3	0.1	37.3	154.1				-13.7	-13.1	-13.4
GEW-141	2/4/2016 11:28	1.3	62.2	0.1	36.4	155.0				-13.2	-13.6	-13.2
GEW-142	2/4/2016 11:27	0.2	59.2	0.0	40.6	88.6				5.7	13.6	12.8
GEW-142	2/4/2016 11:28	0.2	62.3	0.0	37.5	92.9				13.7	13.9	13.7
GEW-142	2/16/2016 10:50	0.9	45.3	7.1	46.7	72.4				-4.1	-4.8	-4.3
GEW-142	2/16/2016 10:50	0.5	45.9	6.9	46.7	72.9				-5.5	-5.5	-5.7
GEW-143	2/4/2016 14:21	1.3	35.4	9.2	54.1	113.7				-12.8	-12.8	-12.8
GEW-143	2/4/2016 14:22	0.4	38.7	6.3	54.6	113.6				-12.8	-12.8	-13.2
GEW-144	2/4/2016 11:37	1.2	51.8	3.3	43.7	64.9				-4.9	-4.2	-4.7
GEW-145	2/4/2016 14:25	1.0	48.0	0.4	50.6	150.9				-14.8	-14.8	-17.1
GEW-145	2/4/2016 14:27	2.7	58.4	0.2	38.7	150.5				-14.9	-14.8	-17.4
GEW-146	2/4/2016 13:35	6.4	37.0	8.3	48.3	68.2				-6.5	-6.5	-9.5
GEW-146	2/4/2016 13:36	6.6	33.7	8.6	51.1	69.5				-2.4	-2.3	-11.2
GEW-147	2/4/2016 13:31	11.1	52.7	0.3	35.9	178.2				-11.4	-11.4	-11.4
GEW-147	2/4/2016 13:32	10.1	53.6	0.1	36.2	178.2				-11.4	-11.5	-11.4
GEW-148	2/4/2016 14:23	1.2	27.8	11.0	60.0	61.6				-10.9	-10.9	-11.3
GEW-148	2/4/2016 14:23	0.7	31.3	10.2	57.8	64.9				-10.9	-11.4	-11.0
GEW-149	2/4/2016 14:35	9.6	60.2	0.4	29.8	170.2		10	7	-0.3	-0.3	-12.1
GEW-149	2/4/2016 14:36	9.8	60.5	0.3	29.4	171.2		15	18	-0.6	-0.6	-11.9
GEW-150	2/4/2016 14:32	5.9	60.0	0.6	33.5	188.5				-18.7	-17.8	-18.0
GEW-150	2/4/2016 14:33	7.0	62.7	0.5	29.8	188.5				-18.2	-18.2	-18.4
GEW-151	2/4/2016 14:31	0.4	34.6	7.8	57.2	57.9				-12.4	-12.3	-11.8
GEW-151	2/4/2016 14:32	0.4	35.4	7.3	56.9	57.3				-11.8	-11.8	-12.2
GEW-152	2/5/2016 13:36	0.0	4.6	20.6	74.8	61.2				33.1	33.2	-22.6
GEW-152	2/5/2016 13:38	0.6	52.1	0.4	46.9	71.9				10.1	10.1	-22.9
GEW-153	2/5/2016 7:34	0.1	2.8	22.2	74.9	27.3				-0.2	-0.2	-0.2
GEW-153	2/5/2016 7:34	0.0	2.2	22.3	75.5	27.0				-0.8	-0.8	-0.2
GEW-153	2/5/2016 13:29	0.0	1.5	20.7	77.8	50.9				-23.1	-23.1	-22.5
GEW-153	2/5/2016 13:29	0.0	1.3	20.7	78.0	52.4				-23.1	-23.0	-22.1
GEW-154	2/4/2016 14:40	29.9	46.7	3.9	19.5	113.8		15	12	-11.4	-10.8	-12.0
GEW-155	2/4/2016 11:38	6.6	37.2	9.1	47.1	113.3				-0.5	-0.7	-6.2
GEW-155	2/4/2016 11:39	6.0	34.3	9.6	50.1	113.3				-0.8	-0.8	-9.8

