Bridgeton Landfill, LLC

Monthly Data Submittals

January, 2016

Required by Section 52.E of Agreed Order, Case No. 13SL-CC01088 Effective May 13, 2013

Contents:

Commentary on Data

Attachment A Work Completed and Planned
Attachment B Daily Flare Monitoring Data

B-1 Flow Data TableB-2 Flow Data Graphs

• B-3 Flare TRS / Flare Station Flow

Attachment C Gas Well Analyses Maps

Attachment D Laboratory Data

D-1 Lab Analyses Summary
 D-2 Lab Analyses Reports

Attachment E Gas Wellfield Data

• E-1 Wellfield Data Table

• E-2 Maximum Wellhead Temperature Table

Attachment F Settlement Front Map

Attachment G Summary of Odor Complaints

Attachment H Liquid Characterization Data and Discharge Log

Attachment I Low Fill Project Area

Provided Separately:

- Flare Raw Data Excel Spreadsheet
- Gas Wellfield Raw Data Excel Spreadsheet

February 20, 2016

Commentary on Data

February 20, 2016

The following observations and comments are offered during this time period:

Gas Volume

• As seen in Attachment B-1, gas collection volumetric rate in for this month averaged 2,997 SCFM, as normalized per the MDNR weekly flow and TRS sampling results.

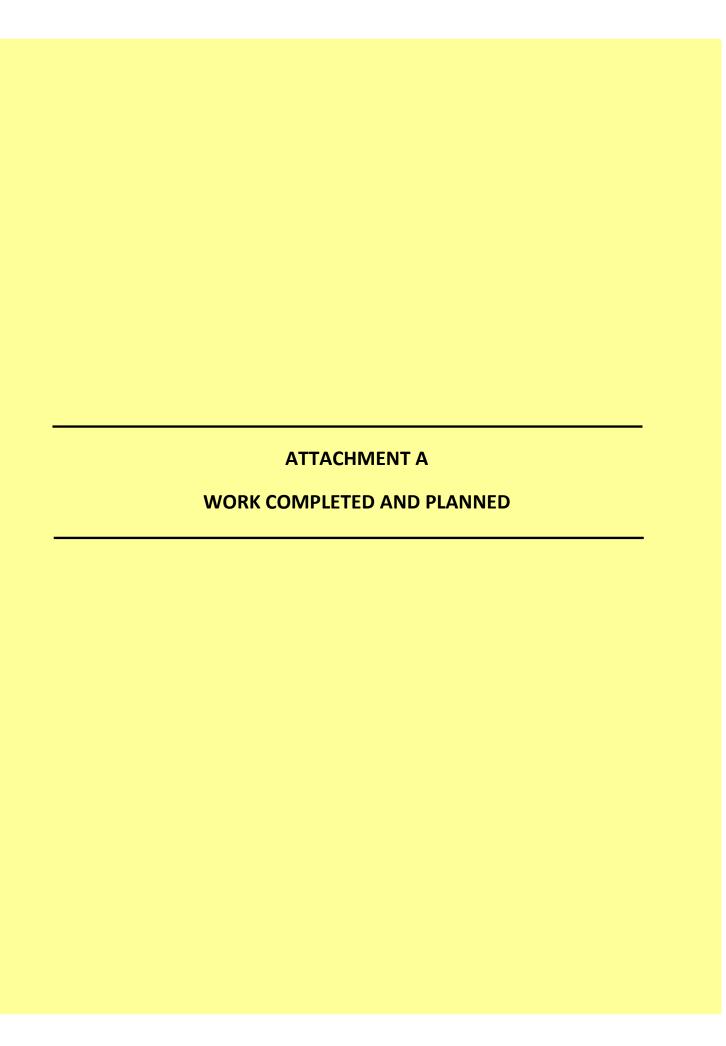
Gas Quality

- Attachments D and E contain the monthly data related to gas quality as measured at the respective wellheads.
- Attachment E-1 details vertical wells which had oxygen levels over 5% at one or more weekly monitoring events during this reporting period. These consisted of 8 older GEW wells (<#-120) that are experiencing low flows; 12 new GEW wells (>#-120) that are experiencing restricted flows; 12 GIW wells that have low gas flow due to the cooling loops that are installed within these wells. By the end of the month, the majority of these wells still exhibited oxygen at the wellhead at or greater than 5%. All these wells, except the new GEWs are low-flow/vacuum sensitive wells with valves only slightly open. On-going tuning, maintenance and pump operation is being performed to manage the oxygen content. These wells are in the south quarry area where the flexible membrane liner cap is in place to prevent atmospheric intrusion into the waste mass.
- Attachment E-2 contains gas temperatures as measured at the wellheads. Ten (10) vertical wells (excluding GIW wells) decreased by 30°F during this reporting period. Additionally, five (5) vertical wells (excluding GIW wells) increased by 30°F or more. All wells that exhibited changes greater than 30 degrees are all within the historical gas temperature norms for these wells or within the range of temperatures of nearby vertical wells.
- A detailed review of the gas extraction wells in the neck area was conducted. Maximum temperatures are consistent with previous months in each of the gas extraction wells in vicinity to the neck. Carbon monoxide (CO) results during this reporting period showed stable month-over-month based on historic levels within the Neck Area wells.

- All wells in the North Quarry during this reporting period exhibited a maximum wellhead temperature under 145° F with the exception of GEW-054. The well had a maximum well head temperature of 155°F, but it returned to 145°F (the 12-month rolling average is 144°F) by the end of the month. The only North Quarry well that had detections of carbon monoxide during this reporting period was GEW-053 (49 ppm). Carbon monoxide (CO) results showed non-detect (ND) for all other North quarry wells.
- Review of weekly gas quality in Attachment E reveals that all of the active North Quarry gas wells continue to have low, if any, oxygen and healthy methane and carbon dioxide levels indicating normal wellfield conditions for aged waste at all locations, consistent with GCCS wellfield conditions observed in the North Quarry for some time.

Settlement

• The South Quarry exhibited monthly maximum settlement up to 1.53 feet over 34 days (1.35 feet over 30 days) for this reporting period (see Attachment F); which is comparable to last month's rate. The rate of settlement directly south of the neck continues to be small and stable compared to previous months.


Bird Monitoring and Mitigation

Bridgeton Landfill conducted bird monitoring during this reporting period in accordance
with the Approved Bird Hazard Monitoring and Mitigation Plan. Logs of bird population
observations were provided to the Airport on a weekly basis. No change in bird
population or bird hazards were observed and no bird mitigation measures were
necessary.

Low Fill Project Area

- Enclosed is the requested clean fill placement figure in accordance with the June 19, 2015 letter from the Missouri Department of Natural Resources (MDNR) granting modification approval to Permit number 0118912. This modification allows for the acceptance of clean fill and use thereof as a method of re-establishing positive surface drainage and maintaining structural stability of landfill infrastructure. Condition four (4) of this approval is satisfied via the text below and the accompanying figure.
- Clean fill activities commenced in late December and have continued into early January
 on a region of differential settlement located in the northeastern portion of the South
 Quarry. The total cubic yardage of fill material used is still to be determined. The
 enclosed figure indicates this fill area as well as clean fill materials stockpile areas on the
 West Lake OU2 portion of the property and the Bridgeton Landfill North Quarry portion
 of the property in support of this project. Upon conclusion of the fill project the
 requested cubic yardage, drainage features (if applicable), and drawings showing the
 completed location area shall be provided with the following monthly report.

• The previous monthly submittal was performed outside of the standard site surveying schedule as the previous event occurred before substantial work had begun on the northeastern fill project. Therefore the figure submitted in this monthly report is the same as last month, representative of January fill operations. Future reports will feature the previous month's figure as with other figures submitted in this report (i.e. the February figure will be submitted with the March report).

Bridgeton Landfill, LLC Monthly Summary of Work Completed and Planned

Work Completed in January 2016

Gas Collection and Control System

- Continued operation and maintenance of GCCS System and GIW wells.
- Began header realignment project to improve condensate management and header vacuum distribution.

Alternative Heat Extraction System

Continued operation and maintenance of the HES.

Leachate Management System

- Continued to enhance operational efficiency of the pretreatment facility.
- Permeate continued to be discharged directly to MSD Bissell Point Facility or other approved disposal facilities as determined by MSD.

Pre-Treatment Facility

- Continued ongoing operation of facility.
- Continued to optimize operation efficiency of pre-treatment facility.

Other Projects

- Continued North Quarry cap enhancements.
- Continued low area fill project in South Quarry.
- Continued acceptance of clean fill.

Work Planned for February 2016

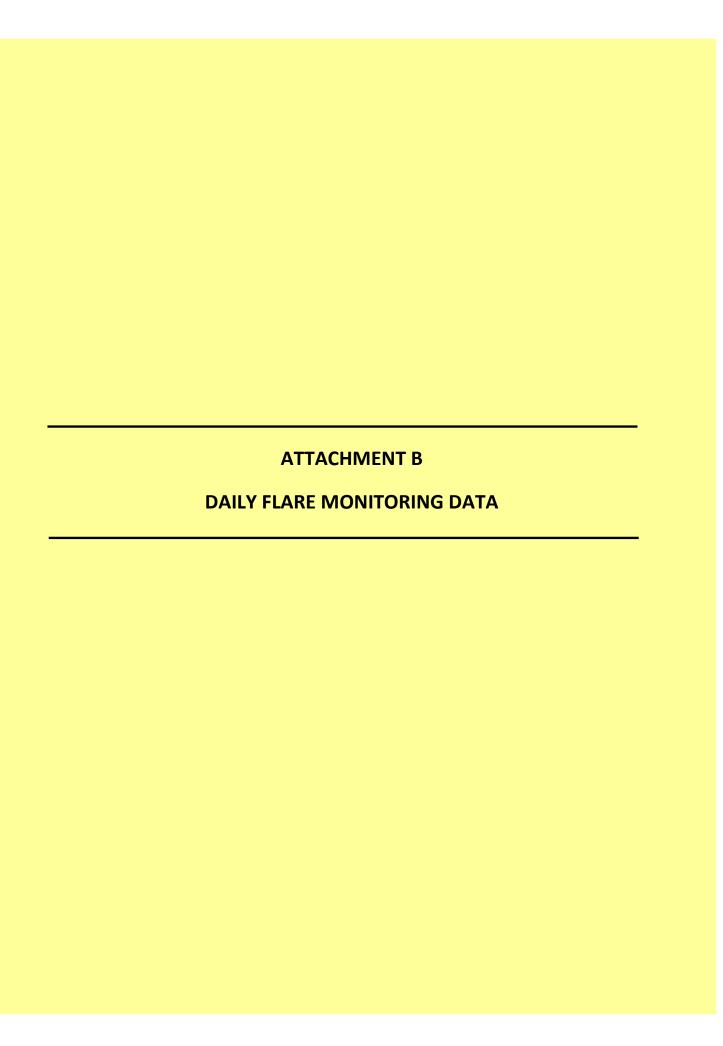
Gas Collection and Control System

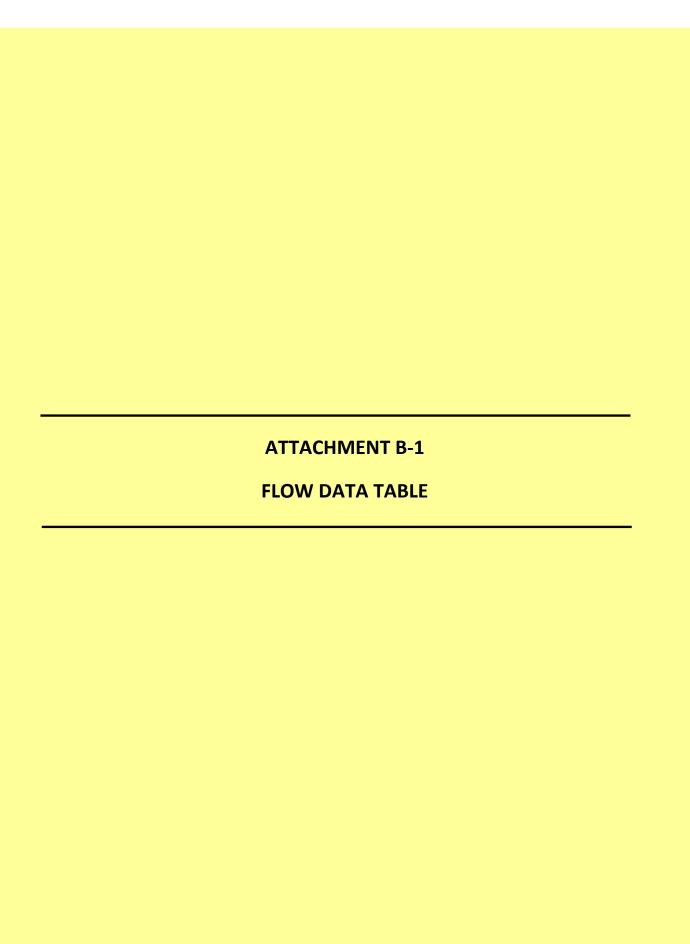
- Continue operation and maintenance of GCCS system.
- Continue header realignment project to improve condensate management and header vacuum distribution.
- Continue upgrades to GCCS system as necessary.

Alternative Heat Extraction System

• Continued operation and maintenance of the HES.

Leachate Management System

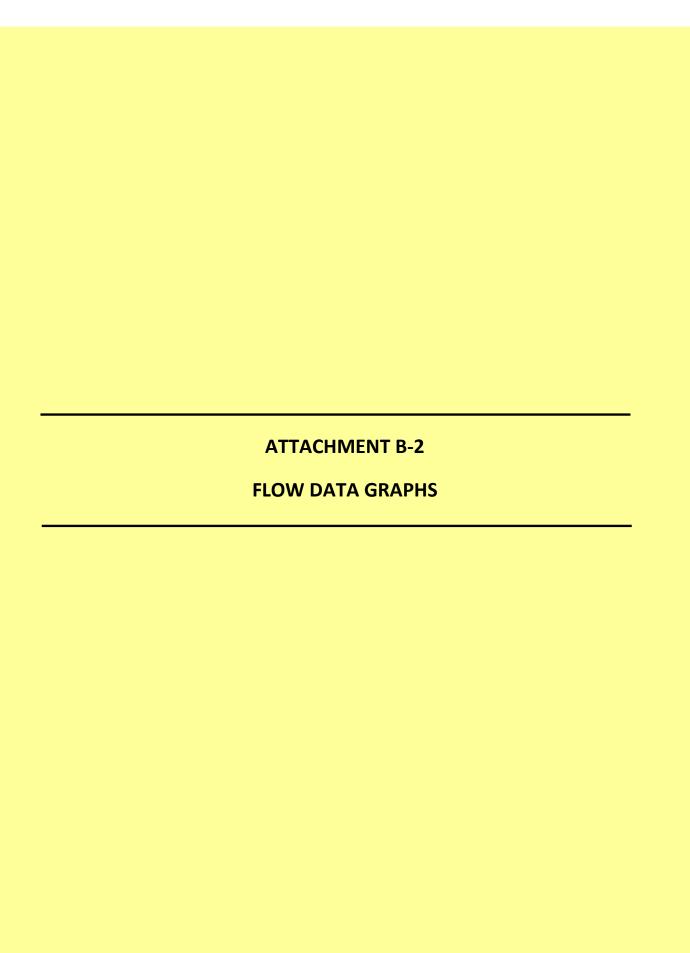

- Continued routine operation of previously installed and upgraded features.
- Begin hauling activated sludge from the 1 million gallon aeration tanks. It is projected that approximately 1.2 million gallons will be shipped over a period of one week.

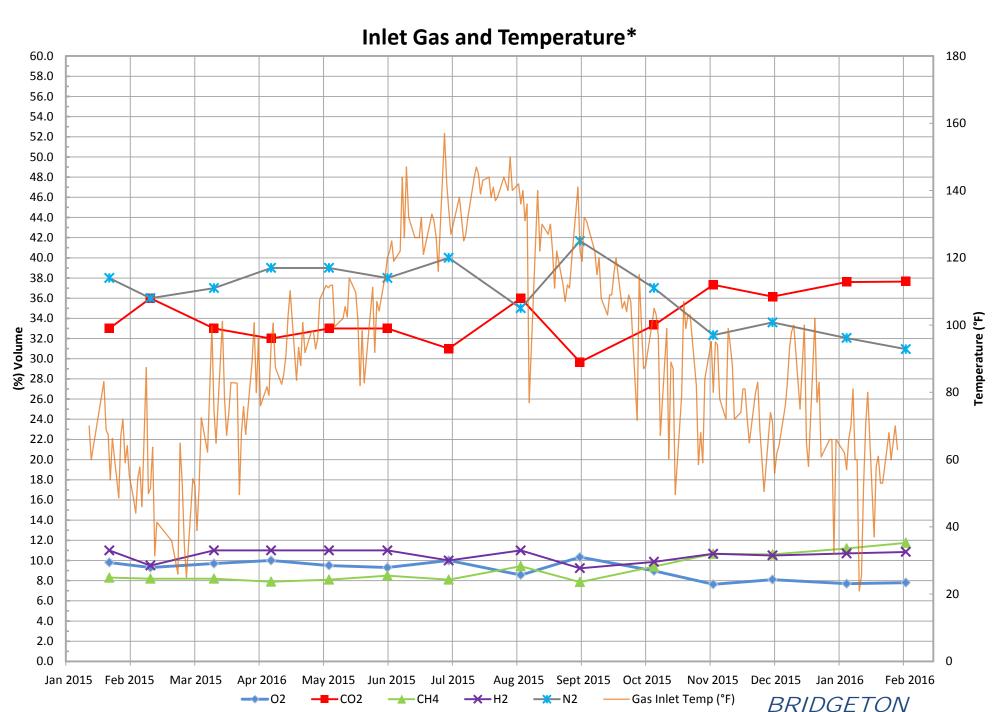

Pre-Treatment Facility

- Ongoing operation of facility.
- Continue to optimize operation efficiency of pre-treatment facility.

Other Projects:

- Continue fill projects for north slope of south quarry and low area on east slope
- Continue acceptance of clean fill materials for future fill projects.
- Complete north quarry cap enhancement project (weather permitting).

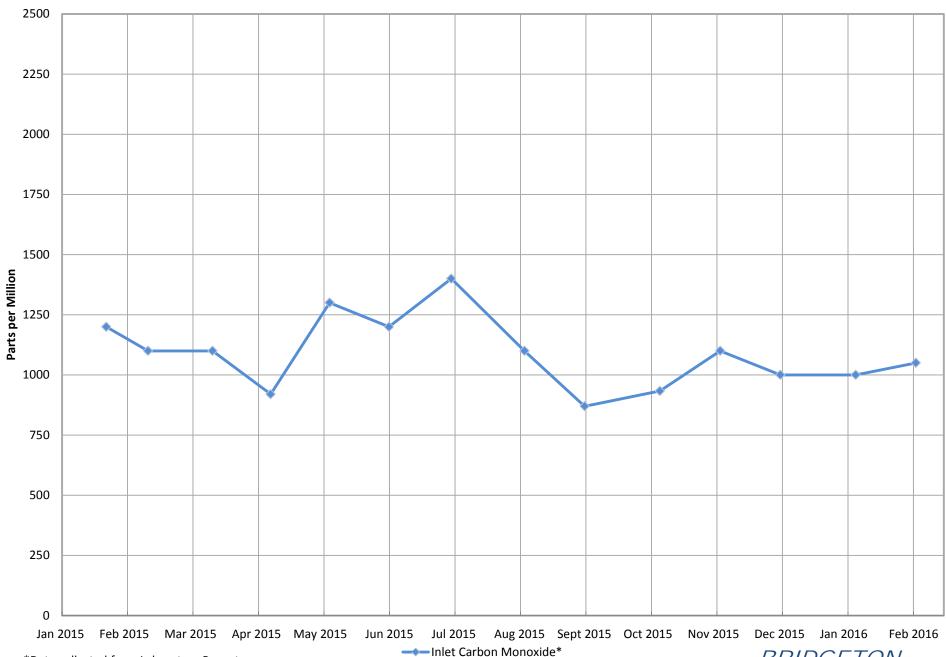




Daily Flare Monitoring Data - Bridgeton Landfill January 2016

	Av	verage Devic	e Flow* (sci	·m)	Total Avg.
Date	Utility Flare (FL-100)	Utility Flare (FL-120)	Utility Flare (FL-140)	Aux. Utility Flare	Flow** (scfm)
1/1/2015	0	0	3,193		3,193
1/2/2015	0	0	3,197		3,197
1/3/2015	0	0	3,116		3,116
1/4/2015	0	0	3,043		3,043
1/5/2015	0	0	2,957	23	2,980
1/6/2015	0	0	2,687	427	3,115
1/7/2015	0	0	2,929	242	3,170
1/8/2015	0	0	3,098		3,098
1/9/2015	0	0	3,040		3,040
1/10/2015	0	0	2,945		2,945
1/11/2015	0	0	2,983		2,983
1/12/2015	0	0	2,957		2,957
1/13/2015	0	0	2,968		2,968
1/14/2015	0	0	2,981		2,981
1/15/2015	0	0	2,973		2,973
1/16/2015	0	0	2,985		2,985
1/17/2015	0	0	3,006		3,006
1/18/2015	0	0	2,970		2,970
1/19/2015	0	0	2,930	28	2,958
1/20/2015	0	0	2,986		2,986
1/21/2015	0	0	2,977		2,977
1/22/2015	0	0	3,029		3,029
1/23/2015	0	0	3,065		3,065
1/24/2015	0	0	3,070		3,070
1/25/2015	0	0	2,952		2,952
1/26/2015	0	0	2,909		2,909
1/27/2015	0	0	2,934		2,934
1/28/2015	0	0	2,848		2,848
1/29/2015	0	0	2,836		2,836
1/30/2015	0	0	2,830		2,830
1/31/2015	0	0	2,805		2,805
				Average	2,997