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
		•	(% v	ol)		°		sc	fm		H ₂ O	
GEW-156	2/4/2016 14:47	17.2	32.7	11.0	39.1	93.6				-1.1	-1.2	-11.6
GEW-156	2/4/2016 14:48	9.5	28.7	12.1	49.7	93.0				-0.7	-0.7	-11.8
GIW-01	2/4/2016 8:57	2.0	28.2	14.8	55.0	167.1		35	32	-3.1	-3.1	-12.5
GIW-01	2/4/2016 8:58	1.2	28.9	14.8	55.1	165.9		34	34	-3.4	-3.4	-12.7
GIW-01	2/11/2016 11:01	22.7	41.5	0.5	35.3	186.3		0	45	-21.4	-21.6	-22.2
GIW-01	2/11/2016 11:02	5.6	59.4	0.2	34.8	186.3		26	20	-20.5	-20.5	-21.1
GIW-01	2/16/2016 16:03	2.3	59.6	2.6	35.5	175.0		39	43	-22.2	-22.1	-21.7
GIW-01	2/16/2016 16:09	2.4	63.5	3.2	30.9	175.2		39		-21.7		-21.6
GIW-01	2/22/2016 11:39	3.5	50.8	4.3	41.4	178.2		0	14	-22.1	-22.1	-22.2
GIW-01	2/22/2016 11:40	1.4	49.6	3.8	45.2	178.7		37	0	-22.1	-22.1	-22.2
GIW-02	2/4/2016 8:51	3.2	32.9	10.9	53.0	54.5		0	6	-8.2	-7.4	-13.2
GIW-02	2/4/2016 8:52	4.8	29.7	11.1	54.4	54.7		0	0	-7.1	-7.9	-11.7
GIW-02	2/11/2016 13:51	6.8	32.5	9.9	50.8	62.7		29	3	-10.4	-11.9	-23.2
GIW-02	2/11/2016 13:52	8.5	35.6	9.9	46.0	62.2		0	23	-8.9	-9.8	-22.2
GIW-02	2/17/2016 9:17	8.8	41.4	8.1	41.7	64.5		76	63	-4.5	-4.5	-11.7
GIW-02	2/17/2016 9:20	8.6	36.3	8.3	46.8	64.9		0	0	-4.8	-4.9	-11.2
GIW-02	2/22/2016 16:27	7.3	35.3	8.8	48.6	73.8		0	0	-2.0	-2.0	-3.5
GIW-02	2/22/2016 16:28	7.6	37.4	8.8	46.2	71.4		0	0	-1.5	-1.5	-2.7
GIW-03	2/4/2016 8:46	0.3	40.2	11.2	48.3	35.3		12	19	-4.1	-4.2	-11.0
GIW-03	2/4/2016 8:47	0.3	37.7	11.2	50.8	36.5		28	23	-4.4	-4.2	-11.0
GIW-03	2/11/2016 13:46	0.3	36.1	13.1	50.5	44.9		0	20	-7.4	-6.9	-21.2
GIW-03	2/11/2016 13:47	0.2	29.9	13.8	56.1	46.9		9	22	-6.9	-6.9	-22.0
GIW-03	2/17/2016 9:09	0.4	39.0	9.3	51.3	53.1		14	14	-2.4	-2.4	-11.1
GIW-03	2/17/2016 9:13	0.4	37.9	9.9	51.8	56.7		11	4	-2.1	-2.2	-11.0
GIW-03	2/22/2016 16:21	0.2	7.5	15.4	76.9	62.9		20	13	-8.2	-7.9	-22.2
GIW-03	2/22/2016 16:23	0.3	18.3	14.7	66.7	64.1		7	7	-7.9	-7.9	-21.7
GIW-04	2/4/2016 8:41	0.4	30.0	8.8	60.8	29.7		7	8		-7.4	-11.5
GIW-04	2/4/2016 8:42	0.5	40.1	2.9	56.5	30.0		9	8	-7.9	-7.9	-11.2
GIW-04	2/11/2016 13:41	0.5	44.1	4.7	50.7	42.8		3	3	-10.8	-10.9	-21.7
GIW-04	2/17/2016 9:02	0.1	28.0	15.4	56.5	47.3		0	0	-3.1	-3.1	-11.0
GIW-04	2/17/2016 9:06	0.5	18.5	9.9	71.1	50.0		13	13	-6.0	-6.0	-10.9
GIW-04	2/22/2016 16:32	1.5	21.5	16.0	61.0	59.4		0	0		-1.4	-3.3
GIW-04	2/22/2016 16:34	1.2	21.8	11.3	65.7	62.0		8	9	-1.9	-1.9	-3.3
GIW-05	2/1/2016 17:51	3.3	53.2	0.6	42.9	52.9		32	25	-11.0	-11.3	-12.4
GIW-05	2/4/2016 8:36	0.8	43.3	4.5	51.4	33.4		7	8	-11.4	-11.4	-11.3
GIW-05	2/11/2016 11:05	4.5	67.0	3.7	24.8	38.0		8	23	-16.8	-16.2	-22.2
GIW-05	2/16/2016 14:48	4.5	54.0	1.4	40.1	43.7		58	0	-19.2	-19.0	-22.1
GIW-05	2/16/2016 14:53	1.8	44.8	1.0	52.4	42.9		0	0	-21.6	-21.2	-22.1
GIW-05	2/22/2016 11:40	7.3	51.7	1.0	40.0	62.4		0	0		-19.5	-21.7
GIW-06	2/4/2016 8:17	3.8	47.4	0.9	47.9	32.0		10	9	-11.2	-10.9	-11.0
GIW-06	2/11/2016 14:14	22.8	38.0	0.3	38.9	42.8		51	26	-21.1	-20.6	-20.9
GIW-06	2/17/2016 8:43	1.7	55.0	0.1	43.2	49.9		15	7	-10.9	-10.9	-10.8

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
		Į.	(%	vol)		°I	=	scfm			H₂O	
GIW-06	2/17/2016 8:47	1.7	57.6	0.1	40.6	51.8		35	21	-11.0	-10.8	-11.0
GIW-06	2/22/2016 16:46	1.9	55.9	0.1	42.1	57.3		18	0	-2.9	-3.7	-3.5
GIW-07	2/4/2016 8:30	29.4	48.8	1.0	20.8	32.1		11	11	-10.3	-10.3	-11.7
GIW-07	2/11/2016 14:09	21.6	37.9	6.8	33.7	41.9		3	3	-11.4	-11.4	-21.2
GIW-07	2/11/2016 14:10	26.1	41.2	5.0	27.7	42.4		6	4	-7.9	-7.9	-21.0
GIW-07	2/17/2016 8:35	17.3	61.1	0.0	21.6	50.1		10	10	4.2	4.3	-11.3
GIW-07	2/17/2016 8:39	16.1	58.3	0.0	25.6	50.2		8	8	-1.4	-1.4	-10.7
GIW-07	2/22/2016 16:50	16.1	53.4	3.0	27.5	55.5		6	3	-12.3	-12.4	-24.0
GIW-08	2/4/2016 8:26	30.4	42.8	0.4	26.4	29.6				-6.9	-6.9	-11.3
GIW-08	2/11/2016 14:06	24.1	42.0	0.4	33.5	43.5				-13.8	-13.8	-21.7
GIW-08	2/17/2016 8:27	26.7	55.9	0.0	17.4	51.5				-6.6	-6.5	-11.1
GIW-08	2/17/2016 8:31	27.1	52.7	0.1	20.1	51.7				-6.5	-6.6	-9.9
GIW-08	2/22/2016 16:54	27.0	50.9	0.1	22.0	57.9				-13.7	-13.8	-22.3
GIW-09	2/4/2016 8:20	4.9	33.2	13.0	48.9	53.0				-4.8	-4.6	-11.8
GIW-09	2/4/2016 8:21	7.2	25.0	13.8	54.0	53.4				-3.9	-5.0	-11.0
GIW-09	2/11/2016 14:01	9.0	29.1	11.6	50.3	57.7				-6.9	-6.4	-22.0
GIW-09	2/11/2016 14:02	9.3	28.7	11.7	50.3	57.9				-5.5	-5.9	-22.0
GIW-09	2/17/2016 8:19	6.6	19.3	14.8	59.3	64.9				-2.9	-2.9	-11.0
GIW-09	2/17/2016 8:23	7.0	16.7	14.9	61.4	65.4				-2.9	-2.9	-11.2
GIW-09	2/22/2016 16:42	2.8	32.5	13.5	51.2	63.3				-1.0	-1.1	-3.1
GIW-09	2/22/2016 16:43	2.5	26.0	14.2	57.3	63.1				-1.1	-1.1	-3.3
GIW-10	2/11/2016 13:37	2.9	32.7	0.2	64.2	46.4		8	8	-0.3	-0.3	-21.4
GIW-10	2/17/2016 8:51	0.4	54.9	0.0	44.7	52.5		9	9	0.8	0.8	-10.8
GIW-10	2/17/2016 8:55	0.3	56.0	0.0	43.7	52.5		10	10	-0.1	-0.1	-10.8
GIW-10	2/22/2016 16:37	5.6	49.2	0.0	45.2	60.5		9	9	-0.5	-0.5	-3.3
GIW-11	2/1/2016 17:47	4.6	43.8	3.5	48.1	63.3				-3.4	-3.4	-11.6
GIW-11	2/11/2016 10:53	2.7	52.8	5.4	39.1	61.3				-6.3	-6.2	-22.6
GIW-11	2/11/2016 10:53	4.7	44.3	5.4	45.6	61.4				-6.2	-6.2	-23.0
GIW-11	2/16/2016 15:16	5.2	41.8	6.1	46.9	61.9				-6.4	-6.3	-22.3
GIW-11	2/16/2016 15:22	5.0	41.0	6.1	47.9	62.0				-6.4	-6.5	-22.1
GIW-11	2/22/2016 11:34	5.6	36.6	6.3	51.5	76.5				-6.3	-6.3	-22.4
GIW-12	2/1/2016 17:43	3.8	29.4	10.4	56.4	71.2				-2.2	-2.2	-11.3
GIW-12	2/1/2016 17:44	3.7	24.7	10.6	61.0	71.2				-2.2	-2.2	-11.2
GIW-12	2/11/2016 10:56	8.1	38.4	8.1	45.4	64.9				-3.5	-3.5	-21.9
GIW-12	2/11/2016 10:56	10.1	31.2	8.6	50.1	65.0				-3.6	-3.5	-22.3
GIW-12	2/16/2016 15:40	5.2	25.5	11.5	57.8	68.3				-3.8	-3.8	-22.4
GIW-12	2/16/2016 15:46	5.4	21.9	11.7	61.0	67.5				-3.7	-3.7	-21.9
GIW-12	2/22/2016 11:25	7.1	41.8	9.0	42.1	79.4				-3.6	-3.6	-21.5
GIW-12	2/22/2016 11:26	6.1	34.2	9.5	50.2	79.3				-3.6	-3.5	-22.1
GIW-13	2/1/2016 17:41	14.8	48.2	0.3	36.7	53.7				-7.9	-7.9	-8.0
GIW-13	2/11/2016 10:58	12.9	27.8	1.0	58.3	39.5				-17.9	-17.9	-18.2
GIW-13	2/16/2016 15:51	14.2	57.3	0.2	28.3	44.3				-18.2	-18.6	-17.9