^{*} Flows normalized to **Blower Outlet Flowmeter - EPA Method 2 measurement verified January 2016 MDNR MDS - Bridgeton Landfill, LLC. 1 of 1

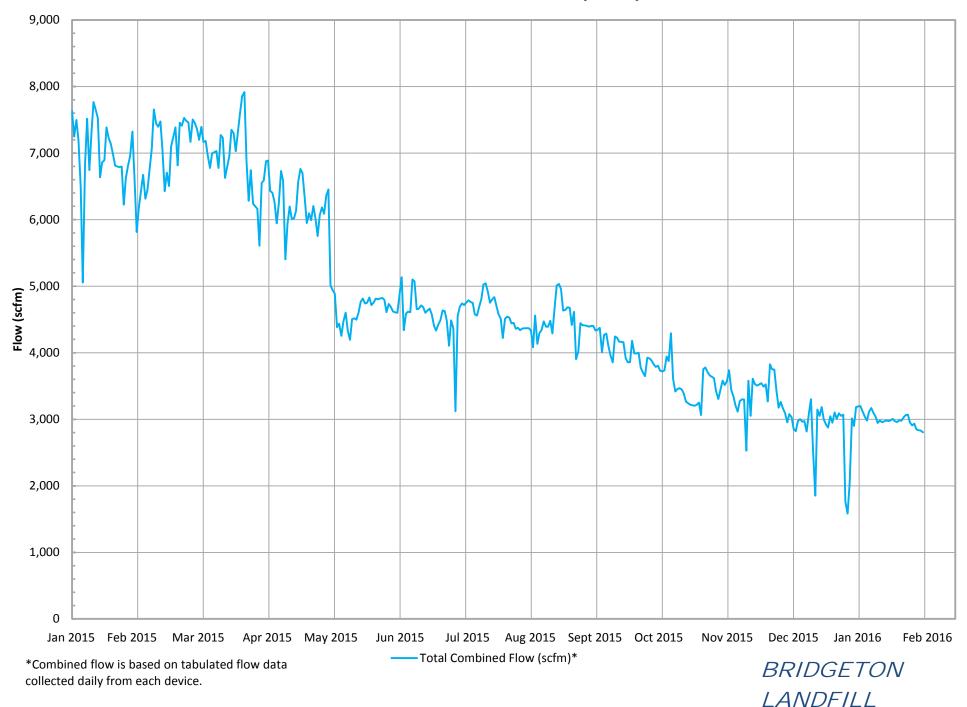


LANDFILL

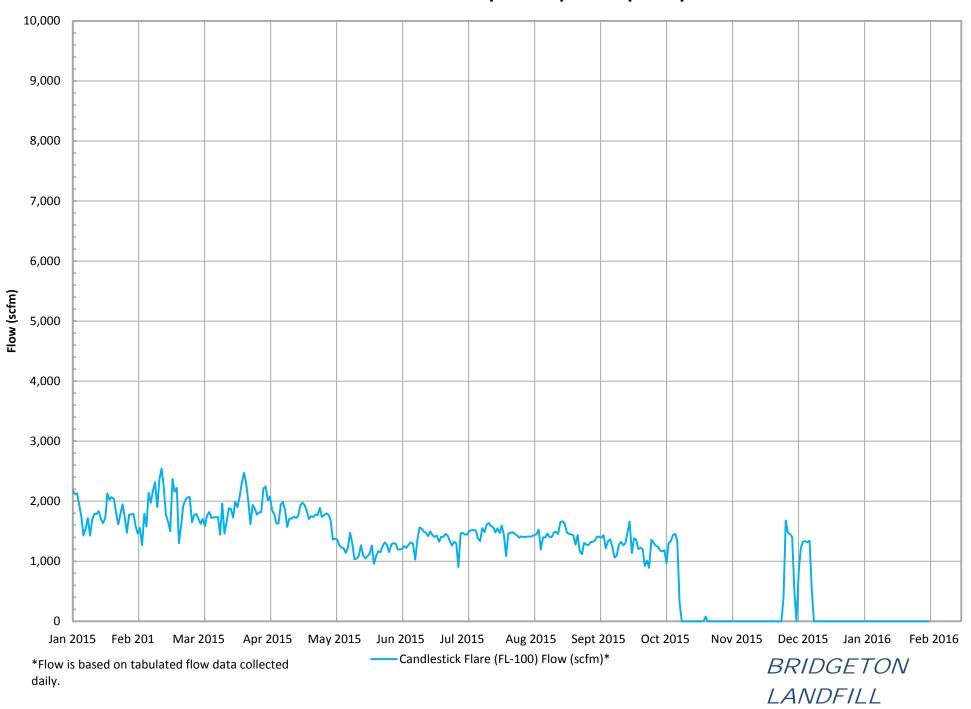
^{*}Gas data collected from Laboratory Reports. Temperature data collected from field readings.

^{*}Data for 12/1/15 was added in the January Monthly Report.

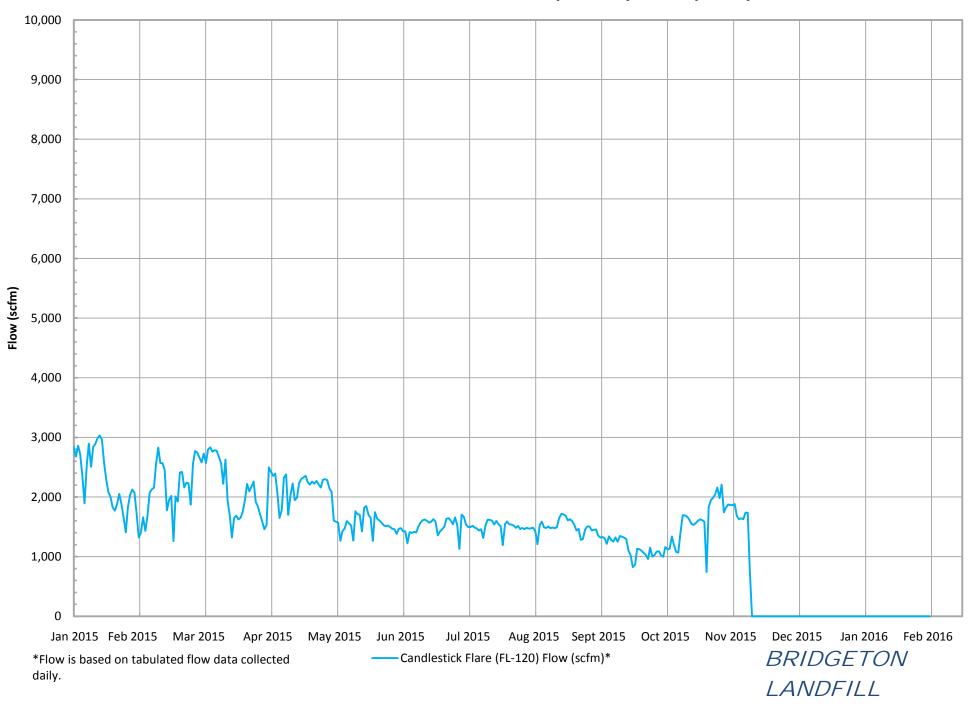
Inlet Carbon Monoxide*

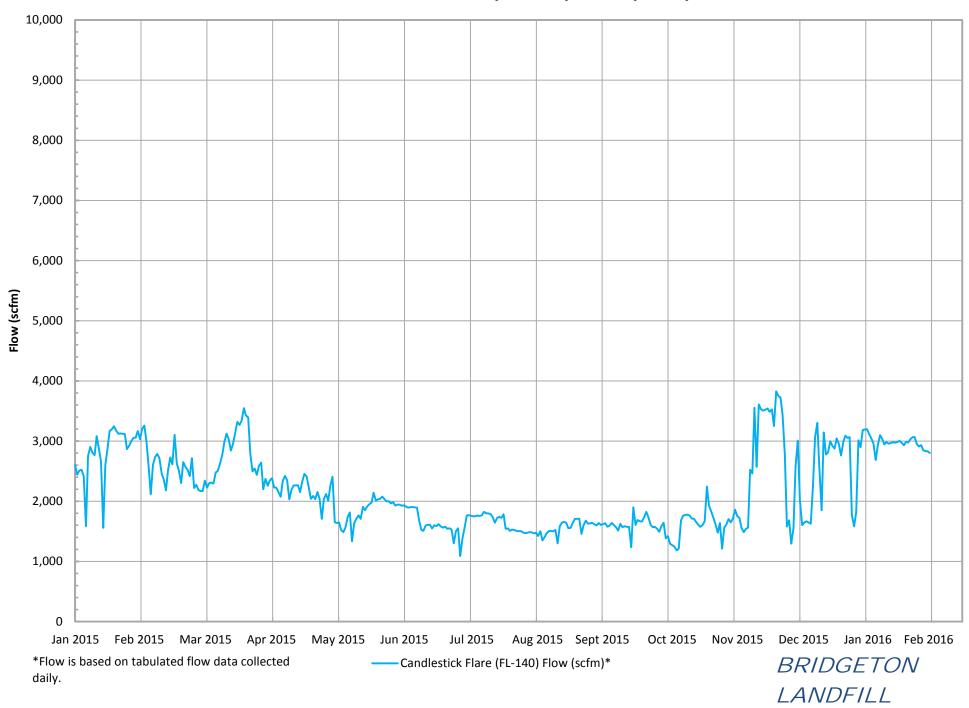


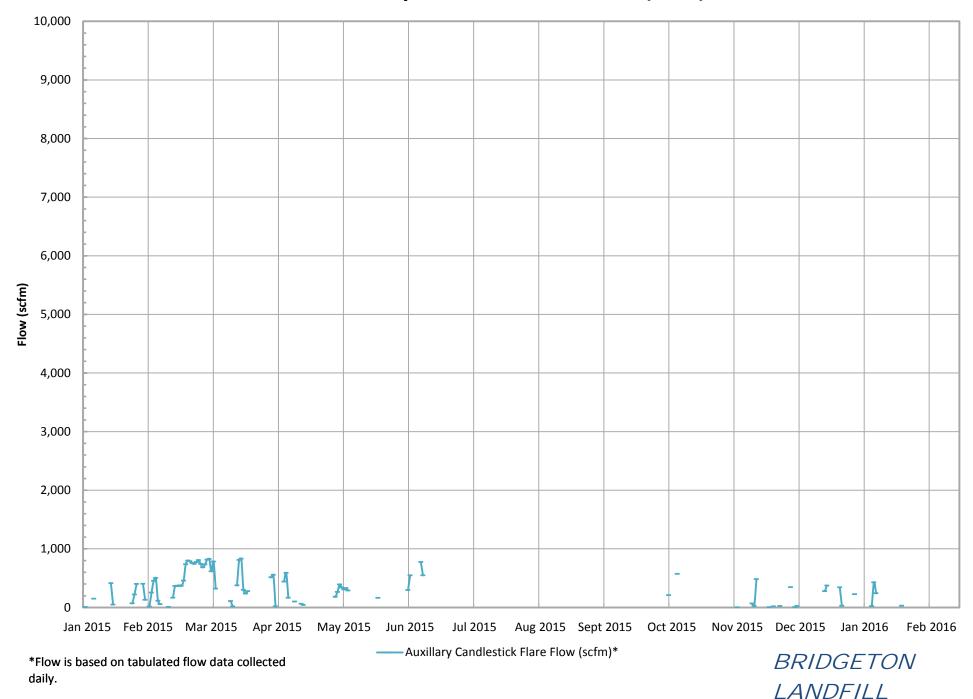
^{*}Data collected from Laboratory Reports.

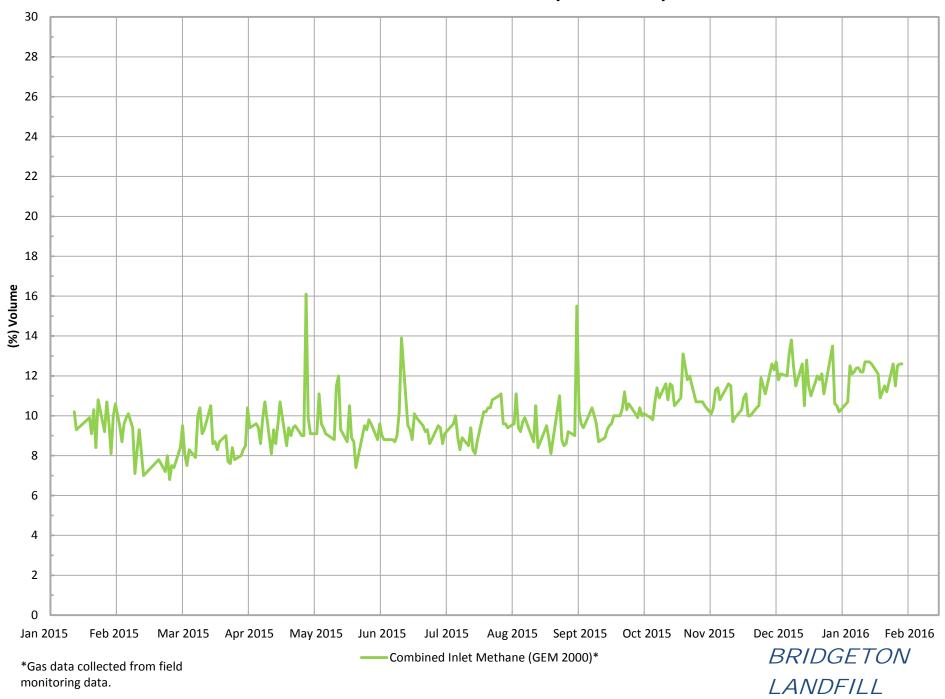

BRIDGETON LANDFILL

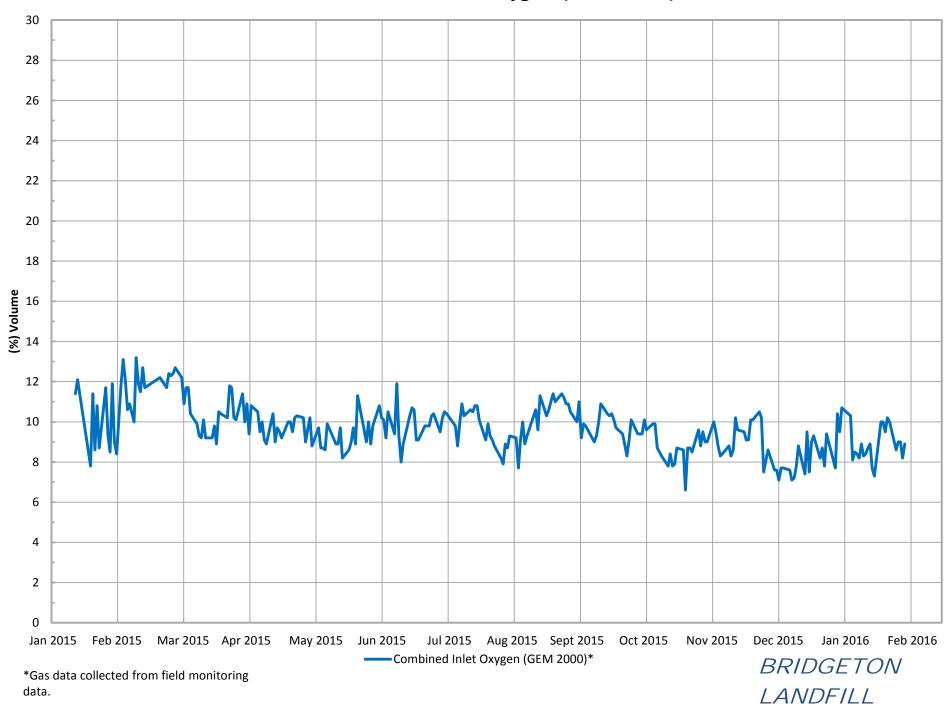
^{*}Data for 12/1/15 was added in the January Monthly Report.

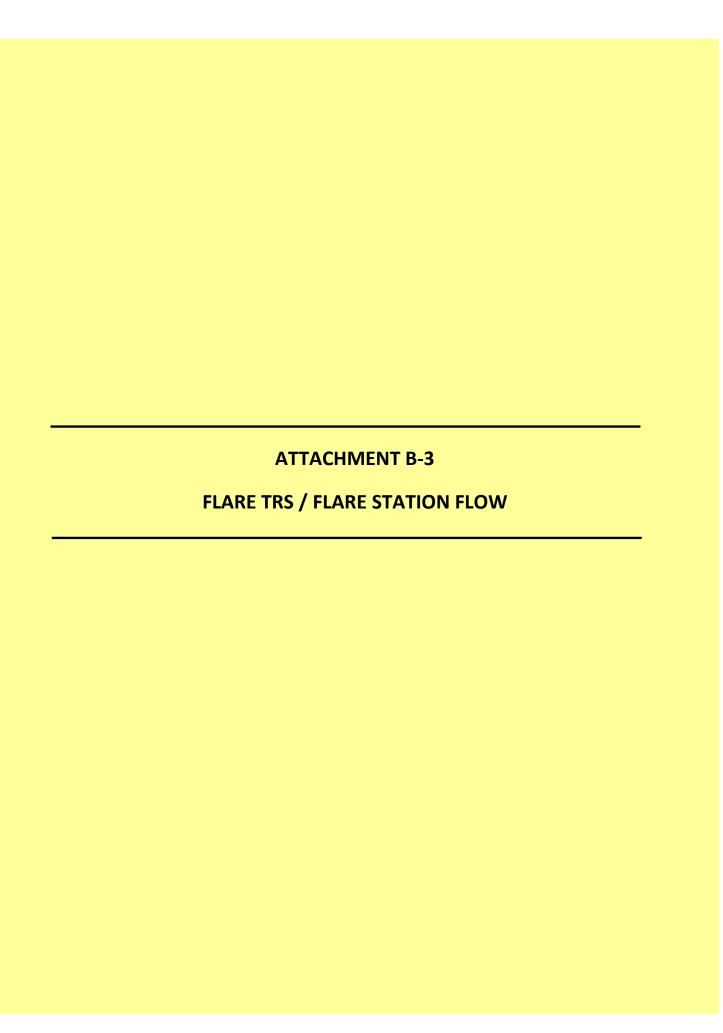

Total Combined Flow (scfm)*

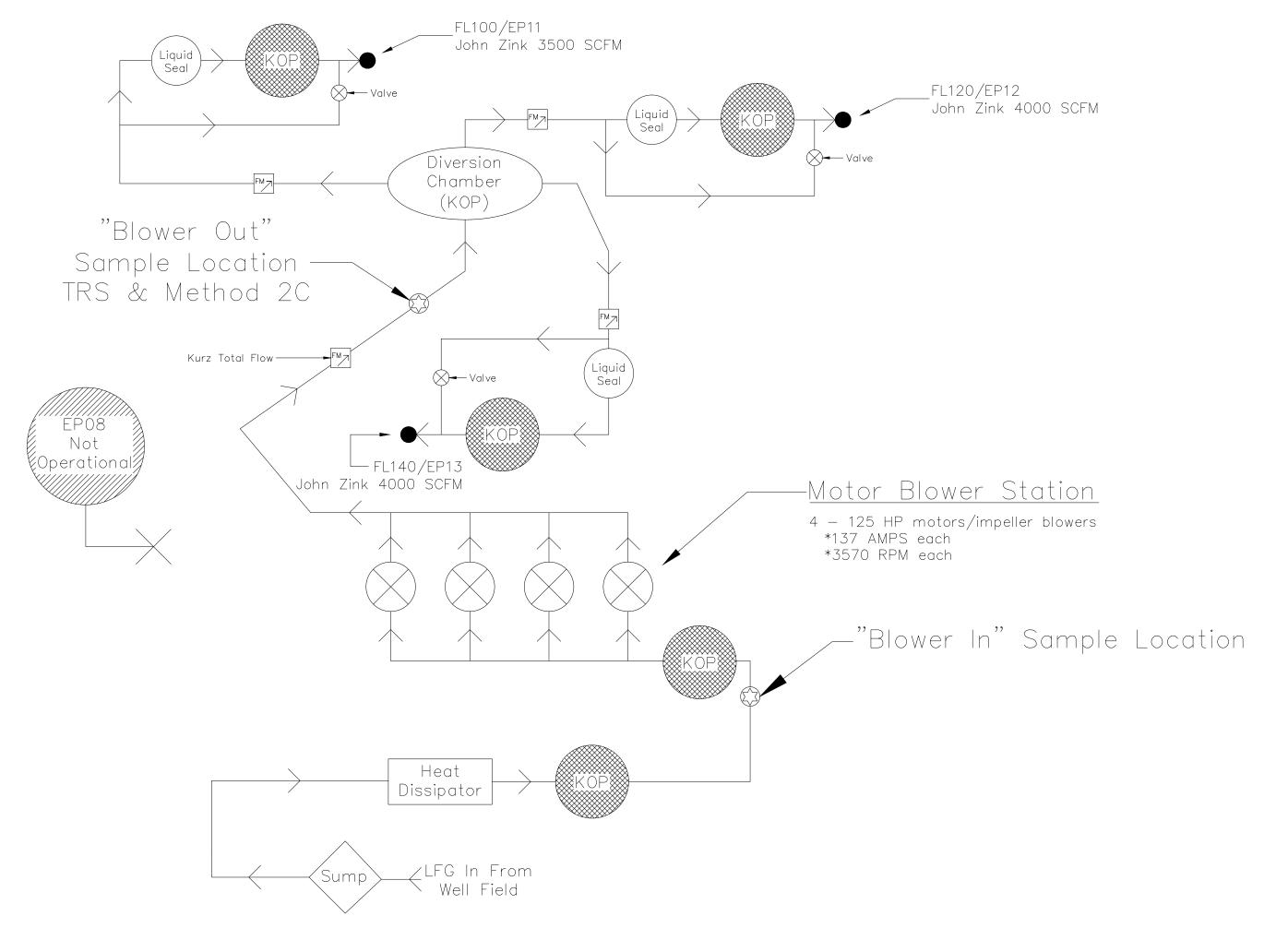

Candlestick Flare (FL-100) Flow (scfm)*


Candlestick Flare (FL-120) Flow (scfm)*


Candlestick Flare (FL-140) Flow (scfm)*


Auxillary Candlestick Flare Flow (scfm)*




Combined Inlet Methane (Field Data)*

Combined Inlet Oxygen (Field Data)*

BRIDGETON LANDFILL, LLC

FIGURE 1 - FLARE COMPOUND PROCESS FLOW DIAGRAM

Weaver Consultants Group

. JULECIS\12U\131 Bridgeton\Bridgeton Air Compliance 2U15\1KS Assistance\Hgure 1 - How Diagram - KEV.dwg jdthoenen;Way

COPYRIGHT © 2015 WEAVER CONSULTANTS GROUP. ALL RIGHTS RESERVED.

TABLE 1
Summary of Key LFG Tested Parameters
Flare Compound: *Blower Outlet*

Bridgeton Landfill, LLC. January 05, 2015 to February 02, 2016

SAMPLE	DATE	VELOCITY	FLOW	TRS²
EVENT #	DATE	ft/sec	dscfm	ppm _{vd}
				1200
48-05 ^{1 2}	2/2/2016	33.03	2730	1100
46-03	2/2/2010	33.03	2730	1100 ³
				1300 ³
47-04	1/27/2016	34.46 2791 1400		1400
47-04	1/27/2010	34.40	2791	1600
46-03	1/20/2016	35.93	2910	1700
40-03	1/20/2010	33.33	2910	1800
45-02	1/13/2016	35.01 2836		1700
45-02	1/13/2010	33.01	2830	1500
				1400
44-01 1 2	1/5/2016	34.30	2926	1300
				1310 4

Notes:

¹ Indicates velocity/flow determined by EPA Method 2

² Split Samples, different lab and test method

³ "Split Sample" tested at ALS Environmental

⁴ "Split Sample" tested at Analytical Soluntions, Inc.

	PARAMETER	Blower Out
Date	Test Date	2/2/16
Start	Run Start Time	9:08
	Run Finish Time	11:05
	Net Traversing Points	16 (2 x 8)
Θ	Net Run Time, minutes	1:56:20
$\mathbf{C}_{\mathbf{p}}$	Pitot Tube Coeficient	0.99
P_{Br}	Barometric Pressure, inches of Mercury	29.08
% H₂O	Moisture Content of LFG, %	1.34
% RH	Relative Humidity, %	47.90
M_{fd}	Dry Mole Fraction	0.987
%CH₄	Methane, %	12.30
%CO ₂	Carbon Dioxide, %	39.20
%O ₂	Oxygen, %	8.40
%Balance	Assumed as Nitorgen, %	29.30
%H ₂	Hydrogen, %	10.70
%CO	Carbon Monoxide, %	0.10
M _d	Dry Molecular Weight, lb/lb-Mole	30.36
Ms	Wet Molecular weight, lb/lb-Mole	30.20
P_{g}	Flue Gas Static Pressure, inches of H ₂ O	30.22
P _s	Absolute Flue Gas Pressure, inches of Mercury	31.30
t _s	Average Stack Gas Temperature, °F	75
ΔP_{avg}	Average Velocity Head, inches of H ₂ O	0.269
v _s	Average LFG Velocity, feet/second	33.03
A _s	Stack Crossectional Area, square feet	1.35
\mathbf{Q}_{sd}	Dry Volumetric Flow Rate, dry scfm	2,730
Q_s	Standard Volumetric Flow Rate, scfm	2,767
Q_{aw}	Actual Wet Volumetric Flue Gas Flow Rate, acfm	2,682
Q _{lb/hr}	Dry Air Flow Rate at Standard Conditions, lb/hr	12,908
NHV	Net Heating Value, Btu/scf	158
LFG _{CH4}	Methane, lb/hr	839.1
CH4	Methane, grains/dscf	35.86
LFG _{CO2}	Carbon Dioxide, lb/hr Carbon Dioxide, grains/dscf	7,336.1 313.52
150	Oxygen, lb/hr	1143.0
LFG ₀₂	Oxygen, grains/dscf	48.85
LFG _{N2}	Balance gas as Nitrogen, lb/hr	3,490.3
	Balance gas as Nitrogen, grains/dscf	149.17
LFG _{H4}	Hydrogen, lb/hr Hydrogen, grains/dscf	91.7 3.92
LEC	Carbon Monoxide, lb/hr	11.9
LFG _{co}	Carbon Monoxide, grains/dscf	0.51

		Blower Out Sample #1	Blower Out Sample #2
	Hydrogen Sulfide Concentration, ppmd	48.00	43.
H ₂ S	Hydrogen Sulfide Rate, lb/hr	0.70	0.
	Hydrogen Sulfide Rate, grains/dscf	0.030	0.0
	Carbonyl Sulfide Concentration, ppmd	0.63	0.
cos	Carboynl Sulfide Rate, lb/hr	0.02	0.
	Carbonyl Sulfide Rate, grains/dscf	0.001	0.0
	Methyl Mercaptan Concentration, ppmd	180.00	150.
CH ₄ S	Methyl Mercaptan Rate, lb/hr	3.68	3.
	Methyl Mercaptan Rate, grains/dscf	0.157	0.1
	Ethyl Mercaptan Concentration, ppmd	2.50	2.
C₂H ₆ S	Ethyl Mercaptan Rate, lb/hr	0.07	0.
	Ethyl Mercaptan Rate, grains/dscf	0.003	0.0
	Dimethyl Sulfide Concentration, ppmd	880.00	810.
(CH ₃) ₂ S	Dimethyl Sulfide Rate, lb/hr	23.25	21.
	Dimethyl Sulfide Rate, grains/dscf	0.994	0.9
	Carbon Disulfide Concentration, ppmd	0.63	0.
CS ₂	Carbon Disulfide Rate, lb/hr	0.02	0.
	Carbon Disulfide Rate, grains/dscf	0.001	0.0
	Dimethyl Disulfide Concentration, ppmd	67.00	64.
$C_2H_6S_2$	Dimethyl Disulfide Rate, lb/hr	2.68	2.
	Dimethyl Disulfide Rate, grains/dscf	0.115	0.0
	TRS>SO2 Emission Concentration, ppmd	1,200.00	1,100.
●E _{TRS-SO2}	TRS>SO2 Emission Rate, lb/hr	32.69	29.
	TRS>SO2 Emission Rate, grains/dscf	1.397	1.2

Tuesday, February 02, 2016

LOCATION	TIME	F	LOW -SCFM	Method 2	Method 2		
		Method 2	FleetZoom	Kurz FM	Fleetzoom	Kurz	
BLOWER OUT	9:08	2,767	3,259	2,904	-17.8%	-5.0%	

February 10, 2016

ADE-1461 EPA Methods TO3. TO14A, TO15 SIM & SCAN ASTM D1946

TX Cert T104704450-14-6 EPA Methods TO14A, TO15

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

Republic Services ATTN: Jim Getting 13570 St. Charles Rock Rd. Bridgeton, MO 63044

LABORATORY TEST RESULTS

Project Reference: Bridgeton Landfill

Lab Number: H020311-01/03

Enclosed are results for sample(s) received 2/03/16 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the NELAC Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Jim Getting, Mike Lambrich, Ryan Ayers, Nicholas Bauer and David Randall, Weaver Consultants Group, on 2/05/16 (ASTM D1946) and 2/09/16 (EPA 15/16).

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely.

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

Enclosures

Note: The cover letter is an integral part of this analytical report.

deg C □ & 9 Sealed Yes Intact Yes OF Condition upon receipt: ANALYSIS REQUEST Chilled per. D. Randall CHAIN OF CUSTODY RECORD PAGE 31/2/3/ ASTM D5504 × × DELIVERABLES × ASTM 1946, BTU/SCF Level 3 + HS+ CO Level 4 × × EDO EDF 8 APPLIANTS & SAT + 3N21 A946 NOIL NA NA X AVABSBRO PO4862452 5544160 LFG LFG LFG XINTAM COMMENTS Republic Services 13570 St. Charles Rock Rd. Attn: Jim Getting 72 hours 48 hours 96 hours TURNAROUND TIME CONTAINER QTY/TYPE 5 day O 0 O BILLING Bridgeton, MO 63044 1026 TIME 931 811 500 SAMPLE 2/2/2016 2/2/2016 2/2/2016 P.O. No.: Same Day Standard 24 hours **BTAQ** Bill to: DATE/TIME DATECTIME Other: SAMPLE SAMPLE IDENTIFICATION 2 COMPANY: Republic Services COMPANY: Republic Services Blower Outlet 2 LFG CSU EP14 Blower Outlet 1 DATE/RECEIVED BY
DATE/RECEIVED BY 18501 E. Gale Ave., Suite 130 City of Industry, CA 91748 Ph. 626-964-4032 Fx: 626-964-5832 200 Sample End Lab Receive 2, 4 2-3-16 Canister Pressures ("hg) -3.96 -3.95 -3.96 Sample Slart -19.61 -20.97 ECHNOLOGY -19.4 JGetting@republicservices.com 13570 St. Charles Rock Rd. Laboratories, Inc. Canister ID 5960 5958 4431 **ЛНОЯІХАПОН ТО РЕЯГОЯМ WORK:** Dave Penoyer Bridgeton, MO 63044 大名 Republic Services Bridgeton Landfill 314-683-3921 Jim Getting 0-12000A LAB USE ONLY AMPLED BY, Ryan Ayers FLINGUISHED BY Project Name: City/State/Zip: Phone& Fax: SUNDUISHED BY Project No .: Report To: Company: Street: e-mall:

Preservation; H=HCl N=None / Container; B=Bag C=Can V=VOA O≐Other Rev. 03 - 5/7/09

DATEME

Other

ATLI

Courier

METHOD OF TRANSPORT (circle one): Walk-in FedEx UPS DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

02/03/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H0203	311-01	H0203	311-02	H0203	311-03	
Client Sample I.D.:	Blower Outlet 1		Blower	Blower Outlet 2		SU EP14	
Date/Time Sampled:	2/2/10	6 9:31	2/2/16	10:26	2/2/10	8:11	
Date/Time Analyzed:	2/4/16	12:43	2/4/16	12:58	2/4/16	13:12	
QC Batch No.:	160204	GC8A1	160204	GC8A1	160204	GC8A1	
Analyst Initials:	A	S	A	S	A	S	
Dilution Factor:	3.2		2	.7	3	.0	
ANALYTE	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v	
Hydrogen	10.8	3.2	10.9	2.7	11	3.0	
Carbon Dioxide	37.3	0.032	38.0	0.027	33	0.030	
Oxygen/Argon	7.9	1.6	7.7	1.3	9.3	1.5	
Nitrogen	31.3	3.2	30.6	2.7	38	3.0	
Methane	11.7	0.0032	11.8	0.0027	7.3	0.0030	
Carbon Monoxide	0.10	0.0032	0.11	0.0027	0.083	0.0030	
Net Heating Value (BTU/ft3)	157.8	3.2	157.6	2.7	119	3.0	
Gross Heating Value (BTU/ft3)	178.9	3.2	178.6	2.7	136	3.0	

Results normalized including non-methane hydrocarbons

BTU values based on D1946 analysis and non-methane analysis assumed as propane

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date _ Z-5-16

Page 2 of 5

H020311

QC Batch No.: 160204GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method	Blank	LCS		LCSD			
Date/Time Analyzed:	2/4/16	10:45	2/4/16 10:00		2/4/1	2/4/16 10:15		4
Analyst Initials:	A	AS		AS		AS		
Datafile:	04feb010		04feb007		041	04feb008		đ
Dilution Factor:	1.	0	1.0		1.0			- X6
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	112	70-130%	111	70-130%	0.0	<30
Carbon Dioxide	ND	0.010	100	70-130%	99	70-130%	0.8	<30
Oxygen/Argon	ND	0.50	100	70-130%	99	70-130%	0.8	<30
Nitrogen	ND	1.0	100	70-130%	100	70-130%	0.6	<30
Methane	ND	0.0010	93	70-130%	93	70-130%	0.9	<30
Carbon Monoxide	ND	0.0010	112	70-130%	111	70-130%	0.6	<30
				W.			Name of the second	

ND = Not Detected (Below RL)

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

The cover letter is an integral part of this analytical report.

Page 4 of 5 H020311

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

02/03/16

Matrix:

Air

Reporting Units: ppmv

EPA 15/16

Lab No.:	H0203	11-01	H0203	11-02	H020311-03			
Client Sample I.D.:	Blower Outlet 1		Blower (Blower Outlet 2		U EP14		
Date/Time Sampled:	2/2/16	9:31	2/2/16	10:26	2/2/16	8:11		-
Date/Time Analyzed:	2/8/16	16:02	2/8/16	17:38	2/9/16	8:20		
QC Batch No.:	1602080	GC3A1	1602080	GC3A1	1602080	GC3A1		
. Analyst Initials:	A	AS		S	AS	S		
Dilution Factor:	3.2	2	2.	7	3.0	0		
	Result	RL	Result	RL	Result	RL		
ANALYTE	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	=	
Hydrogen Sulfide	48 d	6.3	43 d	5.3	13	0.59		
Carbonyl Sulfide	ND -	0.63	ND	0.53	ND	0.59		
Methyl Mercaptan	180 d	6.3	150 d	5.3	150 d	5.9		
Ethyl Mercaptan	2.5	0.63	2.4	0.53	1.6	0.59		
Dimethyl Sulfide	880 d	63.0	810 d	53.0	980 d	59.0		
Carbon Disulfide	ND	0.63	ND	0.53	ND	0.59		
Dimethyl Disulfide	67 d	6.3	64 d	5.3	89 d	5.9		
Total Reduced Sulfur	1,200	0.63	1,100	0.53	1,300	0.59		

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary dilution

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

QC Batch No.:

160208GC3A1

Matrix: Units:

Air

ppmv

QC for Sulfur Compounds by EPA 15/16

Lab No.:	Method 1	Blank]	LCS	LCSD			
Date/Time Analyzed:	2/8/16 1	2/8/16 13:51		2/8/16 13:23		2/8/16 13:38		.7-
Analyst Initials:	AS			AS		AS		
Datafile:	08feb008		08	feb006	08	feb007		
Dilution Factor:	1.0		1.0			1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen Sulfide	ND	0.20	94	70-130%	95	70-130%	0.3	<30
Carbonyl Sulfide	ND .	0.20	110	70-130%	109	70-130%	0.6	<30
Methyl Mercaptan	ND	0.20	90	70-130%	89	70-130%	0.3	<30
Ethyl Mercaptan	ND	0.20	90	70-130%	87	70-130%	3.0	<30
Dimethyl Sulfide	ND	0.20	100	70-130%	101	70-130%	1.2	<30
Carbon Disulfide	ND	0.20	104	70-130%	103	70-130%	1.2	<30
Dimethyl Disulfide	ND	0.20	108	70-130%	108	70-130%	0.5	<30

ND = Not Detected (Below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

Date: 2-9-16

The cover letter is an integral part of this analytical report.

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270 www.alsglobal.com

LABORATORY REPORT

February 5, 2016

David Randall Weaver Consultants Group 6301 East HWY AB Columbia. MO 65201

RE: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

Dear David:

Enclosed are the results of the samples submitted to our laboratory on February 3, 2016. For your reference, these analyses have been assigned our service request number P1600503.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

Vamantha Deningsen

By Samantha Henningsen at 2:16 pm, Feb 05, 2016

Samantha Henningsen Project Manager

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270

www.alsglobal.com

Client: Weaver Consultants Group Service Request No: P1600503

Project: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

CASE NARRATIVE

The samples were received intact under chain of custody on February 3, 2016 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

BTU and CHONS Analysis

The results for BTU and CHONS were generated according to ASTM D 3588-98. The following analyses were performed and used to calculate the BTU and CHONS results. This method is not included on the laboratory's NELAP, DoD-ELAP, or AIHA-LAP scope of accreditation.

C2 through C6 Hydrocarbon Analysis

The samples were analyzed according to modified EPA Method TO-3 for C2 through >C6 hydrocarbons using a gas chromatograph equipped with a flame ionization detector (FID). This method is included on the laboratory's DoD-ELAP scope of accreditation, however it is not part of the NELAP or AIHA-LAP accreditation.

Fixed Gases Analysis

The samples were also analyzed for fixed gases (hydrogen, oxygen/argon, nitrogen, carbon monoxide, methane and carbon dioxide) according to modified EPA Method 3C (single injection) using a gas chromatograph equipped with a thermal conductivity detector (TCD). This method is included on the laboratory's DoD-ELAP scope of accreditation, however it is not part of the NELAP or AIHA-LAP accreditation.

Sulfur Analysis

The samples were analyzed for twenty sulfur compounds per ASTM D 5504-12 using a gas chromatograph equipped with a sulfur chemiluminescence detector (SCD). All compounds with the exception of hydrogen sulfide and carbonyl sulfide are quantitated against the initial calibration curve for methyl mercaptan. This method is included on the laboratory's NELAP scope of accreditation, however it is not part of the DoD-ELAP or AIHA-LAP accreditation.

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270

www.alsglobal.com

Client: Weaver Consultants Group Service Request No: P1600503

Project: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

The analysis of Blower Out-Bag 5 Cal and Blower Out-Tedlar were performed past the holding time. The results have been flagged accordingly.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161

F: +1 805 526 7270 www.alsglobal.com

ALS Environmental - Simi Valley

CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

		П
Agency	Web Site	Number
AIHA	http://www.aihaaccreditedlabs.org	101661
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0694
DoD ELAP	http://www.pjlabs.com/search-accredited-labs	L15-398
Florida DOH (NELAP)	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E871020
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/labcert.htm	2014025
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	977273
New Jersey DEP (NELAP)	http://www.nj.gov/dep/oga/	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oregon PHD (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	4068-001
Pennsylvania DEP	http://www.depweb.state.pa.us/labs	68-03307 (Registration)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704413- 15-6
Utah DOH (NELAP)	http://www.health.utah.gov/lab/labimp/certification/index.html	CA01627201 5-5
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at www.alsglobal.com, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

ALS ENVIRONMENTAL

DETAIL SUMMARY REPORT

Client:	Weaver Consult	Weaver Consultants Group								P160	0050	3			
Project ID:	Bridgeton LF M	Ionthly Pe	rmit Flare L	FG Testing-	SPL / 0120-1	31-10-	53								
•		•		_					Can	Can	Can	Can	Can	Bag	ag
Date Received:	2/3/2016								_	ses (\mathbf{B}
Time Received:	09:45								- 90	Fxd Gases	Gases	H2S	Sulfur	<u> 3</u> 6∔	Gases
Time Received.	07.15								C1(Ā.		1	- S	C1C6+	др
									-	(900	Fxd	-01	.12	1	Fxc
									fiec	-90(2006)	1	504	5504-12	fiec	ᇦ
									Modified	46-9	Modified)55		Modified	Modified
			.		a					STM D1946	lod	M	STMD		[od
			Date	Time	Container	Pi1	Pf1)-3	ΤM		ASTM	ST)-3	
Client Sample ID	Lab Code	Matrix	Collected	Collected	ID	(psig)	(psig)		TO	AS	3C	Ä	Ą	TO	3C
Blower Out #1 (Can)	P1600503-001	Air	2/2/2016	09:31	SSC00163	0.65	3.53		X	X	X	X	X		
Blower Out #2 (Can)	P1600503-002	Air	2/2/2016	10:26	SSC00230	1.21	3.64		X	X	X	X	X		
Blower Out-Bag 5 Cal	P1600503-003	Air	2/2/2016	11:10										X	X

Blower Out-Bag 5 Cal sample results void from evaluation due to apparent sample tubing and/or lab GC injection leak or ambient intrusion

11:00

2/2/2016

Air

Blower Out-Tedlar

P1600503-004

ALS Project No

Air - Chain of Custody Record & Analytical Service Request

Requested Turnaround Time in Business Days (Surcharges) please circle

2655 Park Center Drive, Suite A Simi Valley, California 93065 Phone (805) 526-7161

À

Project Requirements (MRLs, QAPP) specific instructions Preservative or Comments e.g. Actual 50500710 Analysis Method INTACT BROKEN ABSENT CO, & Btu > Chain of Custody Seal: (Circle) ASTM 1946, fixed gases, + H2, ALS Contact: Datg. / 2/2// 2 > SAT + 40330 MTSA > 1 Day (100%) 2 Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (25%) 10 Day-Standard Sample Volume 0.5L 0.5L End Pressure Canister "Hg/psig Bill to WCG with reference project no. ¥ X Bridgeton LF Monthly Permit Flare LFG Testing - SPLIT Canister Start Pressure Units: * EDD required Yes / No AN Received by: (Signature) Ž Now Controller ID (Bar code # -FC #) Type: P.O. # / Billing Information ¥ ž Sampler (Print & Sign) Canister ID ((Bar code # -AC, SC, etc.) Time: Tier III (Results + QC & Calibration Summaries) 0120-131-10-63 Project Number Jenny Holt Project Name Tier IV (Data Validation Package) 10% Surcharge ۲ ¥ Date: Collected 1026 100 110 931 Report Tier Levels - please select Collected 2/2/2016 2/2/2016 Date 2/2/2016 2/2/2016 Fax (805) 526-7270 Weaver Consultants Group Laboratory ID Number drandall@wcgrp.com 6301 East Highway AB Company Name & Address (Reporting Information) Columbia, MO 65201 N 7 ۲1 Fax Tier I - Results (Default if not specified) Email Address for Result Reporting Tier II (Results + QC Summaries) Relinguished by: (Signature) প্তীower Out - Bag 5 Cal Blower Out # 1 (Can) Blower Out #2 (Can) Rower Out - Tedlar David A. Randall Client Sample ID Project Manager 573-645-2650 Phone