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
			(% '	vol)	•	ণ	F	sci	im		H₂O	
GIW-13	2/16/2016 15:57	14.5	56.8	0.3	28.4	43.8				-18.2	-18.2	-18.2
GIW-13	2/22/2016 11:23	13.7	53.0	0.1	33.2	66.1				-17.6	-17.7	-17.4
LCS-5A	2/4/2016 10:04	57.3	40.9	0.0	1.8	90.5				-12.8	-12.8	-12.3
LCS-5A	2/11/2016 10:12	57.8	38.3	0.0	3.9	90.9				-12.1	-12.3	-12.9
LCS-5A	2/22/2016 10:10	56.7	41.4	0.0	1.9	93.3				-9.3	-9.8	-9.3
LCS-6B	2/9/2016 15:10	56.5	40.7	0.1	2.7	44.5		7	6	-0.2	-0.2	-12.8
LCS-6B	2/15/2016 11:47	55.8	40.2	0.0	4.0	125.1		11	8	-4.2	-4.2	-11.1
LCS-6B	2/15/2016 11:48	55.7	41.2	0.0	3.1	123.4		9	11	-3.3	-3.3	-11.2
PGW-60	2/4/2016 9:03	58.6	33.6	1.6	6.2	40.6		16	16	-4.1	-4.1	-13.0
PGW-60	2/9/2016 14:46	56.7	38.2	0.5	4.6	38.3		0	0	-11.8	-11.8	-12.6
PGW-60	2/15/2016 10:58	64.4	20.9	1.4	13.3	45.5		18	26	-9.3	-9.3	-9.6
PGW-60	2/22/2016 11:09	58.8	39.8	0.0	1.4	60.5		16	15	79.9	79.7	-10.3
PGW-60	2/22/2016 11:10	57.4	41.9	0.0	0.7	65.7		0	11	40.6	41.2	-10.4
SEW-002	2/4/2016 15:31	0.6	29.0	14.0	56.4	62.4		7	10	-11.8	-11.8	-13.6
SEW-002	2/4/2016 15:34	0.9	24.8	12.4	61.9	64.6	•	3	0	-12.3	-12.3	-14.2
T-56	2/19/2016 8:31	32.3	35.1	0.9	31.7	47.3		21	21	0.0	0.0	-10.0
T-56	2/22/2016 10:48	31.0	29.0	3.4	36.6	47.2	•	15	15	-0.1	-0.1	-10.5
T-56	2/22/2016 10:48	31.0	28.4	3.4	37.2	47.2	•	17	19	-0.1	-0.1	-10.7

Well Name	Maximum Initial	Temperature From (in °F		head Readings	Temp Trend	Comments
Well Name	November 2015	December 2015	Janaury 2016	February 2016	><30°F	
GEW-001						
GEW-002	116.5	122.0	124.9	120.2		
GEW-003	117.3	111.9	113.3	110.9		
GEW-004	120.4	115.0	117.8	112.5		
GEW-005	97.9	93.4	95.6	96.2		
GEW-006	95.0	84.0	89.9	90.1		
GEW-007	96.9	90.5	96.4	94.0		
GEW-008	114.3	111.8	112.5	112.9		
GEW-009	125.4	124.5	122.3	121.5		
GEW-010	77.3	59.9	63.3	69.2		
GEW-011	51.5					
GEW-013A				186.8		
GEW-014A						
GEW-015						
GEW-016R						
GEW-018B						
GEW-018R	150.1					
GEW-019A						
GEW-020A	146.2	90.0				
GEW-021A	156.2					
GEW-022R	192.5	170.0	192.8	194.8		
GEW-023A						
GEW-024A						
GEW-025A						
GEW-026R						
GEW-027A		90.0				
GEW-028R	195.1	150.0	178.2	193.7		
GEW-029						
GEW-030R						
GEW-033R						
GEW-034						
GEW-034A						
GEW-035						
GEW-036						
GEW-037						
GEW-038	108.6	59.9	50.9	56.1		
GEW-039	136.6	136.0	134.1	132.7		
GEW-040	93.4	87.4	86.9	85.5		
GEW-041R	108.7	95.2	103.2	103.2		
GEW-042R	110.4	99.9	111.6	112.7		
GEW-043R	138.3	127.0	130.8	133.3		
GEW-044	95.6	80.0	73.1	81.3		
GEW-045R	92.1	75.0	83.2	82.9		
GEW-046R	100.1	81.2	93.2	95.0		