ပွ

Cooler / Blank Temperature

Time:

Received by: (Signature)

Time:

Reimquighed by: (Signature)

ALS Environmental

	Weaver Consu		•	е Ассериансе	_		P1600503			
		Monthly Permit Flare	LFG Testing-			0/0/4/5		*****		
Sample(s) received on:	2/3/16			Date opened:	2/3/16	by:	KKEL	PE	
<i>Note:</i> This	form is used for all	samples received by ALS.	The use of this f	orm for custody so	eals is strictly me	eant to indicate presen	ce/absence and no	ot as an ir	dication	of
compliance	or nonconformity.	Thermal preservation and	pH will only be e	valuated either at	the request of th	e client and/or as requ	ired by the metho	d/SOP. Yes	<u>No</u>	<u>N/A</u>
1	_	containers properly n		ient sample ID	?			X		
2	Did sample co	ontainers arrive in goo	od condition?					X		
3	Were chain-of	f-custody papers used	and filled out	?				X		
4	Did sample co	ontainer labels and/or	tags agree wi	th custody pap	ers?			X		
5	Was sample v	olume received adequ	ate for analys	is?				X		
6	Are samples w	vithin specified holding	g times?					X		
7	Was proper te	mperature (thermal p	reservation) o	of cooler at rec	eipt adhered t	to?				\boxtimes
8	·	seals on outside of co Location of seal(s)? e and date included?		tainer?			Sealing Lid?			
	Were seals int	act?								X
9	Do containe	rs have appropriate pr	eservation, a	ccording to me	ethod/SOP or	Client specified in	nformation?			X
	Is there a clie	nt indication that the s	ubmitted samp	ples are pH pro	eserved?					X
	Were VOA v	ials checked for prese	nce/absence of	f air bubbles?						X
	Does the clien	t/method/SOP require	that the analy	st check the sa	mple pH and	if necessary alter	it?			X
10	Tubes:	Are the tubes capp	ed and intact	?						X
11	Badges:	Are the badges pr	operly capped	and intact?						X
		Are dual bed badg	ges separated a	and individuall	y capped and	intact?				X
Lab	Sample ID	Container Description	Required pH *	Received pH	Adjusted pH	VOA Headspace (Presence/Absence)		ot / Prese		1
P1600503		6.0 L Silonite Can								
P1600503		6.0 L Silonite Can								
P1600503		1.0 L Tedlar Bag								
1000303	5-004.01	1.0 L Tedlar Bag								
Explair	n any discrepanci	ies: (include lab sample l	ID numbers):							

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

RESULTS OF ANALYSIS

Page 1 of 1

Client: Weaver Consultants Group

ALS Project ID: P1600503

Client Sample ID: Blower Out #1 (Can)

ALS Sample ID: P1600503-001

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

Test Code: ASTM D3588-98

Analyst: Mike Conejo Date Collected: 2/2/16 Sample Type: 6.0 L Silonite Canister Date Received: 2/3/16

		Canister Dilution	Factor: 2.01
Components	Result	Result	Data
	Volume %	Weight %	Qualifie
Hydrogen	9.11	0.60	
Oxygen	8.26	8.62	
Nitrogen	31.98	29.21	
Carbon Monoxide	0.09	0.09	
Methane	12.25	6.41	
Carbon Dioxide	38.16	54.76	
Hydrogen Sulfide	< 0.01	< 0.01	
C2 as Ethane	< 0.01	< 0.01	
C3 as Propane	< 0.01	0.01	
C4 as n-Butane	0.03	0.06	
C5 as n-Pentane	0.06	0.15	
C6 as n-Hexane	0.02	0.07	
> C6 as n-Hexane	< 0.01	< 0.01	
TOTALS	99.99	99.99	
Components	Mole %	Weight %	
Carbon	18.34	19.89	
Hydrogen	24.89	2.27	
Oxygen	33.62	48.57	
Nitrogen	23.14	29.27	
Sulfur	< 0.10	< 0.10	
Specific Gravity (Air = 1)		1.0587	
Specific Volume	ft3/lb	12.38	
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	159.0	
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	141.7	
Gross Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	156.0	
Net Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	139.0	
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	1,968.3	
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	1,753.9	
Compressibility Factor "Z" (60 F, 14.696 psia)		0.9982	

RESULTS OF ANALYSIS

Page 1 of 1

Client: Weaver Consultants Group

ALS Project ID: P1600503

Client Sample ID: Blower Out #2 (Can)

ALS Sample ID: P1600503-002

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

Test Code: ASTM D3588-98

Analyst: Mike Conejo Date Collected: 2/2/16 Sample Type: 6.0 L Silonite Canister Date Received: 2/3/16

		Canister Dilution	Factor: 1.91
Components	Result	Result	Data
-	Volume %	Weight %	Qualifie
Hydrogen	9.17	0.60	
Oxygen	8.23	8.58	
Nitrogen	31.85	29.09	
Carbon Monoxide	0.09	0.08	
Methane	12.29	6.43	
Carbon Dioxide	38.23	54.86	
Hydrogen Sulfide	< 0.01	< 0.01	
C2 as Ethane	< 0.01	< 0.01	
C3 as Propane	< 0.01	< 0.01	
C4 as n-Butane	0.02	0.03	
C5 as n-Pentane	0.03	0.06	
C6 as n-Hexane	0.03	0.09	
> C6 as n-Hexane	0.04	0.14	
TOTALS	99.99	99.99	
Components	Mole %	Weight %	
Carbon	18.42	20.00	
Hydrogen	24.99	2.28	
Oxygen	33.59	48.58	
Nitrogen	23.01	29.13	
Sulfur	< 0.10	< 0.10	
Specific Gravity (Air = 1)		1.0589	
Specific Volume	ft3/lb	12.37	
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	160.1	
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	142.7	
Gross Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	157.1	
Net Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	140.0	
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	1,981.7	
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	1,766.0	
Compressibility Factor "Z" (60 F, 14.696 psia)		0.9982	

RESULTS OF ANALYSIS

Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Blower Out-Bag 5 Cal

ALS Project ID: P1600503

ALS Sample ID: P1600503-003

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

Test Code: ASTM D3588-98

Analyst: Mike Conejo
Sample Type: 1.0 L Tedlar Bag

VOID DUE TO AMBIENT
INTRUSION/BIAS

Date Collected: 2/2/16
Date Received: 2/3/16

Components	Result	Result	Data
	Volume %	Weight %	Qualifier
Hydrogen	5.32	0.36	-
Oxygen	13.84	14.78	
Nitrogen	50.49	<mark>47.18</mark>	
Carbon Monoxide	0.05	0.04	
Methane	7.35	3.94	
Carbon Dioxide	22.92	33.65	
Hydrogen Sulfide	< 0.01	< 0.01	H1
C2 as Ethane	< 0.01	< 0.01	
C3 as Propane	< 0.01	< 0.01	
C4 as n-Butane	< 0.01	< 0.01	
C5 as n-Pentane	< 0.01	0.02	
C6 as n-Hexane	< 0.01	< 0.01	
> C6 as n-Hexane	< 0.01	< 0.01	
TOTALS	99.99	99.99	
Components	Mole %	Weight %	
Carbon	12.38	12.17	
Hydrogen	16.43	1.35	
Oxygen	30.00	39.28	
Nitrogen	41.18	47.20	
Sulfur	< 0.10	< 0.10	H1
Specific Gravity (Air = 1)		1.0349	
Specific Volume	ft3/lb	12.66	
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	92.5	
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	82.4	
Gross Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	90.8	
Net Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	80.9	
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	1,171.4	
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	1,043.0	
Compressibility Factor "Z" (60 F, 14.696 psia)		0.9989	

H1 = Sample analysis performed past holding time. See case narrative.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Weaver Consultants Group ALS Project ID: P1600503 Client Sample ID: Blower Out-Tedlar ALS Sample ID: P1600503-004

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

Test Code: ASTM D3588-98

Analyst: Mike Conejo Date Collected: 2/2/16 Sample Type: 1.0 L Tedlar Bag Date Received: 2/3/16

Test Notes:

Components	Result	Result	Data
-	Volume %	Weight %	Qualifier
Hydrogen	8.59	0.57	-
Oxygen	8.74	9.13	
Nitrogen	33.33	30.46	
Carbon Monoxide	0.09	0.08	
Methane	12.31	6.44	
Carbon Dioxide	36.68	52.66	
Hydrogen Sulfide	< 0.01	< 0.01	H1
C2 as Ethane	0.01	< 0.01	
C3 as Propane	< 0.01	0.01	
C4 as n-Butane	0.04	0.07	
C5 as n-Pentane	0.07	0.16	
C6 as n-Hexane	0.03	0.09	
> C6 as n-Hexane	0.08	0.32	
TOTALS	99.99	99.99	
Components	Mole %	Weight %	
Carbon	18.02	19.61	
Hydrogen	25.14	2.30	
Oxygen	32.80	47.56	
Nitrogen	24.05	30.53	
Sulfur	< 0.10	< 0.10	H1
Specific Gravity (Air = 1)		1.0584	
Specific Volume	ft3/lb	12.38	
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	163.9	
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	146.3	
Gross Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	160.7	
Net Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	143.5	
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	2,028.6	
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	1,811.3	
Compressibility Factor "Z" (60 F, 14.696 psia)		0.9982	

H1 = Sample analysis performed past holding time. See case narrative.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Blower Out #1 (Can)

ALS Project ID: P1600503

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

ALS Sample ID: P1600503-001

Test Code:ASTM D1946Date Collected: 2/2/16Instrument ID:HP5890 II/GC1/TCDDate Received: 2/3/16Analyst:Mike ConejoDate Analyzed: 2/4/16

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.10 ml(s)

Test Notes:

Canister Dilution Factor: 2.01

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	9.11	0.20	
7782-44-7	Oxygen*	8.26	0.20	
7727-37-9	Nitrogen	32.0	0.20	
630-08-0	Carbon Monoxide	ND	0.20	
74-82-8	Methane	12.2	0.20	
124-38-9	Carbon Dioxide	38.1	0.20	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Blower Out #2 (Can)

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

ALS Project ID: P1600503

ALS Sample ID: P1600503-002

Test Code: ASTM D1946 Date Collected: 2/2/16
Instrument ID: HP5890 II/GC1/TCD Date Received: 2/3/16
Analyst: Mike Conejo Date Analyzed: 2/4/16

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.10 ml(s)

Test Notes:

Canister Dilution Factor: 1.91

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	9.17	0.19	
7782-44-7	Oxygen*	8.23	0.19	
7727-37-9	Nitrogen	31.9	0.19	
630-08-0	Carbon Monoxide	ND	0.19	
74-82-8	Methane	12.3	0.19	
124-38-9	Carbon Dioxide	38.2	0.19	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Blower Out-Bag 5 Cal

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

ALS Project ID: P1600503

ALS Sample ID: P1600503-003

Test Code: ASTM D1946 Date Collected: 2/2/16
Instrument ID: HP5890 II/GC1/TCD VOID DUE TO AMBIENT Date Received: 2/3/16
Analyst: Mike Conejo VOID DUE TO AMBIENT Date Analyzed: 2/3/16

Sample Type: 1.0 L Tedlar Bag INTRUSION/BIAS Volume(s) Analyzed: 0.10 ml(s)

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	5.32	0.10	
7782-44-7	Oxygen*	13.8	0.10	
7727-37-9	Nitrogen	50.5	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
74-82-8	Methane	7.36	0.10	
124-38-9	Carbon Dioxide	22.9	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Blower Out-Tedlar

ALS Project ID: P1600503

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

ALS Sample ID: P1600503-004

Test Code: ASTM D1946 Date Collected: 2/2/16
Instrument ID: HP5890 II/GC1/TCD Date Received: 2/3/16
Analyst: Mike Conejo Date Analyzed: 2/4/16

Sample Type: 1.0 L Tedlar Bag Volume(s) Analyzed: 0.10 ml(s)

Test Notes:

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	8.61	0.10	_
7782-44-7	Oxygen*	8.76	0.10	
7727-37-9	Nitrogen	33.4	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
74-82-8	Methane	12.3	0.10	
124-38-9	Carbon Dioxide	36.8	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Method Blank

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

ALS Project ID: P1600503

ALS Sample ID: P160203-MB

Test Code: ASTM D1946 Date Collected: NA
Instrument ID: HP5890 II/GC1/TCD Date Received: NA
Analyst: Mike Conejo Date Analyzed: 2/03/16

Sample Type: 1.0 L Tedlar Bag Volume(s) Analyzed: 0.10 ml(s)

Test Notes:

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	ND	0.10	_
7782-44-7	Oxygen*	ND	0.10	
7727-37-9	Nitrogen	ND	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
74-82-8	Methane	ND	0.10	
124-38-9	Carbon Dioxide	ND	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Method Blank

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

ALS Project ID: P1600503

ALS Sample ID: P160204-MB

Test Code: ASTM D1946 Date Collected: NA
Instrument ID: HP5890 II/GC1/TCD Date Received: NA
Analyst: Mike Conejo Date Analyzed: 2/04/16

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.10 ml(s)

Test Notes:

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	ND	0.10	_
7782-44-7	Oxygen*	ND	0.10	
7727-37-9	Nitrogen	ND	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
74-82-8	Methane	ND	0.10	
124-38-9	Carbon Dioxide	ND	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client:Weaver Consultants GroupALS Project ID: P1600503Client Sample ID:Lab Control SampleALS Sample ID: P160204-LCS

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

Test Code: ASTM D1946 Date Collected: NA
Instrument ID: HP5890 II/GC1/TCD Date Received: NA
Analyst: Mike Conejo Date Analyzed: 2/04/16

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: NA ml(s)

					ALS	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ppmV	ppmV		Limits	Qualifier
1333-74-0	Hydrogen	40,000	37,500	94	83-114	_
7782-44-7	Oxygen*	25,000	25,300	101	84-121	
7727-37-9	Nitrogen	50,000	50,500	101	88-122	
630-08-0	Carbon Monoxide	50,000	49,800	100	87-118	
74-82-8	Methane	40,000	40,600	102	85-116	
124-38-9	Carbon Dioxide	50,000	48,400	97	84-117	

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client:Weaver Consultants GroupALS Project ID: P1600503Client Sample ID:Lab Control SampleALS Sample ID: P160203-LCS

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

Test Code: ASTM D1946 Date Collected: NA
Instrument ID: HP5890 II/GC1/TCD Date Received: NA
Analyst: Mike Conejo Date Analyzed: 2/03/16

Sample Type: 1.0 L Tedlar Bag Volume(s) Analyzed: NA ml(s)

					ALS	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ppmV	ppmV		Limits	Qualifier
1333-74-0	Hydrogen	40,000	38,200	96	83-114	_
7782-44-7	Oxygen*	25,000	25,300	101	84-121	
7727-37-9	Nitrogen	50,000	49,600	99	88-122	
630-08-0	Carbon Monoxide	50,000	50,600	101	87-118	
74-82-8	Methane	40,000	41,600	104	85-116	
124-38-9	Carbon Dioxide	50,000	49,200	98	84-117	

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Blower Out #1 (Can) ALS Project ID: P1600503 Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63 ALS Sample ID: P1600503-001

Test Code: ASTM D 5504-12

Instrument ID: Agilent 6890A/GC13/SCD

Analyst: Mike Conejo

Sample Type:

Test Notes:

Date Received: 2/3/16 6.0 L Silonite Canister Date Analyzed: 2/4/16

Time Analyzed: 08:00

Date Collected: 2/2/16

Time Collected: 09:31

Volume(s) Analyzed: $0.050 \, \text{ml(s)}$

Canister Dilution Factor: 2.01

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	35,000	280	25,000	200	
463-58-1	Carbonyl Sulfide	620	490	250	200	
74-93-1	Methyl Mercaptan	250,000	400	130,000	200	
75-08-1	Ethyl Mercaptan	3,000	510	1,200	200	
75-18-3	Dimethyl Sulfide	2,200,000	510	860,000	200	
75-15-0	Carbon Disulfide	340	310	110	100	
75-33-2	Isopropyl Mercaptan	1,300	630	430	200	
75-66-1	tert-Butyl Mercaptan	ND	740	ND	200	
107-03-9	n-Propyl Mercaptan	ND	630	ND	200	
624-89-5	Ethyl Methyl Sulfide	15,000	630	4,700	200	
110-02-1	Thiophene	20,000	690	5,800	200	
513-44-0	Isobutyl Mercaptan	1,300	740	360	200	
352-93-2	Diethyl Sulfide	ND	740	ND	200	
109-79-5	n-Butyl Mercaptan	2,700	740	740	200	
624-92-0	Dimethyl Disulfide	110,000	390	28,000	100	
616-44-4	3-Methylthiophene	990	810	250	200	
110-01-0	Tetrahydrothiophene	2,200	720	620	200	
638-02-8	2,5-Dimethylthiophene	ND	920	ND	200	
872-55-9	2-Ethylthiophene	ND	920	ND	200	
110-81-6	Diethyl Disulfide	ND	500	ND	100	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Blower Out #2 (Can) ALS Project ID: P1600503 Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63 ALS Sample ID: P1600503-002

Test Code: ASTM D 5504-12

Instrument ID: Agilent 6890A/GC13/SCD

Analyst: Mike Conejo

Sample Type:

Test Notes:

Date Received: 2/3/16 6.0 L Silonite Canister Date Analyzed: 2/4/16

Time Analyzed: 08:17

Date Collected: 2/2/16

Time Collected: 10:26

Volume(s) Analyzed: $0.050 \, \text{ml(s)}$

Canister Dilution Factor: 1.91

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	44,000	270	31,000	190	_
463-58-1	Carbonyl Sulfide	600	470	240	190	
74-93-1	Methyl Mercaptan	350,000	380	180,000	190	
75-08-1	Ethyl Mercaptan	3,800	490	1,500	190	
75-18-3	Dimethyl Sulfide	2,400,000	490	930,000	190	
75-15-0	Carbon Disulfide	330	300	100	96	
75-33-2	Isopropyl Mercaptan	1,600	590	520	190	
75-66-1	tert-Butyl Mercaptan	ND	700	ND	190	
107-03-9	n-Propyl Mercaptan	ND	590	ND	190	
624-89-5	Ethyl Methyl Sulfide	18,000	590	5,600	190	
110-02-1	Thiophene	25,000	660	7,300	190	
513-44-0	Isobutyl Mercaptan	1,600	700	440	190	
352-93-2	Diethyl Sulfide	ND	700	ND	190	
109-79-5	n-Butyl Mercaptan	4,100	700	1,100	190	
624-92-0	Dimethyl Disulfide	150,000	370	38,000	96	
616-44-4	3-Methylthiophene	1,900	770	480	190	
110-01-0	Tetrahydrothiophene	3,700	690	1,000	190	
638-02-8	2,5-Dimethylthiophene	ND	880	ND	190	
872-55-9	2-Ethylthiophene	ND	880	ND	190	
110-81-6	Diethyl Disulfide	ND	480	ND	96	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Blower Out-Bag 5 Cal ALS Project ID: P1600503 Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63 ALS Sample ID: P1600503-003

Test Code: ASTM D 5504-12

Instrument ID: Agilent 6890A/GC13/SCD

Analyst: Mike Conejo Sample Type: 1.0 L Tedlar Bag

Test Notes: **H1** **VOID DUE TO AMBIENT**

INTRUSION/BIAS

Date Collected: 2/2/16 Time Collected: 11:10 Date Received: 2/3/16 Date Analyzed: 2/3/16 Time Analyzed: 15:57

Volume(s) Analyzed: $0.010 \, \text{ml(s)}$

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	44,000	700	32,000	500	
463-58-1	Carbonyl Sulfide	ND	1,200	ND	500	
74-93-1	Methyl Mercaptan	260,000	980	130,000	500	
75-08-1	Ethyl Mercaptan	2,900	1,300	1,100	500	
75-18-3	Dimethyl Sulfide	1,500,000	1,300	580,000	500	
75-15-0	Carbon Disulfide	ND	780	ND	250	
75-33-2	Isopropyl Mercaptan	ND	1,600	ND	500	
75-66-1	tert-Butyl Mercaptan	ND	1,800	ND	500	
107-03-9	n-Propyl Mercaptan	ND	1,600	ND	500	
624-89-5	Ethyl Methyl Sulfide	8,100	1,600	2,600	500	
110-02-1	Thiophene	9,800	1,700	2,900	500	
513-44-0	Isobutyl Mercaptan	ND	1,800	ND	500	
352-93-2	Diethyl Sulfide	ND	1,800	ND	500	
109-79-5	n-Butyl Mercaptan	ND	1,800	ND	500	
624-92-0	Dimethyl Disulfide	34,000	960	9,000	250	
616-44-4	3-Methylthiophene	ND	2,000	ND	500	
110-01-0	Tetrahydrothiophene	ND	1,800	ND	500	
638-02-8	2,5-Dimethylthiophene	ND	2,300	ND	500	
872-55-9	2-Ethylthiophene	ND	2,300	ND	500	
110-81-6	Diethyl Disulfide	ND	1,200	ND	250	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

H1 = Sample analysis performed past holding time. See case narrative.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Blower Out-Tedlar ALS Project ID: P1600503
Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63 ALS Sample ID: P1600503-004

Test Code: ASTM D 5504-12

Instrument ID: Agilent 6890A/GC13/SCD

Analyst: Mike Conejo Sample Type: 1.0 L Tedlar Bag

Test Notes: H1

Date Collected: 2/2/16 Time Collected: 11:00 Date Received: 2/3/16

Date Analyzed: 2/3/16 Time Analyzed: 15:34

Volume(s) Analyzed: 0.010 ml(s)

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	${f ppbV}$	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	66,000	700	47,000	500	
463-58-1	Carbonyl Sulfide	ND	1,200	ND	500	
74-93-1	Methyl Mercaptan	340,000	980	170,000	500	
75-08-1	Ethyl Mercaptan	4,300	1,300	1,700	500	
75-18-3	Dimethyl Sulfide	2,100,000	1,300	840,000	500	
75-15-0	Carbon Disulfide	ND	780	ND	250	
75-33-2	Isopropyl Mercaptan	2,000	1,600	650	500	
75-66-1	tert-Butyl Mercaptan	ND	1,800	ND	500	
107-03-9	n-Propyl Mercaptan	ND	1,600	ND	500	
624-89-5	Ethyl Methyl Sulfide	16,000	1,600	5,200	500	
110-02-1	Thiophene	28,000	1,700	8,200	500	
513-44-0	Isobutyl Mercaptan	ND	1,800	ND	500	
352-93-2	Diethyl Sulfide	ND	1,800	ND	500	
109-79-5	n-Butyl Mercaptan	5,900	1,800	1,600	500	
624-92-0	Dimethyl Disulfide	140,000	960	37,000	250	
616-44-4	3-Methylthiophene	3,000	2,000	750	500	
110-01-0	Tetrahydrothiophene	5,700	1,800	1,600	500	
638-02-8	2,5-Dimethylthiophene	ND	2,300	ND	500	
872-55-9	2-Ethylthiophene	ND	2,300	ND	500	
110-81-6	Diethyl Disulfide	ND	1,200	ND	250	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

H1 = Sample analysis performed past holding time. See case narrative.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Consultants Group

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63 ALS Project ID: P1600503

Total Reduced Sulfur as Hydrogen Sulfide

Test Code: ASTM D 5504-12

Instrument ID: Agilent 6890A/GC13/SCD Date(s) Collected: 2/2/16
Analyst: Mike Conejo Date Received: 2/3/16
Sample Type: 6.0 L Silonite Canister(s) Date Analyzed: 2/4/16

Client Sample ID	ALS Sample ID	Canister Dilution Factor	Injection Volume ml(s)	Time Analyzed	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
Blower Out #1 (Can)	P1600503-001	2.01	0.050	08:00	1,500,000	280	1,100,000	200	
Blower Out #2 (Can)	P1600503-002	1.91	0.050	08:17	1,800,000	270	1,300,000	190	
Method Blank	P160204-MB	1.00	1.0	07:24	ND	7.0	ND	5.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Consultants Group

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63 ALS Project ID: P1600503

Total Reduced Sulfur as Hydrogen Sulfide

Test Code: ASTM D 5504-12

Instrument ID: Agilent 6890A/GC13/SCD Date(s) Collected: 2/2/16
Analyst: Mike Conejo Date Received: 2/3/16
Sample Type: 1.0 L Tedlar Bag(s) Date Analyzed: 2/3/16

		Injection						
Client Sample ID	ALS Sample ID	Volume	Time	Result	MRL	Result	MRL	Data
		ml(s)	Analyzed	$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
Blower Out-Bag 5 Cal	P1600503-003	0.010	15:57	1,100,000	700	780,000	500	H1
Blower Out-Tedlar	P1600503-004	0.010	15:34	1,700,000	700	1,200,000	500	H1
Method Blank	P160203-MB	1.0	14:32	ND	7.0	ND	5.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

H1 = Sample analysis performed past holding time. See case narrative.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Method Blank ALS Project ID: P1600503 Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63 ALS Sample ID: P160203-MB

Test Code: ASTM D 5504-12

Instrument ID: Agilent 6890A/GC13/SCD

Time Collected: NA Analyst: Mike Conejo Date Received: NA Sample Type: 1.0 L Tedlar Bag Date Analyzed: 2/03/16 Test Notes: Time Analyzed: 14:32

Volume(s) Analyzed: $1.0 \, \text{ml(s)}$

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	ND	7.0	ND	5.0	
463-58-1	Carbonyl Sulfide	ND	12	ND	5.0	
74-93-1	Methyl Mercaptan	ND	9.8	ND	5.0	
75-08-1	Ethyl Mercaptan	ND	13	ND	5.0	
75-18-3	Dimethyl Sulfide	ND	13	ND	5.0	
75-15-0	Carbon Disulfide	ND	7.8	ND	2.5	
75-33-2	Isopropyl Mercaptan	ND	16	ND	5.0	
75-66-1	tert-Butyl Mercaptan	ND	18	ND	5.0	
107-03-9	n-Propyl Mercaptan	ND	16	ND	5.0	
624-89-5	Ethyl Methyl Sulfide	ND	16	ND	5.0	
110-02-1	Thiophene	ND	17	ND	5.0	
513-44-0	Isobutyl Mercaptan	ND	18	ND	5.0	
352-93-2	Diethyl Sulfide	ND	18	ND	5.0	
109-79-5	n-Butyl Mercaptan	ND	18	ND	5.0	
624-92-0	Dimethyl Disulfide	ND	9.6	ND	2.5	
616-44-4	3-Methylthiophene	ND	20	ND	5.0	
110-01-0	Tetrahydrothiophene	ND	18	ND	5.0	
638-02-8	2,5-Dimethylthiophene	ND	23	ND	5.0	
872-55-9	2-Ethylthiophene	ND	23	ND	5.0	
110-81-6	Diethyl Disulfide	ND	12	ND	2.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Date Collected: NA

RESULTS OF ANALYSIS

Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Method Blank ALS Project ID: P1600503
Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63 ALS Sample ID: P160204-MB

Test Code: ASTM D 5504-12

Instrument ID: Agilent 6890A/GC13/SCD

Analyst: Mike Conejo

Sample Type: 6.0 L Silonite Canister

Test Notes:

Date Analyzed: 2/04/16 Time Analyzed: 07:24

Date Collected: NA

Time Collected: NA

Date Received: NA

Volume(s) Analyzed: 1.0 ml(s)

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	ND	7.0	ND	5.0	
463-58-1	Carbonyl Sulfide	ND	12	ND	5.0	
74-93-1	Methyl Mercaptan	ND	9.8	ND	5.0	
75-08-1	Ethyl Mercaptan	ND	13	ND	5.0	
75-18-3	Dimethyl Sulfide	ND	13	ND	5.0	
75-15-0	Carbon Disulfide	ND	7.8	ND	2.5	
75-33-2	Isopropyl Mercaptan	ND	16	ND	5.0	
75-66-1	tert-Butyl Mercaptan	ND	18	ND	5.0	
107-03-9	n-Propyl Mercaptan	ND	16	ND	5.0	
624-89-5	Ethyl Methyl Sulfide	ND	16	ND	5.0	
110-02-1	Thiophene	ND	17	ND	5.0	
513-44-0	Isobutyl Mercaptan	ND	18	ND	5.0	
352-93-2	Diethyl Sulfide	ND	18	ND	5.0	
109-79-5	n-Butyl Mercaptan	ND	18	ND	5.0	
624-92-0	Dimethyl Disulfide	ND	9.6	ND	2.5	
616-44-4	3-Methylthiophene	ND	20	ND	5.0	
110-01-0	Tetrahydrothiophene	ND	18	ND	5.0	
638-02-8	2,5-Dimethylthiophene	ND	23	ND	5.0	
872-55-9	2-Ethylthiophene	ND	23	ND	5.0	
110-81-6	Diethyl Disulfide	ND	12	ND	2.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Lab Control Sample

ALS Project ID: P1600503

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

ALS Sample ID: P160203-LCS

Test Code: ASTM D 5504-12 Date Collected: NA
Instrument ID: Agilent 6890A/GC13/SCD Date Received: NA
Analyst: Mike Conejo Date Analyzed: 2/03/16

Sample Type: 1.0 L Tedlar Bag Volume(s) Analyzed: NA ml(s)

					ALS	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ppbV	${f ppbV}$		Limits	Qualifier
7783-06-4	Hydrogen Sulfide	2,000	2,510	126	65-138	
463-58-1	Carbonyl Sulfide	2,000	2,390	120	60-135	
74-93-1	Methyl Mercaptan	2,000	2,450	123	57-140	

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client: Weaver Consultants Group

Client Sample ID: Lab Control Sample

ALS Project ID: P1600503

Client Project ID: Bridgeton LF Monthly Permit Flare LFG Testing-SPLIT / 0120-131-10-63

ALS Sample ID: P160204-LCS

Test Code: ASTM D 5504-12 Date Collected: NA
Instrument ID: Agilent 6890A/GC13/SCD Date Received: NA
Analyst: Mike Conejo Date Analyzed: 2/04/16

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: NA ml(s)

					ALS	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ppbV	${f ppbV}$		Limits	Qualifier
7783-06-4	Hydrogen Sulfide	2,000	2,490	125	65-138	
463-58-1	Carbonyl Sulfide	2,000	2,340	117	60-135	
74-93-1	Methyl Mercaptan	2,000	2,370	119	57-140	

Kurz FM = 2,938 scfm

Fleetzoom Total = 3,404 scfm $\Delta = 14\%$

	PARAMETER	Blower Out #1	Blower Out #2
Date	Test Date		1/27/1
Time	Start - Finish	14:53	15:0
%CH₄	Methane, %	11.30	11.5
%CO ₂	Carbon Dioxide, %	35.60	36.3
%O ₂	Oxygen, %	8.50	8.3
%Balance	Assumed as Nitorgen, %	34.00	33.2
%H ₂	Hydrogen, %	9.70	9.8
%CO	Carbon Monoxide, %	0.088	0.09
P_{g}	Flue Gas Static Pressure, inches of H ₂ O	17.46	17.0
ts	Blower Outlet LFG Temperature, °F	91	Ç
\mathbf{Q}_{sd}	Dry Volumetric Flow Rate, dry scfm (assumes 5%H2O)	2,791	
Q_s	Kurz FM, Standard Volumetric Flow Rate, scfm	2,938	
NHV	Net Heating Value, Btu/scf	146.1	151.4
LFG _{CH4}	Methane, lb/hr	788.1	802
LI G _{CH4}	Methane, grains/dscf	32.94	33.
LFG _{CO2}	Carbon Dioxide, lb/hr	6,811.0	6,944
Li G _{CO2}	Carbon Dioxide, grains/dscf	284.73	290.
LFG _{O2}	Oxygen, lb/hr	1,182.4	1,154
LFG ₀₂	Oxygen, grains/dscf	49.43	48.2
LFG _{N2}	Balance gas as Nitrogen, lb/hr	4,140.5	4,043
LI G _{N2}	Balance gas as Nitrogen, grains/dscf	173.09	169.0
LFG _{H4}	Hydrogen, lb/hr	85.0	85
Lr G _{H4}	Hydrogen, grains/dscf	3.55	3.5
LFG _{co}	Carbon Monoxide, lb/hr	10.7	11
LI G _{CO}	Carbon Monoxide, grains/dscf	0.43	0.4

		Blower Out #1	Blower Out #2
	Hydrogen Sulfide Concentration, ppmd	46.00	42
H ₂ S	Hydrogen Sulfide Rate, lb/hr	0.68	0
	Hydrogen Sulfide Rate, grains/dscf	0.028	0.0
	Carbonyl Sulfide Concentration, ppmd	0.55	0
cos	Carboynl Sulfide Rate, lb/hr	0.01	C
	Carbonyl Sulfide Rate, grains/dscf	0.001	0.0
	Methyl Mercaptan Concentration, ppmd	180.00	190
CH ₄ S	Methyl Mercaptan Rate, lb/hr	3.76	3
	Methyl Mercaptan Rate, grains/dscf	0.157	0.
	Ethyl Mercaptan Concentration, ppmd	2.30	2
C ₂ H ₆ S	Ethyl Mercaptan Rate, lb/hr	0.06	C
	Ethyl Mercaptan Rate, grains/dscf	0.003	0.
	Dimethyl Sulfide Concentration, ppmd	1,000.00	1,200
(CH ₃) ₂ S	Dimethyl Sulfide Rate, lb/hr	27.01	32
	Dimethyl Sulfide Rate, grains/dscf	1.129	1.3
	Carbon Disulfide Concentration, ppmd	0.55	C
CS ₂	Carbon Disulfide Rate, lb/hr	0.02	C
	Carbon Disulfide Rate, grains/dscf	0.001	0.0
	Dimethyl Disulfide Concentration, ppmd	86.00	99
$C_2H_6S_2$	Dimethyl Disulfide Rate, lb/hr	3.52	4
	Dimethyl Disulfide Rate, grains/dscf	0.147	0.
	TRS>SO2 Emission Concentration, ppmd	1,400.00	1,600
●E _{TRS-SO2}	TRS>SO2 Emission Rate, lb/hr	38.99	44
	TRS>SO2 Emission Rate, grains/dscf	1.630	1.5

February 10, 2016

Republic Services

ATTN: Jim Getting

Bridgeton, MO 63044

13570 St. Charles Rock Rd.

ADE-1461 EPA Methods TO3, TO14A, TO15 SIM & SCAN ASTM D1946

TX Cert T104704450-14-6 EPA Methods TO14A, TO15

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

LABORATORY TEST RESULTS

Project Reference: Bridgeton Landfill

Lab Number:

H012803-01/02

Enclosed are results for sample(s) received 1/28/16 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the NELAC Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Jim Getting, Mike Lambrich, Ryan Ayers and David Randall, Weaver Consultants Group, on 2/03/16.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely,

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

Enclosures

Note: The cover letter is an integral part of this analytical report.

			2		18501 E. G	ale Ave., Suite 130			몽	N O	CUST	CHAIN OF CUSTODY RECORD	CORD	- 1	
\	ALL ECHNOLOGY	710	5		City of Indus	City of Industry, CA 91748	TUR	TURNAROUND TIME	TIME		DELIVERABLES	ABLES	PAGE:	1 OF	1
	Laboratories, Inc.	, Inc.			Ph: 626-964-4032	14032	Standard		48 hours		EDD		Condition upon receipt:	on receipt:	
100cm					FX: 626-964	-5832	Same Day		72 hours		EDF			Sealed Yes	₽
Project No.:							24 hours		96 hours		Level 3			Intact Yes	□ %
Project Name: Bri	Bridgeton Landfill						Other:		5 day		Level 4			Chilled	deg C
Report To: Jin	Jim Getting					4		BILLING	NG			A	ANALYSIS REQUEST	EQUEST	
Company: Re	Republic Services						P.O. No.:	PO5544106	1106		91				
Street: 13	13570 St. Charles Rock Rd.	ock Rd.					Bill to:	Republi	Republic Services	Se	76 L V				
City/State/Zip: Bri	Bridgeton, MO 63044	44						Attn: Jin	Attn: Jim Getting		NTS				
Phone& Fax: 31.	314-683-3921						13570 St.	Charles Rock Rd	Rock R	ن ا	8. A.	SCE			
e-mail:	JGetting@republicservices.com	services.	com				Bridgeton, MO 63044	MO 630)44		SB.	;/N±			
											L+	8 'S			
LAB USE ONLY	\ \ \	Caniste	Canister Pressures ("hg)	res ("hg	(SAMPI E IDENTIFICATION	alqı at,	NPLE NPLE	AINER TYPE	RIX -AV93	+ CO 12/16 ОИ	9 + 61 V			
	Canister ID	33.040-02	Sample Start	Sample End	Lab Receive						лт АЧЭ				
HO12803-	-6] 1537	37	-20	-3.5		Outlet A	1/27/2016	1453	v	LFG	× ×	×			
1	707	15	-19.9	-3.5		Outlet B	1/27/2016	1505	ပ	LFG N	X AN	×			
				=											
AUTHORIZATION TO PERFORM WORK: Dave Penoyer	м work: Dave Penoy	yer				COMPANY: Republic Services	DATE/TIME:		COMMENTS	ITS					
SAMPLED BY: Ryan Ayers	TS.					COMPANY: Republic Services	DATE/TIME								
RELINQUISHED BY	free	1-6	91-27-16		1630	DATE/RECEIVED BY	DATE/TIME								
RELINQUISHED BY	1 A)	DATE/ RECEIVED BY W 28		12/							
RELINQUISHED BY	j		ii ii			DATE/RECÈWED BY	DATE/TIME	-							
METHOD OF TRANSPORT (circle one):	SPORT (circle one):	: Walk-In	FedEx	UPS Cou	Courier ATLI	Other									
DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy	te & Yellow - Lab Co	pies / Pink	- Customer (Sopy			Preserval	ion: H= HC	N=Non	e / Conta	iner: B=B	a C=Can	Preservation: H=HC N=None / Container: B=Bag C=Can V=VOA O=Other		Rev. 03 - 5/7/09

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/28/16

Matrix:

Air

Reporting Units:

% v/v

ASTM D1946

Lab No.:	H0128	803-01	H0128	803-02			
Client Sample I.D.:	Out	let A	Out	let B			
Date/Time Sampled:	1/27/10	6 14:53	1/27/1	6 15:05			
Date/Time Analyzed:	1/29/1	6 9:40	1/29/1	6 10:16	9		
QC Batch No.:	160129	GC8A1	160129	GC8A1			
Analyst Initials:	A	S	A	S			
Dilution Factor:	2	.7	2	.8		0.	
ANALYTE	Result % v/v	RL % v/v	Result % v/v	RL % v/v			
Hydrogen	9.7	2.7	9.8	2.8			
Carbon Dioxide	35.6	0.027	36.3	0.028		10	
Oxygen/Argon	8.5	1.4	8.3	1.4			
Nitrogen	34.0	2.7	33.2	2.8			
Methane	11.3	0.0027	11.5	0.0028			
Carbon Monoxide	0.088	0.0027	0.091	0.0028			
Net Heating Value (BTU/ft3)	146.1	2.7	151.4	2.8			
Gross Heating Value (BTU/ft3)	165.6	2.7	171.3	2.8			

Results normalized including non-methane hydrocarbons

BTU values based on D1946 analysis and non-methane analysis assumed as propane

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date_ 7- Z - 1 C

Page 2 of 5

H012803

Date: 7-2-16

QC Batch No.: 160129GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method	Blank	L	.CS	L	CSD		
Date/Time Analyzed:	1/29/10	5 9:18	1/29/	16 8:34	1/29/	16 8:49	20 pg	
Analyst Initials:	AS	S	3	AS		AS		
Datafile:	29-jai	1003	29	-jan.	29-	jan001		
Dilution Factor:	1.0	0 .		1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	100	70-130%	101	70-130%	0.5	<30
Carbon Dioxide	ND	0.010	101	70-130%	100 70-130%		1.0	<30
Oxygen/Argon	ND	0.50	106	70-130%	105 70-130%		0.4	<30
Nitrogen	ND	1.0	105	70-130%	105	70-130%	0.0	<30
Methane	ND	0.0010	101	70-130%	101	70-130%	0.2	<30
Carbon Monoxide	ND	0.0010	109	70-130%	108	70-130%	1.1	<30

ND = Not Detected (Below RL)

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

The cover letter is an integral part of this analytical report.

1

AirTECHNOLOGY Laboratories, Inc. -

Page 4 of 5 H012803

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/28/16

Matrix:

Air

Reporting Units: ppmv

	EPA 1:	5/16	
Yah Mari T	TI012902 01	TY012002 02	

Lab No.:	H01	280	03-01	H01	1280	03-02			
Client Sample I.D.:	Oı	ıtle	et A	0	utle	t B			
Date/Time Sampled:	1/27/	16	14:53	1/27	/16	15:05			
Date/Time Analyzed:	1/29	/16	9:04	1/29	9/16	9:44			
QC Batch No.:	16012	9G	C3A1	1601	29G	C3A1	(1		
Analyst Initials:		AS	3		AS	5			
Dilution Factor:		2.7	7		2.8	1			
ANALYTE	Resul- ppmv		RL ppmv	Resul ppm		RL ppmv			
Hydrogen Sulfide	46	d	5.5	42	d	5.6		sentimos instructions in	
Carbonyl Sulfide	ND		0.55	ND		0.56			
Methyl Mercaptan	180	d	5.5	190	d	5.6			
Ethyl Mercaptan	2.3		0.55	2.4		0.56			
Dimethyl Sulfide	1,000	d	55.0	1,200	d	56.0			200702.02.3-038.3-
Carbon Disulfide	ND		0.55	ND		0.56			11
Dimethyl Disulfide	86	d	5.5	99	d	5.6			
Total Reduced Sulfur	1,400		0.55	1,600		0.56	10000AX0AX0A		

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary dilution

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 2.2-16

Page 5 of 5 H012803

QC Batch No.:

160129GC3A1

Matrix: Units: Air

ppmv

QC for Sulfur Compounds by EPA 15/16

Lab No.:	Method I	Blank	1	LCS	L	CSD		
Date/Time Analyzed:	1/29/16	8:52	1/29/	16 8:27	1/29	/16 8:41		
Analyst Initials:	AS	(1	1	AS	= 5	AS		
Datafile:	29jan0	03	29	jan001	29	jan002		
Dilution Factor:	1.0			1.0	9	1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen Sulfide	ND	0.20	96	70-130%	95	70-130%	2.0	<30
Carbonyl Sulfide	ND	0.20	101	70-130%	103 70-130%		1.3	<30
Methyl Mercaptan	ND	0.20	106	70-130%	107 70-130%		0.8	<30
Ethyl Mercaptan	ND	0.20	102	70-130%	100 70-130%		1.6	<30
Dimethyl Sulfide	ND	0.20	102	70-130%	99 70-130%		3.3	<30
Carbon Disulfide	ND	0.20	100	70-130%	97	70-130%	2.3	<30
Dimethyl Disulfide	ND	0.20	103	70-130%	101	70-130%	1.8	<30

ND = Not Detected (Below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark J. Johnson Operations Manager Date: Z-Z-16

The cover letter is an integral part of this analytical report.