Well Name	Maximum Initial	Геmperature From (in °F		lhead Readings	Temp Trend	Comments
Well Name	November 2015	December 2015	Janaury 2016	February 2016	><30°F	
GEW-047R	115.0	103.5	110.4	124.3		
GEW-048	105.8	101.3	103.6	102.2		
GEW-049	112.5	100.7	109.9	109.9		
GEW-050	109.7	101.5	106.3	106.4		
GEW-051	125.8	122.1	125.1	124.1		
GEW-052	114.7	109.0	112.6	115.0		
GEW-053	139.3	144.0	138.0	138.7		
GEW-054	144.0	147.7	154.9	147.1		
GEW-055	125.1	116.8	122.8	121.8		
GEW-056R	168.8	165.9	165.5	175.2		
GEW-057B	80.0	167.0	100.8	98.7		
GEW-057R	176.7	185.0	162.3	143.2		
GEW-058	185.7	172.0	184.6	177.7		
GEW-058A	164.0	188.0	167.8	170.7		
GEW-059R	186.8	142.0	186.3	187.4		
GEW-061B	55.3	44.0				
GEW-064A						
GEW-065A	191.3	192.0	180.8	99.4		
GEW-066			70.2			
GEW-067A	160.0	189.1	165.0	122.3		
GEW-068A						
GEW-069R						
GEW-070R						
GEW-071						
GEW-071B						
GEW-072RR						
GEW-073R						
GEW-075						
GEW-076R						
GEW-077	90.0	111.0	65.9			
GEW-078R						
GEW-080	40.0	50.0	51.5			
GEW-081						
GEW-082R	194.9	180.0	196.6	197.9		
GEW-083						
GEW-084						
GEW-085						
GEW-086	97.1	110.0	87.0	84.7		
GEW-087						
GEW-088						
GEW-089	80.0	55.0	86.1	94.6		
GEW-090	187.4	173.0	185.2	185.2		
GEW-091						
GEW-100						

Well Name	Maximum Initial	Temperature From (in °F		head Readings	Temp Trend	Comments
Well Name	November 2015	December 2015	Janaury 2016	February 2016	><30°F	
GEW-101						
GEW-102	148.8	188.0	144.0	189.1		
GEW-103					-	
GEW-104	81.5	55.0				
GEW-105	75.0	45.0				
GEW-106						
GEW-107	40.0			55.6		
GEW-108						
GEW-109	81.9	102.6	61.1	113.1		
GEW-110	133.0	95.6	98.0	71.3		
GEW-112						
GEW-113						
GEW-116	82.5	77.0	35.5	51.2		
GEW-117	115.5	70.0	57.4	83.3		
GEW-118						
GEW-120	186.8	171.2	173.1	184.1		
GEW-121	189.1	187.4	186.3	187.9		
GEW-122	184.6	193.7	190.8	190.8		
GEW-123	193.7	192.6	170.8	193.1		
GEW-124	163.2	111.6	157.6	119.0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
GEW-125	191.9	192.6	190.2	193.1		
GEW-126	191.3	184.6	189.1	191.3		
GEW-127	188.0	186.3	184.6	186.8		
GEW-128	183.5	182.2	181.9	182.4		
GEW-129	159.6	166.4	165.4	159.6		
GEW-130			-			
GEW-131	161.1	125.1	177.2	179.8		
GEW-132	182.5	181.4	171.7	173.6		
GEW-133	71.2	71.4	64.7	56.5		
GEW-134	176.2	168.3	163.2	155.6		
GEW-135	186.8	178.7	155.4	147.0		
GEW-136	184.6	136.6	112.8	110.9		
GEW-137	115.5	120.1	121.5	91.9		
GEW-138	164.5	157.0	152.9	147.4		
GEW-139	188.5	184.6	183.0	180.3		
GEW-140	185.7	183.0	160.5	191.3		
GEW-141	153.7	148.5	157.9	155.0		
GEW-142	115.2	104.2	88.2	92.9		
GEW-143	109.0	103.0	94.2	113.7		
GEW-144	98.3	71.9	70.7	64.9		
GEW-145	144.2	137.6	86.0	150.9		
GEW-146	89.7	77.3	70.0	69.5		
GEW-147	191.3	184.1	191.9	178.2		
GEW-148	71.4	136.3	45.2	64.9		

GEW-149 GEW-150 GEW-151 GEW-152 GEW-153 GEW-154 GEW-155	172.6 182.4 189.2 192.5 130.5 184.1 122.6	171.7 136.3 171.2 46.2	123.7 184.6 47.3	171.2 188.5	><30°F	
GEW-150 GEW-151 GEW-152 GEW-153 GEW-154	182.4 189.2 192.5 130.5 184.1	136.3 171.2 	184.6 47.3	+		
GEW-151 GEW-152 GEW-153 GEW-154	189.2 192.5 130.5 184.1	171.2	47.3	188.5		
GEW-152 GEW-153 GEW-154	192.5 130.5 184.1					
GEW-153 GEW-154	130.5 184.1			57.9		
GEW-154	184.1	46.2		71.9		
				52.4		
GEW-155	122.6	144.7	51.5	113.8		
II -	122.0	108.6	111.6	113.3		
GEW-156	118.6	124.0	102.0	93.6		
GIW-01	189.1	189.6	183.0	186.3		
GIW-02	77.3	63.8	75.5	73.8		
GIW-03	74.8	63.5	75.2	64.1		
GIW-04	71.2	61.9	72.3	62.0		
GIW-05	61.8	59.3	55.8	62.4		
GIW-06	72.2	60.5	73.6	57.3		
GIW-07	69.5	59.6	73.4	55.5		
GIW-08	68.5	59.2	81.0	57.9		
GIW-09	78.6	66.8	81.3	65.4		
GIW-10	70.9	60.2	72.5	60.5		
GIW-11	74.9	62.2	61.0	76.5		
GIW-12	83.6	74.7	65.6	79.4		
GIW-13	71.7	60.0	57.0	66.1		
LCS-1D						
LCS-2D						
LCS-3C						
LCS-4B						
LCS-5A	94.7	90.0	91.2	93.3		
LCS-6B	79.8	73.0	60.1	125.1		
PGW-60	81.9	60.0	49.6	65.7		
SEW-002	54.3	38.0	36.4	64.6		
SEW-012A						
SEW-017R						
SEW-031R						
SEW-032R						
SEW-060R						
SEW-061R						
SEW-062R						
SEW-063						
SEW-064						
SEW-067						
SEW-072R						
SEW-074						_
SEW-079R						
T-56	69.4	40.0	47.7	47.3		

^{-- =} Indicates no data available.

NOTES

- EXISTING CONTOURS DEVELOPED FROM SITE AERIAL TOPOGRAPHIC SURVEY BY COOPER AERIAL SURVEYS, CO. ON FEBRUARY 10, 2015.
- 2. FOR CLARITY, NOT ALL SITE FEATURES MAY BE SHOWN.
- ELEVATION DIFFERENCE DETERMINED BY SUBTRACTING SPOT ELEVATIONS SURVEYED ON 1-18-16 FROM SPOT ELEVATIONS SURVEYED ON 2-18-16.
- 4. SURVEY POINTS WERE PERFORMED USING GPS METHODS.
- SETTLEMENT RANGE SURFACE WAS GENERATED FROM THE SPOT ELEVATION DIFFERENCES.
- 6. ELEVATION DIFFERENCES THAT ARE SHOWN AS NEGATIVE INDICATE SPOTS OF SETTLEMENT.
- ANY POINTS THAT ARE NOT A GROUND-TO-GROUND COMPARISON TO THE PREVIOUS MONTH'S POINTS, OR THAT WERE NOT SURVEYED IN THE SAME LOCATION AS THE PREVIOUS MONTH ARE NOT INCLUDED AND WERE NOT USED IN ANY SURFACE GENERATION.

LEGEND

SPOT ELEVATION DIFFERENCE (2-18-16 TO 1-18-16) MINOR ELEVATION CHANGE CONTOUR (0.25 FEET) MAJOR ELEVATION CHANGE CONTOUR (0.50 FEET) SETTLEMENT FRONT CONTOUR FOR AREA WITH 1.35' PER 30 DAYS FOR CURRENT PERIOD OF DAYS (AREA REPRESENTS 1.395' OVER 31 DAYS BASED ON CONVERSION)

	ELEVATION CHANGE (FEET)								
Number	Minimum Elev. Change	Area (sq.ft.)	Color						
1	-5.00	-4.00	0.00						
2	-4.00	-3.00	0.00						
3	-3.00	-2.00	0.00						
4	-2.00	-1.00	57364.14						
5	-1.00	0.00	1333219.16						
6	0.00	1.00	125238.80						

REV. NO. DATE

DESCRIPTION

CB&I Environmental & Infrastructure, Inc.

STATE OF ILLINOIS LICENSED DESIGN FIRM #184004093

CB&I Environmental & Infrastructure, Inc. has prepared this document for a specific project or purpose. All information contained within this document is copyrighted and remains intellectual property of CB&I Environmental & Infrastructure, Inc. This document may not be used or copied, in part or in whole, for any reason without expressed written consent by CB&I Environmental & Infrastructure, Inc

BRIDGETON LANDFILL BRIDGETON, MO

SETTLEMENT MAP JANUARY 18, 2016 THROUGH FEBRUARY 18, 2016

ORC APPROVED BY: JPV PROJ. NO.: DRAWN BY: 155162 DATE: MARCH 2016

February 1, 2015 – February 29, 2015 / MDNR ODOR COMPLAINTS

Name: NA

Message: Odor logged February 1, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 1, 2016, at 7:48 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed concurrent with the time of this concern. No odor related to the Bridgeton Landfill was observed at observation points in close proximity with this concern location. This was not a Bridgeton Landfill odor.

Name: Ron Nicholl

Message: Odor logged February 2, 2016, at 4:08 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 2, 2016, at 4:13 pm strength of 6

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: Michael Dailey

Message: Odor logged February 2, 2016, at 4:16 pm strength of 10

Follow-up: The following concern was investigated by Bridgeton Landfill within the hour in which it was received. No odor related to the Bridgeton Landfill was observed at an observation point in immediately adjacent to this concern location.

Name: Michael Dailey

Message: Odor logged February 2, 2016, at 4:17 pm strength of 10

Follow-up: The following concern was investigated by Bridgeton Landfill within the hour in which it was received. No odor related to the Bridgeton Landfill was observed at an observation point in immediately adjacent to this concern location.

Name: Kathy Bell

Message: Odor logged February 2, 2016, at 6:51 pm strength of 9

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Odor patrols prior to and after the time cited in this concern did not observe any odor related to the Bridgeton Landfill at points in the immediate proximity to this odor concern location. This is not believed to be a Bridgeton Landfill related odor.

Name: Robert Miller

Message: Odor logged February 2, 2016, at 6:58 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Odor patrols prior to and after the time cited in this concern did not observe any odor related to the Bridgeton Landfill at points in the immediate proximity to this odor concern location. This is not believed to be a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 2, 2016, at 8:43 pm strength of 10

Follow-up: The following concern lacks essential location data.

Name: Sharon Bishop

Message: Odor logged February 2, 2016, at 8:59 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed less than an hour after the time cited in this concern. No odor related to the Bridgeton Landfill was detected. This is not believed to be a Bridgeton Landfill odor.

Name: BrieAnn McCormick

Message: Odor logged February 2, 2016, at 7:45 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Odor patrols prior to and after the time cited in this concern did not observe any odor related to the Bridgeton Landfill at points in the immediate proximity to this odor concern location. This is not believed to be a Bridgeton Landfill related odor.