	PARAMETER	Blower Out #1	Blower Out #2
Date	Test Date		1/20/1
Time	Start - Finish	15:07	15:1
%CH₄	Methane, %	10.60	10.9
%CO ₂	Carbon Dioxide, %	35.30	35.6
%O ₂	Oxygen, %	8.70	8.6
%Balance	Assumed as Nitorgen, %	34.60	34.
%H ₂	Hydrogen, %	10.10	10.
%CO	Carbon Monoxide, %	0.100	0.1
P_{g}	Flue Gas Static Pressure, inches of H ₂ O	23.99	23.
ts	Blower Outlet LFG Temperature, °F	91	
Q_{sd}	Dry Volumetric Flow Rate, dry scfm (assumes 5%H2O)	2,910	
Q_s	Kurz FM, Standard Volumetric Flow Rate, scfm	3,063	
NHV	Net Heating Value, Btu/scf	140.0	143.0
LFG _{CH4}	Methane, lb/hr	770.8	792
LFG _{CH4}	Methane, grains/dscf	30.90	31
LFG _{CO2}	Carbon Dioxide, lb/hr	7,042.1	7,10
LFG _{CO2}	Carbon Dioxide, grains/dscf	282.33	284
LFG ₀₂	Oxygen, lb/hr	1,261.9	1,24
LFG ₀₂	Oxygen, grains/dscf	50.59	50
LFG _{N2}	Balance gas as Nitrogen, lb/hr	4,393.6	4,35
LFG _{N2}	Balance gas as Nitrogen, grains/dscf	176.15	174
I EC	Hydrogen, lb/hr	92.3	9
LFG _{H4}	Hydrogen, grains/dscf	3.70	3
LEG	Carbon Monoxide, lb/hr	12.7	1:
LFG _{co}	Carbon Monoxide, grains/dscf	0.48	0

		Blower Out #1	Blower Out #2
	Hydrogen Sulfide Concentration, ppmd	50.00	50.
H ₂ S	Hydrogen Sulfide Rate, lb/hr	0.77	0.
	Hydrogen Sulfide Rate, grains/dscf	0.031	0.0
	Carbonyl Sulfide Concentration, ppmd	0.55	0.
cos	Carboynl Sulfide Rate, lb/hr	0.01	0
	Carbonyl Sulfide Rate, grains/dscf	0.001	0.0
	Methyl Mercaptan Concentration, ppmd	210.00	230
CH₄S	Methyl Mercaptan Rate, lb/hr	4.58	5
	Methyl Mercaptan Rate, grains/dscf	0.184	0.2
	Ethyl Mercaptan Concentration, ppmd	2.50	2
C ₂ H ₆ S	Ethyl Mercaptan Rate, lb/hr	0.07	0
	Ethyl Mercaptan Rate, grains/dscf	0.003	0.0
	Dimethyl Sulfide Concentration, ppmd	1,300.00	1,400
(CH ₃) ₂ S	Dimethyl Sulfide Rate, lb/hr	36.61	39
	Dimethyl Sulfide Rate, grains/dscf	1.468	1.5
	Carbon Disulfide Concentration, ppmd	0.55	0
CS ₂	Carbon Disulfide Rate, lb/hr	0.02	0
	Carbon Disulfide Rate, grains/dscf	0.001	0.0
	Dimethyl Disulfide Concentration, ppmd	87.00	100
$C_2H_6S_2$	Dimethyl Disulfide Rate, lb/hr	3.71	4
	Dimethyl Disulfide Rate, grains/dscf	0.149	0.1
	TRS>SO2 Emission Concentration, ppmd	1,700.00	1,800
●E _{TRS-SO2}	TRS>SO2 Emission Rate, lb/hr	49.37	52
	TRS>SO2 Emission Rate, grains/dscf	1.979	2.0

January 25, 2016

Republic Services

ATTN: Jim Getting

Bridgeton, MO 63044

13570 St. Charles Rock Rd.

ADF-1461 EPA Methods TO3, TO14A, TO15 SIM & SCAN ASTM D1946

TX Cert T104704450-14-6 EPA Methods TO14A, TO15

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

LABORATORY TEST RESULTS

Project Reference: Bridgeton Landfill

Lab Number:

H012101-01/02

Enclosed are results for sample(s) received 1/21/16 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the NELAC Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Jim Getting, Mike Lambrich, Ryan Ayers and David Randall, Weaver Consultants Group, on 1/25/16.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely,

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

Enclosures

Note: The cover letter is an integral part of this analytical report.

					18501 E. Gale	ale Ave Suite 130			CHA	Ö Z	SNO:	CHAIN OF CUSTODY RECORD	CORD			
₹ 	I ECHNOLOGY) 	5		City of Indus	City of Industry, CA 91748	TURN	TURNAROUND TIME	TIME		DELIVE	DELIVERABLES	PAGE:	-	OF	_
	Laboratories, Inc.	es, mc.			Ph: 626-964-4032	4032	Standard		48 hours		EDD		Condition u	Condition upon receipt:		
					Fx: 626-964-5832	-5832	Same Day		72 hours		EDF			Sealed Yes		□ 8
Project No.:				٥			24 hours		96 hours		Level 3	_3 		Intact Yes	_	□ 8
Project Name: Bric	Bridgeton Landfill						Other:	.3080	5 day		Level 4	4		Chilled		deg C
Report To: Jim	Jim Getting							BILLING	NG			7	ANALYSIS REQUEST	REQUEST		
Company: Re	Republic Services	S					P.O. No.:	PO5544106	106		91					
Street: 138	13570 St. Charles Rock Rd.	3 Rock Rd.					Bill to:	Republi	Republic Services	Ş	76 L V					
City/State/Zip: Bri	Bridgeton, MO 63044	3044						Attn: Jin	Attn: Jim Getting		NTS					
Phone& Fax: 314	314-683-3921						13570 St. C	harles	Charles Rock Rd.	ъ.	A .8					
e-mail: JG	JGetting@republicservices.com	olicservices	3.com				Bridgeton, MO 63044	MO 630	144		SA					
											L +		25			
LAB USE ONLY	ILY	Canist	Canister Pressures ("hg)	res ("hg)	575.1 11	SAMPLE IDENTIFICATION	alam ata	IME MPLE	ЯЭИІАТ ЭЧҮТҮ	YIRIX -AVA36	12/16 ION	W 1846				
		Canister ID	Sample Start	Sample End	Lab Receive						т АЧЭ	ZH +				
10/2/04		1618	-20.4	-3.5	-2.5	Outlet A	1/20/2016	1507	O	LFG	NA	×				
1	20	1531	-20.1	-3.5	-2.5	Outlet B	1/20/2016	1518	υ	LFG	NA	×				
						55										
AUTHORIZATION TO PERFORM WORK: Dave Penoyer	м мокк. Dave Pe	noyer				company: Republic Services	DATE/TIME:		COMMENTS	ITS						1
SAMPLED BY: Ryan Ayers	S					COMPANY: Republic Services	DATE/TIME									
RELINQUISHED BY	Muens		(-3	91-08-1	1600	DATE/RECEIVED BY	DATE/TIME	đ						海		
RELINQUISHED BY	A A					DATE/RECEIVED.BY	DATE/TIME	4060								
RELINQUISHED BY						DATE/ RECEIVED BY										

METHOD OF TRANSPORT (circle one): Walk-In FedEx UPS Courier DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy

Other

ATLI

Preservation: H=HCl N=None / Container: B=Bag C=Can V=VOA 0=Other Rev. 03 - 5/7/09

Page 2 of 5 H012101

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/21/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

	T					_	
Lab No.:	H0121	101-01	H012	101-02			
Client Sample I.D.:	Out	let A	Out	let B			
Date/Time Sampled:	1/20/10	6 15:07	1/20/1	6 15:18			
Date/Time Analyzed:	1/21/10	6 14:47	1/21/1	6 15:02	8		
QC Batch No.:	160121	GC8A1	160121	GC8A1			
Analyst Initials:	A	S	A	S			
Dilution Factor:	2.	.7	2	.7			
ANALYTE	Result % v/v	RL % v/v	Result % v/v	RL % v/v			
Hydrogen	10.1	2.7	10.0	2.7			
Carbon Dioxide	35.3	0.027	35.6	0.027			
Oxygen/Argon	8.7	1.4	8.6	1.4			
Nitrogen	34.6	2.7	34.3	2.7			
Methane	10.6	0.0027	10.9	0.0027	7		
Carbon Monoxide	0.1	0.0027	0.1	0.0027	1 15		
Net Heating Value (BTU/ft3)	140	2.7	143	2.7			
Gross Heating Value (BTU/ft3)	159	2.7	162	2.7			A A STATE OF THE S

Results normalized including non-methane hydrocarbons

BTU values based on D1946 analysis and non-methane analysis assumed as propane

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:	annel. 1	Date	1/23/16
2	Mark Johnson		
	Operations Manager		

The cover letter is an integral part of this analytical report

QC Batch No.: 160121GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method Blank		LCS		LCSD			
Date/Time Analyzed:	1/21/16 14:03		1/21/16 13:34		1/21/16 13:48			
Analyst Initials:	AS		AS		AS			
Datafile:	21jan012		21jan010		21jan011			
Dilution Factor:	1.0		1.0		1.0			
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	111	70-130%	112	70-130%	1.5	<30
Carbon Dioxide	ND	0.010	107	70-130%	106	70-130%	1.1	<30
Oxygen/Argon	ND	0.50	103	70-130%	102	70-130%	0.9	<30
Nitrogen	ND	1.0	103	70-130%	102	70-130%	0.8	<30
Methane	ND	0.0010	94	70-130%	94	70-130%	0.3	<30
Carbon Monoxide	ND	0.0010	112	70-130%	112	70-130%	0.3	<30

ND = Not Detected (Below RL)

Reviewed/Approved By:	MAN. U.	Date: (23/16
	Mark J. Johnson	
	Operations Manager	

The cover letter is an integral part of this analytical report.

Page 4 of 5 H012101

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/21/16

Matrix:

Air

Reporting Units: ppmv

EPA 15/16		

		_				<u> </u>			
Lab No.:	H012	210)1-01	H01	210	01-02			
Client Sample I.D.:	Ou	tle	t A	Ot	utle	et B			
Date/Time Sampled:	1/20/1	16	15:07	1/20/	/16	15:18			
Date/Time Analyzed:	1/22/1	16	14:06	1/22/	/16	14:42			
QC Batch No.:	16012	2G	C3A1	16012	22G	C3A1			
Analyst Initials:	2	AS	1		AS	3			
Dilution Factor:		2.7			2.7	7			
ANALYTE	Result ppmv	0-60	RL ppmv	Resul ppmv	11	RL ppmv			
Hydrogen Sulfide	50	d	5.5	50	d	5.5			
Carbonyl Sulfide	ND		0.55	ND		0.55			
Methyl Mercaptan	210	d	5.5	230	d	5.5			77.
Ethyl Mercaptan	2.5		0.55	2.6		0.55			
Dimethyl Sulfide	1,300	d	55.0	1,400	d	55.0			
Carbon Disulfide	ND		0.55	ND		0.55	12		
Dimethyl Disulfide	87	d	5.5	100	d	5.5			
Total Reduced Sulfur	1,700		0.55	1,800		0.55			

PIE	_ NT_A	D.44-) (L -1	TOT I
	- 1401	Detected	1 (Delov	KIA

	111	81
Reviewed/Approved By:		Date
	Mark Johnson	
	Operations Manager	

The cover letter is an integral part of this analytical report

RL = Reporting Limit

d = Reported from a secondary dilution

Page 5 of 5 H012101

QC Batch No.:

160122GC3A1

Matrix:

Air

Units: ppmv

QC for Sulfur Compounds by EPA 15/16

Lab No.:	Method I	Blank]	LCS	L	CSD		
Date/Time Analyzed:	1/22/16 1	3:55	1/22/	16 13:29	1/22/	16 13:43		
Analyst Initials:	AS			AS	3	AS		
Datafile:	22jan00	04	22	jan002	22	jan003		9
Dilution Factor:	1.0			1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen Sulfide	ND	0.20	103	70-130%	105	70-130%	2.2	<30
Carbonyl Sulfide	ND	0.20	108	70-130%	109	70-130%	0.8	<30
Methyl Mercaptan	ND	0.20	114	70-130%	115	70-130%	0.3	<30
Ethyl Mercaptan	ND	0.20	106	70-130%	106	70-130%	0.1	<30
Dimethyl Sulfide	ND	0.20	104	70-130%	106	70-130%	1.4	<30
Carbon Disulfide	ND	0.20	110	70-130%	108	70-130%	2.0	<30
Dimethyl Disulfide	ND	0.20	105	70-130%	105	70-130%	0.2	<30

ND = Not Detected (Below RL)

RL = Reporting Limit

Reviewed/Approved By:	æ	1/1/	- 1	Date:	1/25/16	
	Mark J. Johnson Operations Mana		,	***************************************	11-11	

The cover letter is an integral part of this analytical report.

Kurz FM = 2,985 scfm

Fleetzoom Total = 3,188 scfm $\Delta = 6\%$

	PARAMETER	Blower Out #1	Blower Out #2
Date	Test Date		1/13/16
Time	Start - Finish	10:19	10:29
%CH₄	Methane, %	11.20	11.40
%CO ₂	Carbon Dioxide, %	37.00	37.70
%O ₂	Oxygen, %	8.00	7.70
%Balance	Assumed as Nitorgen, %	32.70	31.50
%H ₂	Hydrogen, %	10.50	11.00
%CO	Carbon Monoxide, %	0.095	0.098
P_{g}	Flue Gas Static Pressure, inches of H ₂ O	16.61	16.61
t _s	Blower Outlet LFG Temperature, °F	57	57
\mathbf{Q}_{sd}	Dry Volumetric Flow Rate, dry scfm (assumes 5%H2O)	2,836	
Q_s	Kurz FM, Standard Volumetric Flow Rate, scfm	2,985	
NHV	Net Heating Value, Btu/scf	144.9	150.6
LFG _{CH4}	Methane, lb/hr	793.8	807.9
LI OCH4	Methane, grains/dscf	32.65	33.24
LFG _{CO2}	Carbon Dioxide, lb/hr	7,193.7	7,329.8
Li O _{CO2}	Carbon Dioxide, grains/dscf	295.93	301.53
LFG ₀₂	Oxygen, lb/hr	1,130.9	1,088.5
Li O ₀₂	Oxygen, grains/dscf	46.52	44.78
LFG _{N2}	Balance gas as Nitrogen, lb/hr	4,046.8	3,898.3
Li O _{N2}	Balance gas as Nitrogen, grains/dscf	166.48	160.37
LFG _{H4}	Hydrogen, lb/hr	93.5	98.0
L1 O _{H4}	Hydrogen, grains/dscf	3.85	4.03
LFG _{co}	Carbon Monoxide, lb/hr	11.8	12.1
LIGCO	Carbon Monoxide, grains/dscf	0.46	0.47

		Blower Out #1	Blower Out #2
	Hydrogen Sulfide Concentration, ppmd	61.00	52
H ₂ S	Hydrogen Sulfide Rate, lb/hr	0.92	C
	Hydrogen Sulfide Rate, grains/dscf	0.038	0.0
	Carbonyl Sulfide Concentration, ppmd	0.55	C
cos	Carboynl Sulfide Rate, lb/hr	0.01	C
	Carbonyl Sulfide Rate, grains/dscf	0.001	0.
	Methyl Mercaptan Concentration, ppmd	250.00	190
CH₄S	Methyl Mercaptan Rate, lb/hr	5.31	4
	Methyl Mercaptan Rate, grains/dscf	0.219	0.
	Ethyl Mercaptan Concentration, ppmd	2.80	2
C ₂ H ₆ S	Ethyl Mercaptan Rate, lb/hr	0.08	C
	Ethyl Mercaptan Rate, grains/dscf	0.003	0.
	Dimethyl Sulfide Concentration, ppmd	1,200.00	1,100
(CH ₃) ₂ S	Dimethyl Sulfide Rate, lb/hr	32.94	30
	Dimethyl Sulfide Rate, grains/dscf	1.355	1.3
	Carbon Disulfide Concentration, ppmd	0.55	C
CS ₂	Carbon Disulfide Rate, lb/hr	0.02	C
	Carbon Disulfide Rate, grains/dscf	0.001	0.
	Dimethyl Disulfide Concentration, ppmd	96.00	81
$C_2H_6S_2$	Dimethyl Disulfide Rate, lb/hr	4.00	3
	Dimethyl Disulfide Rate, grains/dscf	0.164	0.
	TRS>SO2 Emission Concentration, ppmd	1,700.00	1,500
●E _{TRS-SO2}	TRS>SO2 Emission Rate, lb/hr	48.11	42
	TRS>SO2 Emission Rate, grains/dscf	1.979	1.

January 19, 2016

ADE-1461 EPA Methods TO3. TO14A, TO15 SIM & SCAN **ASTM D1946**

TX Cert T104704450-14-6 EPA Methods TO14A, TO15

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

Republic Services ATTN: Jim Getting 13570 St. Charles Rock Rd. Bridgeton, MO 63044

LABORATORY TEST RESULTS

Project Reference: Bridgeton Landfill

Lab Number: H011405-01/02

Enclosed are results for sample(s) received 1/14/16 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the NELAC Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Jim Getting, Mike Lambrich, Ryan Ayers and David Randall, Weaver Consultants Group, on 1/18/16.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

Enclosures

Note: The cover letter is an integral part of this analytical report.

) (18501 E G	le Ave Suite 130			CHA	N OF	CHAIN OF CUSTODY RECORD	DY RE(CORD		
		TECHNOLOGY	100		City of Indus	City of Industry, CA 91748	TUR	TURNAROUND TIME	TIME		DELIVERABLES	BLES	PAGE:	1 OF	1
	Labor	Laboratories, Inc.			Ph: 626-964-4032	-4032	Standard		48 hours		EDD		Condition upon receipt:	on receipt:	
		77			Fx: 626-964-5832	-5832	Same Day		72 hours	П	EDF			Sealed Yes	□ %
Project No.:							24 hours		96 hours	П	Level 3			Intact Yes	□ %
Project Name:	Bridgeton Landfill	andfill					Other:	*	5 day [П	Level 4			Chilled	deg C
Report To:	Jim Getting							BILLING	NG			AP	ANALYSIS REQUEST	QUEST	
Company:	Republic Services	ervices					P.O. No.:	PO4862	PO4862452 5544160	4416	H				
Street:	13570 St. C	13570 St. Charles Rock Rd.					Bill to:	Republic	Republic Services		611				
City/State/Zip:	Bridgeton , MO 63044	MO 63044						Attn: Jin	Attn: Jim Getting		NTS	=			
Phone& Fax:	314-683-3921	121					13570 St. Charles Rock Rd.	Charles	Rock Ro	_	A ,8	SCF			
e-mail:	JGetting@	JGetting@republicservices.com	s.com				Bridgeton, MO 63044	MO 630	144		SA	/NT	_		
-24											<u></u> +	.B 'S			
LAB USE ONLY	ONLY	Canist	Canister Pressures ("hg)	ires ("hg		SAMPLE IDENTIFICATION	algn atA	NPLE IME	TAINER /TYPE	XIRIT.	12/16 10/16	161 M			
		Canister ID	Sample Start	Sample End	Lab Receive		IAS .d				A93	TSA		-	
441140	35-81	1617	-20.5	-3.5	-2.5	Outlet A	1/13/2016	1019	ر د	LFG N	NA X	×			
1	70-	1533	-20.4	-3.5	7-	Outlet B	1/13/2016	1029	ر ا	LFG N	NA X	×			
										Н					
		4					DATE/TIME:		Language	ç					
AUTHORIZATION TO PERFORM WORK: Dave Penoyer	ERFORM WORK: D	ave Penoyer				COMPANY: Republic Services	DATETIME		COMMENIS	2					

DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy

METHOD OF TRANSPORT (circle one): Walk-In FedEx UPS Courier

Other

ATLI

Preservation: H=HCI N=None / Container: B=Bag C=Can V=VOA O=Other Rev. 03 - 5/7/09

00

DATE/TIME

DATE/TIME DATE/TIME

COMPANY: Republic Services

DATE/RECEIVED BY
DATE/RECEIVED BY

1-13-16

SAMPLED BY: Ryan Ayers

RELINQUISHED BY

RELINQUISHED BY

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/14/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H0114	405-01	H011	405-02		=
Client Sample I.D.:	Out	let A	Out	let B		
Date/Time Sampled:	1/13/1	6 10:19	1/13/1	6 10:29		
Date/Time Analyzed:	1/15/10	6 10:40	1/15/10	6 10:55		
QC Batch No.:	160115	GC8A1	160115	GC8A1		
Analyst Initials:	A	S	A	S		
Dilution Factor:	2	.7	2	.7		
ANALYTE	Result % v/v	RL % v/v	Result % v/v	RL % v/v		
Hydrogen	10.5	2.7	11.0	2.7		
Carbon Dioxide	37.0	0.027	37.7	0.027		
Oxygen/Argon	8.0	1.4	7.7	1.3		
Nitrogen	32.7	2.7	31.5	2.7		
Methane	11.2	0.0027	11.4	0.0027		
Carbon Monoxide	0.095	0.0027	0.098	0.0027		
Net Heating Value (BTU/ft3)	144.9	2.7	150.6	2.7		
Gross Heating Value (BTU/ft3)	164.6	2.7	171.0	2.7		

Results normalized including non-methane hydrocarbons

BTU values based on D1946 analysis and non-methane analysis assumed as propane

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 1-18-16

Page 2 of 5

H011405

Date: 1-18-16

QC Batch No.: 160115GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

1/15/16	8.55		LCS		LCSD		
	0.55	1/15/	16 8:08	1/15/	16 8:22		
AS	S		AS		AS		
15jan	003	15j	an.ru	15j	an001		
1.0)]	1.0		1.0		
Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
ND	1.0	99	70-130%	97	70-130%	1.5	<30
ND	0.010	98	70-130%	95	70-130%	2.3	<30
ND	ND 0.50		70-130%	100	70-130%	2.5	<30
ND	ND 1.0		70-130%	100	70-130%	2.2	<30
ND			70-130%	100 70-130%		2.0	<30
ND	0.0010	109	70-130%	107	70-130%	2.4	<30
	AS 15jan003 1.0 Results RL ND 1.0 ND 0.010 ND 0.50 ND 1.0 ND 1.0 ND 0.0010		15jan003 15j 1.0 Results RL % Rec. ND 1.0 99 ND 0.010 98 ND 0.50 103 ND 1.0 102 ND 0.0010 102	15jan.ru 1.0 1.0 Results RL % Rec. Criteria ND 1.0 99 70-130% ND 0.010 98 70-130% ND 0.50 103 70-130% ND 1.0 102 70-130% ND 0.0010 102 70-130%	15jan003 15jan.ru 15j 1.0 1.0 1.0 Results RL % Rec. Criteria % Rec. ND 1.0 99 70-130% 97 ND 0.010 98 70-130% 95 ND 0.50 103 70-130% 100 ND 1.0 102 70-130% 100 ND 0.0010 102 70-130% 100	15jan003 15jan.ru 15jan001 1.0 1.0 1.0 Results RL % Rec. Criteria % Rec. Criteria ND 1.0 99 70-130% 97 70-130% ND 0.010 98 70-130% 95 70-130% ND 0.50 103 70-130% 100 70-130% ND 1.0 102 70-130% 100 70-130% ND 0.0010 102 70-130% 100 70-130%	15jan003 15jan.ru 15jan001 1.0 1.0 1.0 Results RL % Rec. Criteria % Rec. Criteria %RPD ND 1.0 99 70-130% 97 70-130% 1.5 ND 0.010 98 70-130% 95 70-130% 2.3 ND 0.50 103 70-130% 100 70-130% 2.5 ND 1.0 102 70-130% 100 70-130% 2.2 ND 0.0010 102 70-130% 100 70-130% 2.0

ND = Not Detected (Below RL)

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

The cover letter is an integral part of this analytical report.

AirTECHNOLOGY Laboratories, Inc. -

Page 4 of 5 H011405

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/14/16

Matrix:

Air

Reporting Units:

ppmv

EPA 15/16

Lab No.:	H01	14()5-01	H01	140	05-02		
Client Sample I.D.:	Ou	ıtle	t A	O	utle	t B		
Date/Time Sampled:	1/13/	16	10:19	1/13/	/16	10:29		
Date/Time Analyzed:	1/15/	16	13:24	1/15	/16	14:14		
QC Batch No.:	16011	5G	C3A2	1601	15G	C3A2		
Analyst Initials:		AS	;		AS			
Dilution Factor:		2.7	,		2.7	'		
ANALYTE	Result ppmv		RL ppmv	Resul ppm		RL ppmv		
Hydrogen Sulfide	61	d	5.5	52	d	5.3		
Carbonyl Sulfide	ND		0.55	ND		0.53		
Methyl Mercaptan	250	d	5.5	190	d	5.3		
Ethyl Mercaptan	2.8		0.55	2.6		0.53		
Dimethyl Sulfide	1,200	ď	55.0	1,100	d	53.0		
Carbon Disulfide	ND		0.55	ND		0.53		
Dimethyl Disulfide	96	d	5.5	81	d	5.3		
Total Reduced Sulfur	1,700	-	0.55	1,500		0.53		

ND = Not Detected (below RL)

RL = Reporting Limit

d = reported from a secondary dilution

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

1

Date 1-18-16

Page 5 of 5 H011405

QC Batch No.:

160115GC3A2

Matrix: Units:

Air

ppmv

QC for Sulfur Compounds by EPA 15/16

Lab No.:	Method I	Blank	1	LCS	L	CSD		
Date/Time Analyzed:	1/15/16 1	3:11	1/15/	16 12:31	1/15/	16 12:59		
Analyst Initials:	AS			AS		AS		
Datafile:	15jan0	14	15	jan012	15	jan013		
Dilution Factor:	1.0			1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen Sulfide	ND	0.20	95	70-130%	94	70-130%	1.1	<30
Carbonyl Sulfide	ND	0.20	103	70-130%	102	70-130%	0.9	<30
Methyl Mercaptan	ND	0.20	100	70-130%	100	70-130%	0.8	<30
Ethyl Mercaptan	ND	0.20	118	70-130%	120	70-130%	1.6	<30
Dimethyl Sulfide	ND	0.20	93	70-130%	93	70-130%	0.2	<30
Carbon Disulfide	ND	0.20	93	70-130%	95	70-130%	1.8	<30
Dimethyl Disulfide	ND	0.20	109	70-130%	109	70-130%	0.1	<30

ND = Not Detected (Below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark J. Johnson Operations Manager Date: 1-18-16

The cover letter is an integral part of this analytical report.

	PARAMETER	Blower Out
D-1-	Total Data	4 /5 /4
Date Start	Test Date Run Start Time	1/5/16 7:24
Start	Run Finish Time	8:5
	Net Traversing Points	16 (2 x 8)
Θ	Net Run Time, minutes	1:26:15
C_p	Pitot Tube Coeficient	0.99
P_{Br}	Barometric Pressure, inches of Mercury	29.38
% H₂O	Moisture Content of LFG, %	0.72
% RH	Relative Humidity, %	41.5
M_{fd}	Dry Mole Fraction	0.99
%CH₄	Methane, %	11.2
%CO ₂	Carbon Dioxide, %	37.6
%O ₂	Oxygen, %	7.7
%Balance	Assumed as Nitorgen, %	32.0
%H ₂	Hydrogen, %	10.7
%CO	Carbon Monoxide, %	0.1
M _d	Dry Molecular Weight, lb/lb-Mole	30.0
M_s	Wet Molecular weight, lb/lb-Mole	29.9
P_{g}	Flue Gas Static Pressure, inches of H ₂ O	16.4
Ps	Absolute Flue Gas Pressure, inches of Mercury	31.2
t _s	Average Stack Gas Temperature, °F	6
ΔP_{avg}	Average Velocity Head, inches of H ₂ O	0.29
V _s	Average LFG Velocity, feet/second	34.3
A_s	Stack Crossectional Area, square feet	1.3
\mathbf{Q}_{sd}	Dry Volumetric Flow Rate, dry scfm	2,92
Q_s	Standard Volumetric Flow Rate, scfm	2,94
\mathbf{Q}_{aw}	Actual Wet Volumetric Flue Gas Flow Rate, acfm	2,78
Q _{lb/hr}	Dry Air Flow Rate at Standard Conditions, lb/hr	13,68
NHV	Net Heating Value, Btu/scf	14
LFG _{CH4}	Methane, lb/hr	819
	Methane, grains/dscf Carbon Dioxide, lb/hr	32.6
LFG _{CO2}	Carbon Dioxide, ib/nr Carbon Dioxide, grains/dscf	7,543. 300.7
LFG _{O2}	Oxygen, lb/hr	1123.
Lr G ₀₂	Oxygen, grains/dscf	44.7
LFG _{N2}	Balance gas as Nitrogen, Ib/hr	4,092.
	Balance gas as Nitrogen, grains/dscf Hydrogen, lb/hr	163.1 98.
LFG _{H4}	Hydrogen, grains/dscf	3.9
LFG _{co}	Carbon Monoxide, lb/hr	12.
O _{CO}	Carbon Monoxide, grains/dscf	0.5

		Blower Out Sample #1	Blower Ou Sample #2
	Hydrogen Sulfide Concentration, ppmd	61.00	56
H ₂ S	Hydrogen Sulfide Rate, lb/hr	0.95	0
	Hydrogen Sulfide Rate, grains/dscf	0.038	0.0
	Carbonyl Sulfide Concentration, ppmd	0.53	0
cos	Carboynl Sulfide Rate, lb/hr	0.01	0
	Carbonyl Sulfide Rate, grains/dscf	0.001	0.0
	Methyl Mercaptan Concentration, ppmd	200.00	170
CH₄S	Methyl Mercaptan Rate, lb/hr	4.39	3
	Methyl Mercaptan Rate, grains/dscf	0.175	0.
	Ethyl Mercaptan Concentration, ppmd	2.60	2
C ₂ H ₆ S	Ethyl Mercaptan Rate, lb/hr	0.07	C
	Ethyl Mercaptan Rate, grains/dscf	0.003	0.0
	Dimethyl Sulfide Concentration, ppmd	920.00	890
(CH ₃) ₂ S	Dimethyl Sulfide Rate, lb/hr	26.06	25
	Dimethyl Sulfide Rate, grains/dscf	1.039	1.0
	Carbon Disulfide Concentration, ppmd	0.53	C
CS ₂	Carbon Disulfide Rate, lb/hr	0.02	C
	Carbon Disulfide Rate, grains/dscf	0.001	0.0
	Dimethyl Disulfide Concentration, ppmd	96.00	90
$C_2H_6S_2$	Dimethyl Disulfide Rate, lb/hr	4.12	3
	Dimethyl Disulfide Rate, grains/dscf	0.164	0.
	TD0 000 5 : : : 0	1 102 22	1.555
●E _{TRS-SO2}	TRS>SO2 Emission Concentration, ppmd TRS>SO2 Emission Rate, lb/hr	1,400.00 40.88	1,300 37
→ LTRS-SO2	TRS>SO2 Emission Rate, grains/dscf	1.630	1.

Tuesday, January 05, 2016

LOCATION	TIME	F	LOW -SCFM		Method 2 vs.	Method 2 vs
		Method 2	FleetZoom	Kurz FM	Fleetzoom	Kurz
BLOWER OUT	7:24	2,948	3,059	2,896	-3.8%	1.7%

January 11, 2016

Republic Services

ATTN: Jim Getting

Bridgeton, MO 63044

13570 St. Charles Rock Rd.

ADE-1461 EPA Methods TO3, TO14A, TO15 SIM & SCAN

TX Cert T104704450-14-6 EPA Methods TO14A, TO15

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

LABORATORY TEST RESULTS

Project Reference: Bridgeton Landfill

Lab Number:

H010603-01

Enclosed are results for sample(s) received 1/06/16 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the NELAC Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Jim Getting, Mike Lambrich, Ryan Ayers and David Randall, Weaver Consultants Group, on 1/08/16.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely.

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

Enclosures

Note: The cover letter is an integral part of this analytical report.

					18501 F G	18501 F. Gale Ave. Strife 130			CH	O Z	SOS -	CHAIN OF CUSTODY RECORD	RECOR	Ω		
I ECHNOLOGY	L C		550		City of Indu	City of Industry, CA 91748	TUR	TURNAROUND TIME	TIME		DELIVI	DELIVERABLES	PAGE:	Ë	1 OF	1
	Labora	Laboratories, Inc.			Ph: 626-964-4032	1-4032	Standard		48 hours		EDD		Conditi	Condition upon receipt:	ceipt:	
200					FX: 626-964	-5832	Same Day		72 hours		EDF			Seal	Sealed Yes	2
Project No.:							24 hours		96 hours		Level 3	_3 _		Infe	Intact Yes	□ 8
Project Name: Bri	Bridgeton Landfill	ıdfill					Other:		5 day		Level 4	4		Chilled	Pe	deg C
Report To: Jin	Jim Getting							BILLING	NG				ANALYS	ANALYSIS REQUEST	EST	
Company: Re	Republic Services	rices					P.O. No.:	PO4862452 549 2049	452 54	4504					4	
Street: 13	570 St. Ch.	13570 St. Charles Rock Rd.					Bill to:	Republic Services	Servic	-	7611 14					
City/State/Zip: Bri	Bridgeton, MO 63044	J 63044						Attn: Jim Getting	. Getting	_	NTS					
hone& Fax: 31	314-683-3921						13570 St. Charles Rock Rd.	Charles	Rock F	j.	A &	SCE				
-mail: JG	3etting@re	JGetting@republicservices.com	s.com				Bridgeton, MO 63044	MO 630	44	-	SA	s/UT				
											T.+	.8 '9				
I AR LISE ONLY	>	Canis	Canister Pressures ("hg)	ıres ("hg	(NO. F. C.	319 3T		AINER TYPE		91/91 NO	10 1 6	Dee			
		Canister ID	Sample Start	Sample End	Lab Receive		MAS AQ	MAS IIT	CONT.	TAM	ISBR DIT AGE					
H010603-01	10-1	6058	-21.59	-4.27	7 -	Blower Outlet 1	1/5/2016	755	U	LFG	4	╀	-		-	
	70-	5959	-20.63	-3.98	7-	Blower Outlet 2	1/5/2016	822	ပ				*			
· →	60-	5976	-21.08	-3.99	-2.5	LFG CSU EP14	1/5/2016	950	U		NA AN	×				
								120								
						a										
									25_							
	9															
											6					
UTHORIZATION TO PERFORM WORK; Dave Penoyer	M WORK: Dave	Penoyer				COMPANY: Republic Services	DATE/TIME:		COMMENTS	NTS						

Preservation: H=HCI N=None / Container: B=Bag C=Can V=VOA O=Other Rev. 03 - 5/7/09

DATE/TIME DATE/TIME

COMPANY: Republic Services

SAMPLED BY: Ryan Ayers

RELINQUISHED BY

ELINQUISHED BY

C DATE/TIME

DATE/ RECEIVED BY

DATE/RECEIVED BY

METHOD OF TRANSPORT (circle one): Walk-In FedEx UPS Courier ATLI Other DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/06/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H010	603-01	H010	603-02	H010	603-03	
Client Sample I.D.:	Blower	Outlet 1	Blower	Outlet 2	LFG CS	SU EP 14	
Date/Time Sampled:	1/5/1	6 7:55	1/5/1	6 8:22	1/5/1	6 9:50	
Date/Time Analyzed:	1/6/16	15:52	1/6/16	16:06	1/6/16	16:21	
QC Batch No.:	160106	GC8A2	160106	GC8A2	160106	GC8A2	
Analyst Initials:	A	S	A	S	A	S	
Dilution Factor:	2	.7	2	.7	2	.7	
ANALYTE	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v	
Hydrogen	10.6	2.7	10.8	2.7	11.3	2.7	
Carbon Dioxide	37.7	0.027	37.5	0.027	32.0	0.027	
Oxygen/Argon	7.8	1.3	7.6	1.3	9.5	1.4	
Nitrogen	32.1	2.7	32.0	2.7	40.0	2.7	
Methane	11.1	0.0027	11.3	0.0027	6.3	0.0027	
Carbon Monoxide	0.10	0.0027	0.10	0.0027	0.089	0.0027	
Net Heating Value (BTU/ft3)	145.6	2.7	148.6	2.7	106.2	2.7	
Gross Heating Value (BTU/ft3)	165.4	2.7	168.7	2.7	121.8	2.7	

Results normalized including non-methane hydrocarbons

BTU values based on D1946 analysis and non-methane analysis assumed as propane

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 1-8-16

Page 2 of 7

H010603

Date: 1-8-16

QC Batch No.: 160106GC8A2

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method	Blank	L	CS	L	CSD		
Date/Time Analyzed:	1/6/16	15:04	1/6/1	6 13:36	1/6/1	6 13:50		
Analyst Initials:	A	S	į.	AS		AS		
Datafile:	06jar	1020	06j	an017	06j	an018		
Dilution Factor:	1.	0	:	1.0	8	1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	100	70-130%	99	70-130%	0.2	<30
Carbon Dioxide	ND	0.010	97	70-130%	97	70-130%	0.0	<30
Oxygen/Argon	ND	0.50	99	70-130%	100	70-130%	0.3	<30
Nitrogen	ND	1.0	100	70-130%	100	70-130%	0.4	<30
Methane	ND	0.0010	91	70-130%	92	70-130%	0.4	<30
Carbon Monoxide	ND	0.0010	111	70-130%	111	70-130%	0.5	<30

ND = Not Detected (Below RL)

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

The cover letter is an integral part of this analytical report.

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/06/16

Matrix:

Air

Reporting Units:

ppmv

EPA 15/16

Lab No.:	H01060	03-01	H01060	03-02		
Client Sample I.D.:	Blower O	utlet 1	Blower C	Outlet 2		
Date/Time Sampled:	1/5/16	7:55	1/5/16	8:22		
Date/Time Analyzed:	1/7/16	9:41	1/7/16	10:19		
QC Batch No.:	160107G	C3A1	160107G	GC3A1		
Analyst Initials:	AS	}	AS	S		
Dilution Factor:	2.7		2.7	7		
ANALYTE	Result ppmv	RL ppmv	Result ppmv	RL ppmv		
Hydrogen Sulfide	61 d	5.3	56 d	5.3		
Carbonyl Sulfide	ND	0.53	ND	0.53		
Methyl Mercaptan	200 d	5.3	170 d	5.3		
Ethyl Mercaptan	2.6	0.53	2.5	0.53		
Dimethyl Sulfide	920 d	53.0	890 d	53.0		
Carbon Disulfide	ND	0.53	ND	0.53		
Dimethyl Disulfide	96 d	5.3	90 d	5.3		
Total Reduced Sulfur	1,400	0.53	1,300	0.53		

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary dilution

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 1-11-16

Page 4 of 7

H010603

QC Batch No.:

160107GC3A1

Matrix: Units:

Air

ppmv

QC for Sulfur Compounds by EPA 15/16

Lab No.:	Method I	Blank]	LCS	L	CSD		
Date/Time Analyzed:	1/7/16 9	2:25	1/7/	16 9:02	1/7/	16 9:13		
Analyst Initials:	AS	3-330) 10121 123		AS		AS		
Datafile:	07jan0	03	07	jan001	07	jan002		
Dilution Factor:	1.0			1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen Sulfide	ND	0.20	83	70-130%	83	70-130%	0.4	<30
Carbonyl Sulfide	ND	0.20	101	70-130%	103	70-130%	1.8	<30
Methyl Mercaptan	ND	0.20	91	70-130%	91	70-130%	0.3	<30
Ethyl Mercaptan	ND	0.20	118	70-130%	118	70-130%	0.1	<30
Dimethyl Sulfide	ND	0.20	91	70-130%	92	70-130%	1.5	<30
Carbon Disulfide	ND	0.20	83	70-130%	85	70-130%	1.3	<30
Dimethyl Disulfide	ND	0.20	94	70-130%	98	70-130%	3.9	<30
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							

ND = Not Detected (Below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

Date: 1-8-16

The cover letter is an integral part of this analytical report.

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/06/16

Matrix:

Air

Reporting Units: ppmv

ASTM D5504

Lab No.:	H01060	03-01	H0106	03-02	<u> </u>	
Client Sample I.D.:	Blower C		Blower (
Date/Time Sampled:	1/5/16	7:55	1/5/16	8:22		
Date/Time Analyzed:	1/7/16	9:41	1/7/16	10:19		
QC Batch No.:	1601070	C3A1	1601070	GC3A1		
Analyst Initials:	AS	3	AS	5		
Dilution Factor:	2.7	7	2.7	7		
	Result	RL	Result	RL		
ANALYTE	ppmv	ppmv	ppmv	ppmv		
Hydrogen Sulfide	61 d	5.3	56 d	5.3		
Carbonyl Sulfide	ND	0.53	ND	0.53		
Methyl Mercaptan	200 d	5.3	170 d	5.3		
Ethyl Mercaptan	2.6	0.53	2.5	0.53		
Dimethyl Sulfide	920 d	53.0	890 d	53.0		
Carbon Disulfide	ND	0.53	ND	0.53		
Dimethyl Disulfide	96 d	5.3	90 d	5.3		
Total Reduced Sulfur	1,400	0.53	1,300	0.53		

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary dilution

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 1-8-16

QC Batch No.:

160107GC3A1

Matrix: Units:

Air

ppmv

QC for Sulfur Compounds by ASTM D5504

Lab No.:	Method I	Blank	I	LCS	L	CSD		
Date/Time Analyzed:	1/7/16 9	2:25	1/7/	16 9:02	1/7/	16 9:13		
Analyst Initials:	AS		× ×	AS		AS		
Datafile:	07jan0	03	07	jan001	07	jan002		
Dilution Factor:	1.0		6	1.0	20	1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen Sulfide	ND	0.20	83	70-130%	83	70-130%	0.4	<30
Carbonyl Sulfide	ND	0.20	101	70-130%	103	70-130%	1.8	<30
Methyl Mercaptan	ND	0.20	91	70-130%	91	70-130%	0.3	<30
Ethyl Mercaptan	ND	0.20	118	70-130%	118	70-130%	0.1	<30
Dimethyl Sulfide	ND	0.20	91	70-130%	92	70-130%	1.5	<30
Carbon Disulfide	ND	0.20	83	70-130%	85	70-130%	1.3	<30
Dimethyl Disulfide	ND	0.20	94	70-130%	98	70-130%	3.9	<30
1							0	

ND = Not Detected (Below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark J. Johnson Operations Manager Date: 1-8-16

The cover letter is an integral part of this analytical report.

ANALYTICAL SOLUTION, INC. (AnSol)

1/25/2016 Analytical Report Sample log #: R0107b1

Purchase Order #: 0120-131-10-27

Company: Weaver Boos Consultants Requester: David Randall

Address: 6301 East Hwy AB Phone: (888) 660-0346

Columbia, MO 65201 Fax:

Sample Description: Bio Gas Customer Project: Bridgeton LF

Number of Samples: 2 Received Date: 1/7/16

Total Report Page: 3

Note: This report is submitted to the requester through E-mail only. Please let us know if your need this document security signed, or a hard copy report by mail or fax.

Results:

All results are attached in following pages.

The unit conversion is based on standard conditions at 60°F and 14.73 psia, where applied

Submitted by: Sherman S. Chao, Ph.D.