Name: Amy Comer

Message: Odor logged February 2, 2016, at 10:30 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: Amy Comer

Message: Odor logged February 2, 2016, at 4:15 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is immediately adjacent to other known odor sources with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: Amy Comer

Message: Odor logged February 2, 2016, at 7:10 am strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is immediately adjacent to other known odor sources with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 2, 2016, at 5:30 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is immediately adjacent to other known odor sources with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 3, 2016, at 7:35 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is immediately adjacent to other known odor sources with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 3, 2016, at 7:26 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is immediately adjacent to other known odor sources with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 3, 2016, at 7:36 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is immediately adjacent to other known odor sources with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: David Blackwell

Message: Odor logged February 2, 2016, at 5:30 pm strength of 5

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed at the time cited in this concern and no odor related to the Bridgeton Landfill was observed at a monitoring point in close proximity to this concern. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 3, 2016, at 5:30 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is immediately adjacent to other known odor sources with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 4, 2016, at 6:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 4, 2016, at 6:35 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is immediately adjacent to other known odor sources with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 4, 2016, at 6:35 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is immediately adjacent to other known odor sources with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 4, 2016, at 6:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is immediately adjacent to other known odor sources with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: Brieann mccormick

Message: Odor logged February 4, 2016, at 5:23 pm strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Before, during, and after the time cited in this concern winds were of a west/southwest origin, placing this location well upwind of the Bridgeton Landfill and downwind of another known odor source with frequent off-site emissions. This was not a Bridgeton Landfill odor.

Name: Robbin Dailey

Message: Odor logged February 4, 2016, at 5:20 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Before, during, and after the time cited in this concern winds were of a west/southwest origin, placing this location well upwind of the Bridgeton Landfill and downwind of another known odor source with frequent off-site emissions. This was not a Bridgeton Landfill odor.

Name: Robbin Dailey

Message: Odor logged February 4, 2016, at 5:20 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Before, during, and after the time cited in this concern winds were of a west/southwest origin, placing this location well upwind of the Bridgeton Landfill and downwind of another known odor source with frequent off-site emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 5, 2016, at 6:45 am strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed shortly after the time cited in this concern. No odor related to the Bridgeton Landfill was observed at a point in close proximity to this concern location. Winds were of a predominantly western origin on this date placing this concern upwind of the Bridgeton Landfill. This is not believed to have been a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 5, 2016, at 7:27 am strength of 10

Follow-up: The following concern lacks essential location data.

Name: NA

Message: Odor logged February 5, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 5, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 5, 2016, at 7:35 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 5, 2016, at 7:35 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 5, 2016, at 7:40 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 5, 2016, at 7:40 am strength of 10

Follow-up: The following concern is a duplicate of another concern.

Name: NA

Message: Odor logged February 5, 2016, at 7:45 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 5, 2016, at 7:45 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is immediately adjacent to other known odor sources with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 5, 2016, at 7:46 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is immediately adjacent to other known odor sources with frequent off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 5, 2016, at 7:26 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed within one hour of the time cited in this concern. No odor related to the Bridgeton Landfill was observed. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 5, 2016, at 6:45 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 5, 2016, at 6:37 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 6, 2016, at 1:02 pm strength of 4

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed slightly over an hour prior to this concern and again several hours after. Neither patrol observed any off-site odor between this location and the Bridgeton Landfill. This is not believed to be a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 5, 2016, at 7:24 pm strength of 3

Follow-up: The following concern lacks essential location data.

Name: NA

Message: Odor logged February 7, 2016, at 12:31 pm strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. At the time cited in this concern the location given was located outside the downwind pathway of the Bridgeton Landfill and directly downwind of another known odor source with frequent off-site odors. This was not a Bridgeton Landfill odor.

Name: Rhonda Steelman

Message: Odor logged February 7, 2016, at 11:17 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. At the time cited in this concern the location given was located directly upwind of the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill odor.

Name: Jennifer

Message: Odor logged February 7, 2016, at 4:34 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. At the time cited in this concern the location given was located directly upwind of the Bridgeton Landfill and immediately downwind of another known odor source. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 7, 2016, at 5:08 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. At the time cited in this concern the location given was located directly upwind of the Bridgeton Landfill and immediately downwind of another known odor source. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 7, 2016, at 5:08 pm strength of 8

Follow-up: The following concern is a duplicate of a previous concern.

Name: NA

Message: Odor logged February 7, 2016, at 5:08 pm strength of 8

Follow-up: The following concern is a duplicate of a previous concern.

Name: Rachel Benjamin

Message: Odor logged February 7, 2016, at 10:00 pm strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed immediately before the time cited in this concern. No odor related to the Bridgeton Landfill was observed. A strong trash odor was observed at select points. There is potential for this trash odor to be the source of this concern. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 8, 2016, at 7:45 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location referenced in this concern is immediately adjacent to another known odor source with frequent off-site odor emissions observed. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 8, 2016, at 7:47 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location referenced in this concern is immediately adjacent to another known odor source with frequent off-site odor emissions observed. This was not a Bridgeton Landfill odor.

Name: Georgia Leek

Message: Odor logged February 6, 2016, at 7:21 pm strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. At the time of this concern winds were of a western origin placing this location directly downwind of another known odor source with frequent off-site odor emissions. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 8, 2016, at 11:13 am strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. No odor associated with the Bridgeton Landfill was observed during multiple odor patrols on the date of this concern. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 8, 2016, at 12:45 am strength of 5

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. No odor associated with the Bridgeton Landfill was observed during multiple odor patrols on the date of this concern. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 8, 2016, at 1:15 pm strength of 6

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. No odor associated with the Bridgeton Landfill was observed during multiple odor patrols on the date of this concern. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 9, 2016, at 7:15 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location referenced in this concern is immediately adjacent to another known odor source with frequent off-site odor emissions observed. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 9, 2016, at 7:15 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location referenced in this concern is immediately adjacent to another known odor source with frequent off-site odor emissions observed. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 9, 2016, at 7:15 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location referenced in this concern is immediately adjacent to another known odor source with frequent off-site odor emissions observed. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 9, 2016, at 3:30 pm strength of 5

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location referenced in this concern is immediately adjacent to another known odor source with frequent off-site odor emissions observed. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 9, 2016, at 12:17 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. At the time referenced in this concern the location provided was a substantial distance upwind of the Bridgeton Landfill. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 10, 2016, at 6:27 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. At the time of this concern winds were of a western origin placing this location directly downwind of another known odor source with frequent off-site odor emissions. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 10, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location referenced in this concern is immediately adjacent to another known odor source with frequent off-site odor emissions observed. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 10, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location referenced in this concern is immediately adjacent to another known odor source with frequent off-site odor emissions observed. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 10, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location referenced in this concern is immediately adjacent to another known odor source with frequent off-site odor emissions observed. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 10, 2016, at 7:35 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location referenced in this concern is immediately adjacent to another known odor source with frequent off-site odor emissions observed. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 10, 2016, at 8:00 am strength of 6

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 10, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 11, 2016, at 4:47 pm strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed at multiple points in close proximity to this concern location minutes before the time cited in this concern. An odor unassociated with the Bridgeton Landfill was observed. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 12, 2016, at 7:22 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 12, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 12, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 12, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 12, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 12, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 12, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 13, 2016, at 7:11 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 13, 2016, at 7:51 am strength of 9

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 13, 2016, at 5:48 pm strength of 7

Follow-up: The following concern lacks essential location data and is therefore invalid.

Name: Kathy Bell

Message: Odor logged February 15, 2016, at 4:04 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed including points in close proximity to the concern location provided minutes before the time cited. No odor associated with the Bridgeton Landfill was observed. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 15, 2016, at 5:43 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 15, 2016, at 5:44 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: Brady Nelson

Message: Odor logged February 15, 2016, at 9:09 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed approximately one hour after the time cited in this concern, no odor related to the Bridgeton Landfill was observed. This is not believed to have been a Bridgeton Landfill odor.

Name: Theresa Ravens

Message: Odor logged February 16, 2016, at 7:32 am strength of 6

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol overlapped with the time cited in this concern. No odor related to the Bridgeton Landfill was observed at multiple points in close proximity to this concern location. A strong garbage odor unassociated with the Bridgeton Landfill was detected at a location in close proximity to this concern approximately 15 minutes after the time cited in this concern. This was not a Bridgeton Landfill odor.

Name: Amy Comer

Message: Odor logged February 16, 2016, at 8:06 am strength of 9

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed less than half an hour prior to the time cited in this concern. A strong garbage odor unassociated with the Bridgeton Landfill was detected between the suspected non-Bridgeton source of this odor and the location provided in this concern. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 15, 2016, at 2:00 pm strength of 6

Follow-up: The following concern lacks essential location data.

Name: NA

Message: Odor logged February 16, 2016, at 5:05 pm strength of 8

Follow-up: The following concern lacks essential location data.

Name: NA

Message: Odor logged February 16, 2016, at 5:29 pm strength of 10

Follow-up: The following concern cites a location immediately adjacent to another known odor source. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 16, 2016, at 5:30 pm strength of 10

Follow-up: The following concern cites a location immediately adjacent to another known odor source. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 16, 2016, at 5:31 pm strength of 10

Follow-up: The following concern cites a location immediately adjacent to another known odor source. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 16, 2016, at 5:31 pm strength of 10

Follow-up: The following concern cites a location immediately adjacent to another known odor source. This was not a Bridgeton Landfill odor.

Name: Bob LaBeaume

Message: Odor logged February 16, 2016, at 6:07 pm strength of 9

Follow-up: The following concern cites a location immediately adjacent to another known odor source. This was not a Bridgeton Landfill odor.

Name: Kathy Luther

Message: Odor logged February 16, 2016, at 8:39 pm strength of 8

Follow-up: The following concern lacks essential location data.

Name: Trisha Bakula

Message: Odor logged February 17, 2016, at 12:41 am strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: Kathy Luther

Message: Odor logged February 17, 2016, at 7:56 am strength of 6

Follow-up: The following concern lacks essential location data.

Name: NA

Message: Odor logged February 17, 2016, at 7:30 am strength of 10

Follow-up: The following concern cites a location immediately adjacent to another known odor source. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 17, 2016, at 7:30 am strength of 10

Follow-up: The following concern cites a location immediately adjacent to another known odor source. This was not a Bridgeton Landfill odor.

Name: Annette Hurley

Message: Odor logged February 17, 2016, at 7:30 am strength of 5

Follow-up: The following concern cites a location immediately adjacent to another known odor source. This was not a Bridgeton Landfill odor.

Name: Kathy Bell

Message: Odor logged February 18, 2016, at 12:02 pm strength of 8

Follow-up: The following concern cites a time 7 minutes in the future from the time of submittal. This is clearly an erroneous or false concern.

Name: NA

Message: Odor logged February 19, 2016, at 7:55 am strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 19, 2016, at 9:56 am strength of 5

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 19, 2016, at 12:40 pm strength of 10

Follow-up: The following concern cites a location immediately adjacent to another known odor source. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 19, 2016, at 12:15 pm strength of 10

Follow-up: The following concern cites a location immediately adjacent to another known odor source. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 19, 2016, at 12:52 pm strength of 10

Follow-up: The following concern cites a location immediately adjacent to another known odor source. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 19, 2016, at 5:09 pm strength of 5

Follow-up: The following concern cites a location immediately downwind from another known odor source at the time cited in this concern. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 19, 2016, at 6:39 pm strength of 8

Follow-up: The following concern cites a location immediately downwind from another known odor source at the time cited in this concern. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 20, 2016, at 9:30 am strength of 8

Follow-up: The following concern cites a location immediately adjacent to another known odor source. This was not a Bridgeton Landfill odor.

Name: Steve Commuso

Message: Odor logged February 20, 2016, at 4:33 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: Audra Richardson

Message: Odor logged February 21, 2016, at 12:29 am strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. No odor related to the Bridgeton Landfill was observed during odor patrols before and after the time referenced in this concern. The concern location provided is in the vicinity of observed odor related to another site on the previous date. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: Angela Bengford

Message: Odor logged February 20, 2016, at 5:00 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: David Hinners

Message: Odor logged February 21, 2016, at 8:50 pm strength of 9

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: David Hinners

Message: Odor logged February 21, 2016, at 9:16 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: Steve Commuso

Message: Odor logged February 22, 2016, at 9:24 pm strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: Tonya Mason

Message: Odor logged February 22, 2016, at 10:12 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The following concern coincided with an odor patrol by Bridgeton Landfill staff. No odor related to the Bridgeton Landfill was observed at multiple points in close proximity to the concern location provided. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 23, 2016, at 5:45 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 23, 2016, at 5:45 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 23, 2016, at 5:50 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 23, 2016, at 5:50 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 23, 2016, at 6:00 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 23, 2016, at 6:00 am to 7:35 am strength of 10

Follow-up: Five concerns were submitted with the subject of "Testing Bridgeton landfill", these are presumably system test submittals as the locations provided are of significant distance from the Bridgeton Landfill and therefore no evidence suggests that these were Bridgeton Landfill related.

Name: NA

Message: Odor logged February 23, 2016, at 7:29 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 23, 2016, at 7:20 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 23, 2016, at 7:20 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: David Blackwell

Message: Odor logged February 23, 2016, at 7:45 am strength of 3

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed immediately after the time cited in this concern. No odor related to the Bridgeton Landfill was observed at points in close proximity to this concern location. This was not a Bridgeton Landfill odor.

Name: Todd Nichol

Message: Odor logged February 23, 2016, at 5:30 am strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of significant distance from the Bridgeton Landfill and immediately adjacent to another known odor source. Morning odor inspections did not observe Bridgeton Landfill related odor at multiple points between this location and the Bridgeton Landfill. There is no evidence to suggest this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 23, 2016, at 7:13 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: NA

Message: Odor logged February 23, 2016, at 10:29 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern is of a significant distance from the Bridgeton Landfill. There is no evidence to suggest that this was a Bridgeton Landfill related odor.

Name: Greg Wortham

Message: Odor logged February 23, 2016, at 11:30 am strength of 5

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Odor patrols performed shortly before and after the time cited in this concern did not observe any odor related to the Bridgeton Landfill. This is not believed to have been a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 25, 2016, at 7:45 am strength of 10

Follow-up: The following concern cites a location immediately adjacent to another known odor source. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 25, 2016, at 7:45 am strength of 10

Follow-up: The following concern cites a location immediately adjacent to another known odor source. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 25, 2016, at 7:50 am strength of 10

Follow-up: The following concern cites a location immediately adjacent to another known odor source. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 25, 2016, at 7:45 am strength of 10

Follow-up: The following concern cites a location immediately adjacent to another known odor source. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 25, 2016, at 7:40 am strength of 10

Follow-up: The following concern cites a location immediately adjacent to another known odor source. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 25, 2016, at 7:45 am strength of 10

Follow-up: The following concern cites a location immediately adjacent to another known odor source. This was not a Bridgeton Landfill odor.

Name: Linda Eaker

Message: Odor logged February 25, 2016, at 11:00 am strength of 6

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern location provided is in close proximity to another known odor source on a date when winds were of a persistent western origin, placing this other source directly upwind of the location specified and well outside the downwind pathway of the Bridgeton Landfill. This was not a Bridgeton Landfill odor.

Name: Mary Eaker

Message: Odor logged February 25, 2016, at 10:00 am strength of 6

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern location provided is in close proximity to another known odor source on a date when winds were of a persistent western origin, placing this other source directly upwind of the location specified and well outside the downwind pathway of the Bridgeton Landfill. This was not a Bridgeton Landfill odor.

Name: 3 miles away we had to close our windows!!!!!

Message: Odor logged February 28, 2016, at 11:31 am strength of 6

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was initiated at the exact time cited in this concern. No odor related to the Bridgeton Landfill was observed around the entirety of the site perimeter. On this date winds were of a persistent southwestern origin, placing the location provided well outside the downwind pathway of the Bridgeton Landfill and immediately downwind of another known odor source with frequent unchecked off-site odor emissions. This was clearly not a Bridgeton Landfill odor.

Name: 3 miles away we had to close our windows!!!!!

Message: Odor logged February 29, 2016, at 7:00 am strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was initiated within the hour the time referenced in this concern. No odor related to the Bridgeton Landfill was observed around the entirety of the site perimeter. On this date winds were of a persistent southwestern origin, placing the location provided well outside the downwind pathway of the Bridgeton Landfill and immediately downwind of another known odor source with frequent unchecked off-site odor emissions. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 27, 2016, at 2:00 pm strength of 10

Follow-up: The following concern cites a location immediately adjacent to another known odor source. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 27, 2016, at 2:05 pm strength of 10

Follow-up: The following concern cites a location immediately adjacent to another known odor source. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 27, 2016, at 2:05 pm strength of 10

Follow-up: The following concern cites a location immediately adjacent to another known odor source. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 29, 2016, at 7:30 am strength of 10

Follow-up: The following concern cites a location immediately adjacent to another known odor source. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged February 28, 2016, at 9:00 pm strength of 4

Follow-up: The following concern lacks essential location data.

Bridgeton Landfill - Leachate PreTreatment Plant February 2016

Liquid Characterization Data

Liquid characterization data is made available to MDNR on an ongoing basis. No additional lechate characterization data, beyond that produced for MSD, was collected during the prior month.

1,440,000

Hauled Disposal to MSD - Bissell Point

Date	Waste	Source	Transporter	Quantity
2/1/2016				0
2/2/2016				0
2/3/2016			0	0
2/4/2016				0
2/5/2016				0
2/6/2016				0
2/7/2016				0
2/8/2016				0
2/9/2016				0
2/10/2016				0
2/11/2016				0
2/12/2016				0
2/13/2016		LPTP Activated Sludge/ Permeate Tank 1 (T1) MBI		0
2/14/2016	LDTD Activated			0
2/15/2016				0
2/16/2016	Siduge/ Fermedie			0
2/17/2016			0	
2/18/2016				0
2/19/2016				0
2/20/2016				0
2/21/2016				0
2/22/2016				0
2/23/2016				247,500
2/24/2016				210,000
2/25/2016				240,000
2/26/2016				247,500
2/27/2016				247,500
2/28/2016				247,500
2/29/2016				0

Direct Discharge to MSD

Date	Waste	Source	Quantity (gal)
2/1/2016			285,733
2/2/2016			247,109
2/3/2016			197,299
2/4/2016			122,008
2/5/2016			247,947
2/6/2016			250,451
2/7/2016			238,753
2/8/2016			228,159
2/9/2016			208,627
2/10/2016			201,423
2/11/2016			208,468
2/12/2016		269	269,608
2/13/2016			276,673
2/14/2016	LPTP	Through Tank AST 97k (MSD	320,591
2/15/2016	Permeate	Sampling Point 013)	312,300
2/16/2016	Termeute	Sampling Forme 015)	315,060
2/17/2016			309,134
2/18/2016			317,068
2/19/2016			325,289
2/20/2016			320,343
2/21/2016			209,459
2/22/2016			0
2/23/2016			0
2/24/2016			0
2/25/2016			0
2/26/2016			0
2/27/2016			0
2/28/2016			0
2/29/2016			0

Total = 5,411,502