Tel: (630) 230-9378, Fax: (630) 230-9376

Disclaimer:

Neither AnSol nor any person acting on behalf of AnSol assumes any liability with respect to the use of, or for damages resulting from the use of, any information presented in this report.

1/25/2016

Analytical Report

Sample log #: R0107b1

GAS COMPONENT -

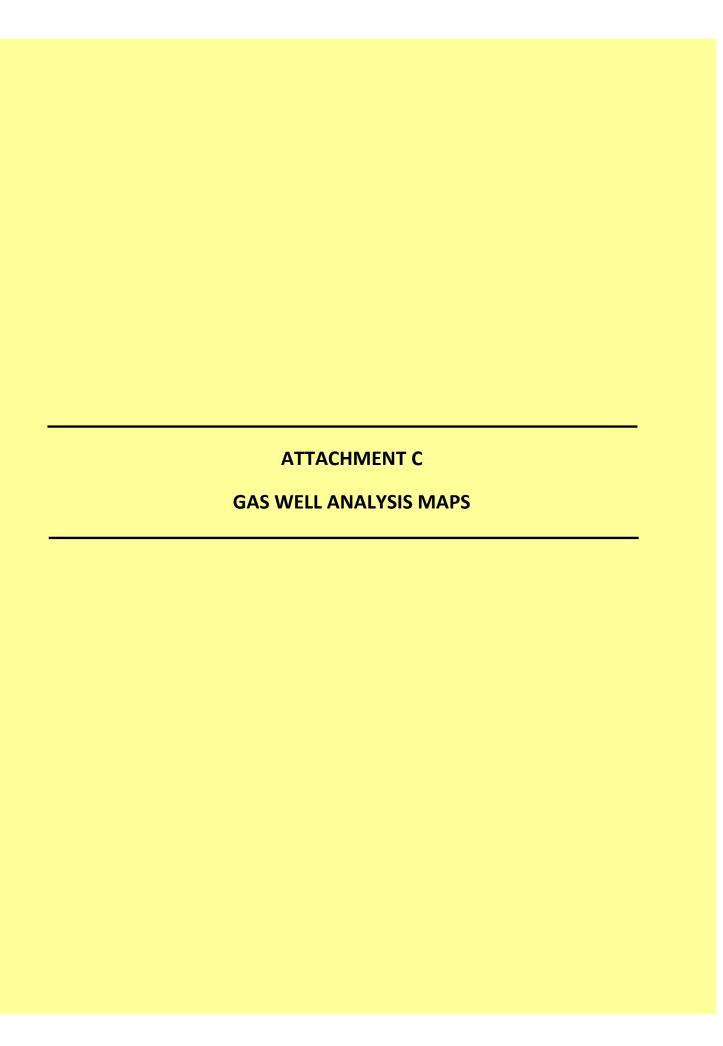
Sample ID:	Conc Unit	R0107b01	R0107b02
		Blower outlet, 1/5/16	Flare LFG, CSU, EP14, 1/5/16
Hydrogen	%	9.20	9.27
Methane	%	10.82	6.35
Carbon dioxide	%	35.1	30.5
Nitrogen	%	34.1	42.0
Oxygen	%	10.76	11.91
Relative density *		1.050	1.043
GHV, dry (14.73 psi) *	Btu/scf	140	95
NHV, dry (14.73 psi) *	Btu/scf	124	84
Total organic Cl	ppmv	8.75	7.58
	mg/M ³	13.10	11.34

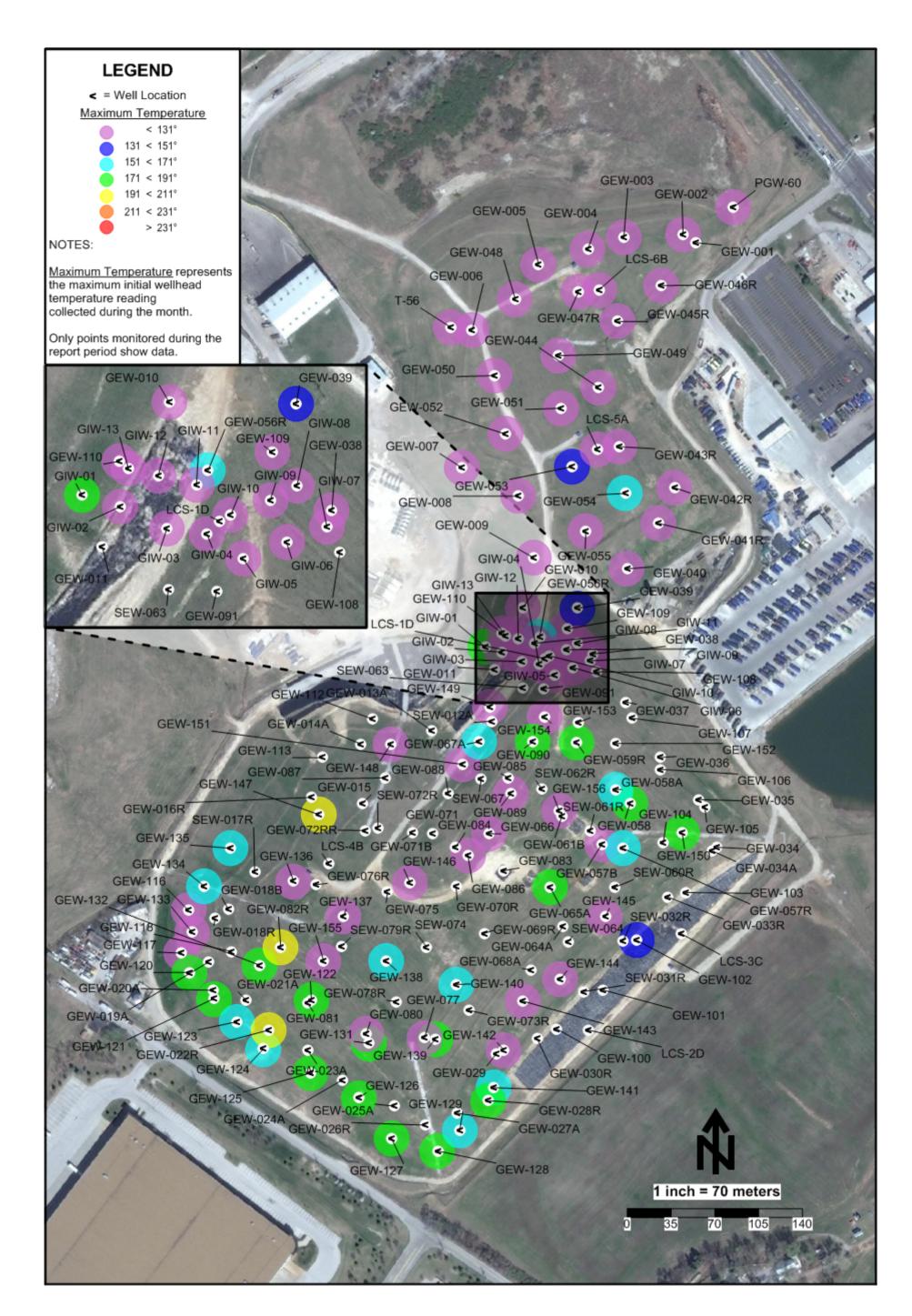
Note: Major component concentrations were normalized to 100% on a dry basis. Oxygen and Argon cannot be separated; therefore, the oxygen result may include a small amount of Argon. Some results may be reported with additional significance for reference. All components are identified by GC retention times only. (ASTM D1945/EPA 3C)

^{*60}°F and 14.73 psia , ASTM D3588

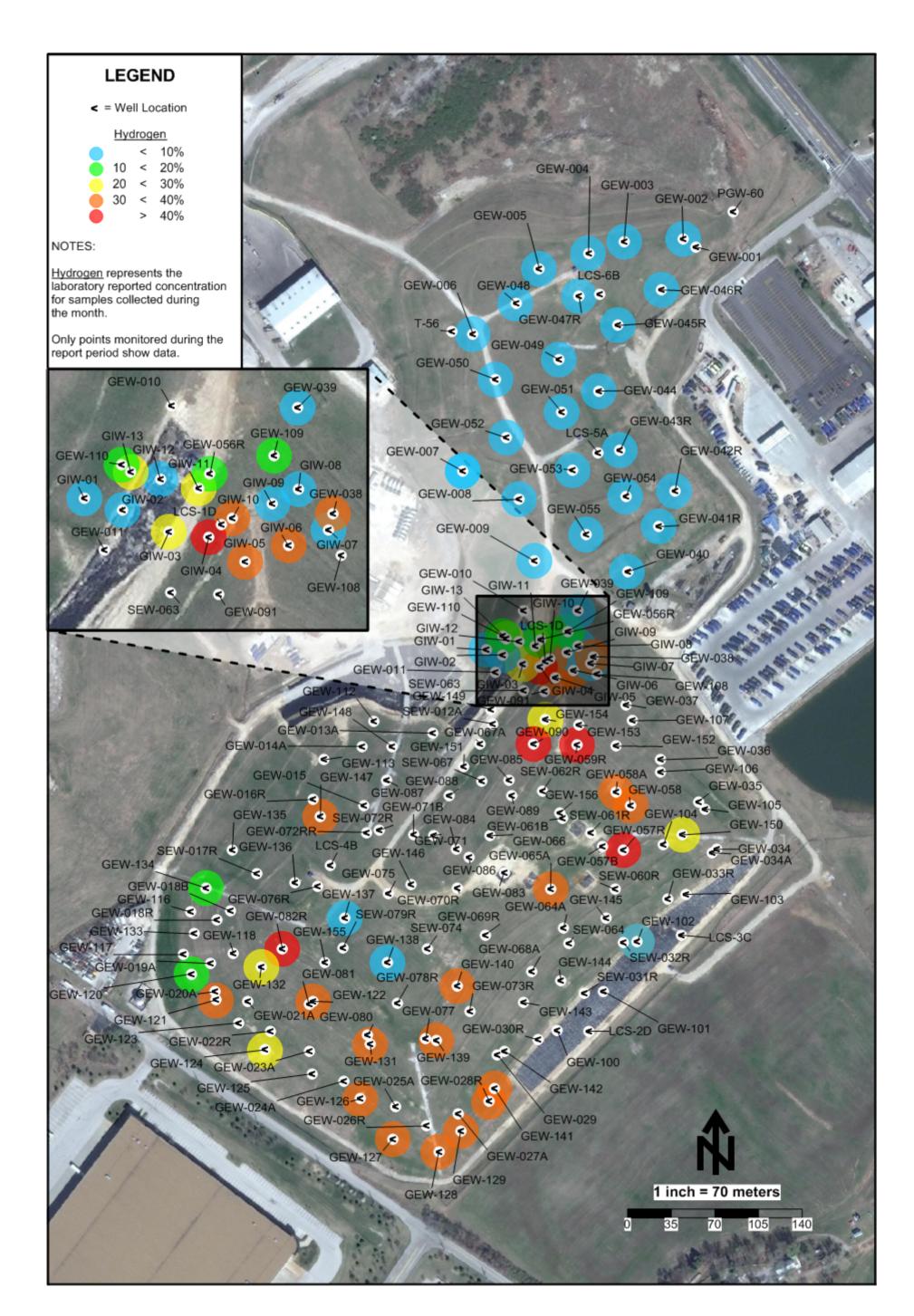
1/25/2016

Analytical Report

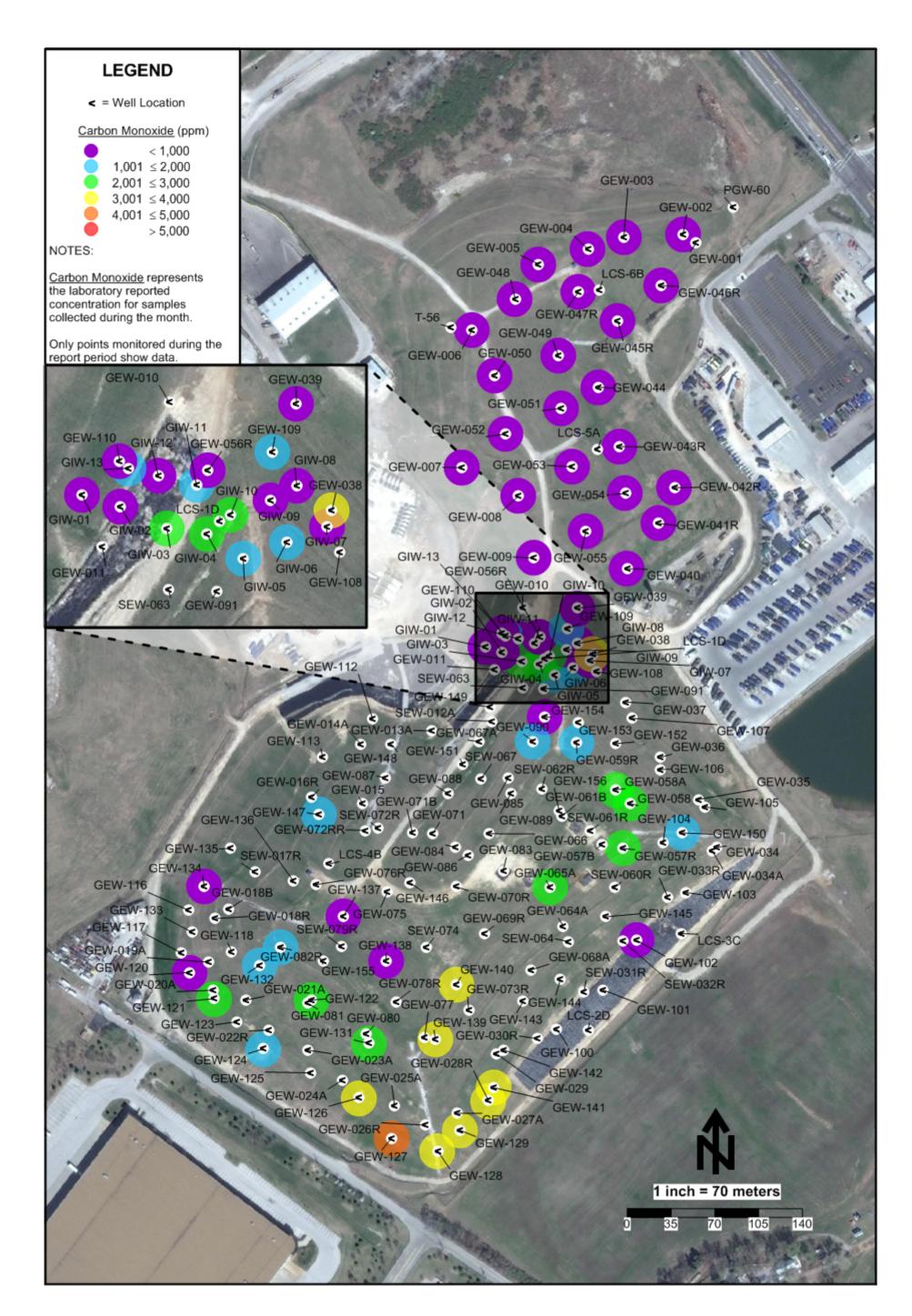

Sample log #: R0107b1

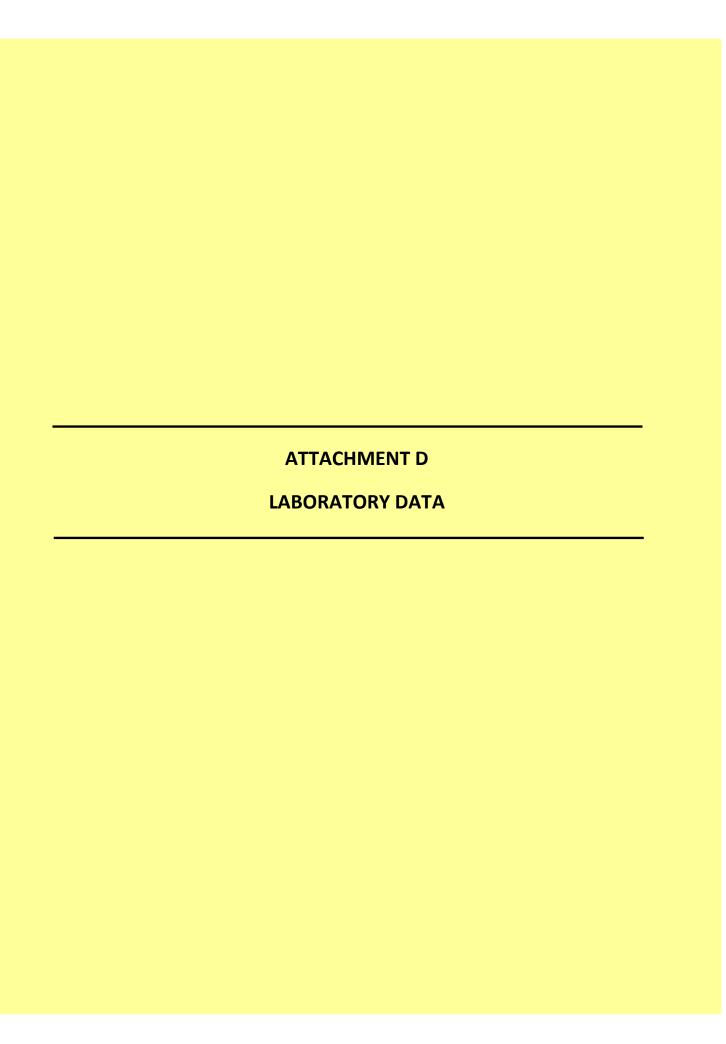

Compound Speciation – Sulfur

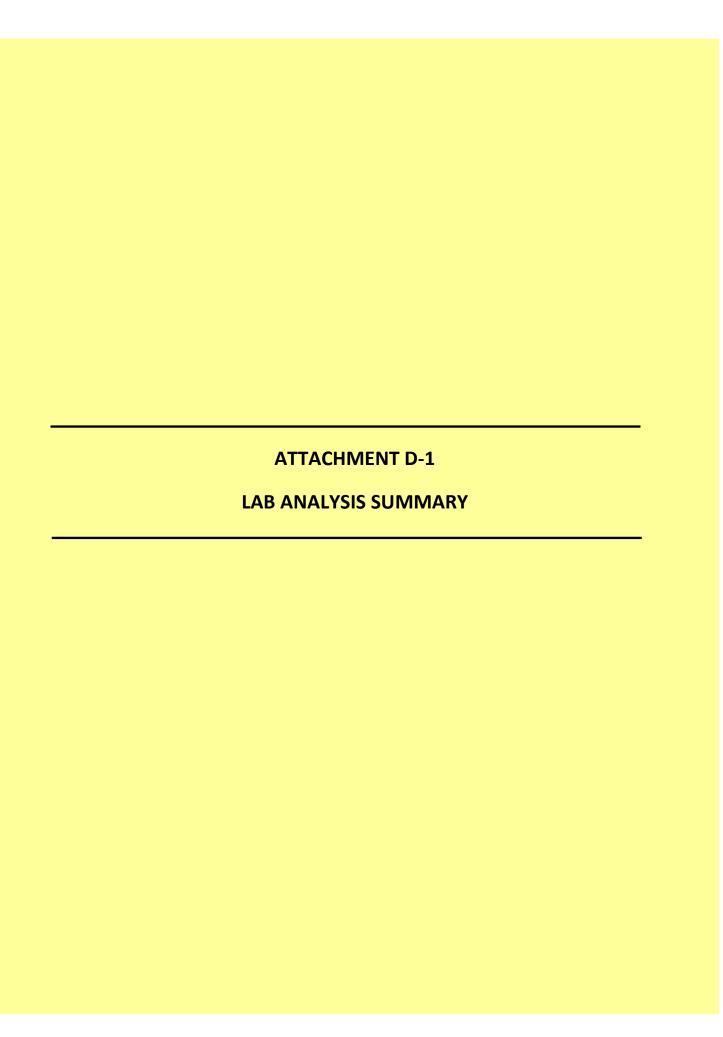
	R0107b01
Sulfur Compounds, ppmv	Blower outlet, 1/5/16
Hydrogen sulfide	73
Carbonyl sulfide	0.14
Methyl mercaptan	244
Ethyl mercaptan	1.13
Dimethyl sulfide/IPM	956
Carbon disulfide (CS ₂)	0.08
t-Butyl mercaptan (TBM)	< 0.10
n-Propyl mercaptan (NPM)	< 0.10
Methyl ethyl sulfide/NBM	3.25
Thiophene	2.76
S-Butyl mercaptan (SBM)	0.24
Diethyl sulfide	<0.10
Dimethyl disulfide *	11.31
Ethyl methyl disulfide *	< 0.10
Diethyl disulfide *	< 0.10
Others (as S)	5.83
Total S (ppmv):	1310
(mg/M^3) :	1772


Note: ASTM D5504. Some results were reported with additional significance for reference. The normal detection limit of each sulfur compound is 0.1 ppmv. Hydrogen sulfide is determined by a GC-TCD method as the concentration is beyond the normal liner range of D5504 method.

^{* 1.0} ppmv sulfur compound = 2.0 ppmv component as sulfur




Initial Temperature Maximums - January 2016 - Bridgeton Landfill



Hydrogen Data Map - January 2016 - Bridgeton Landfill

Carbon Monoxide Data Map - January 2016 - Bridgeton Landfill

Well Name	Date Sampled	Methane	CO ₂	O ₂ /Argon	Nitrogen	Hydrogen	Carbon Monoxide	Comments
	· •			•	(ppm)	7		
	•			North Quarry			,	
GEW-002	9/10/2015	55	41	ND	ND	ND	ND	
GEW-002	10/12/2015	56	41	ND	ND	ND	ND	
GEW-002	11/13/2015	54	43	ND	ND	ND	ND	
GEW-002	12/14/2015	41	32	3.2	23	ND	35	See Note 3
GEW-002	12/31/2015	53	40	ND	5.7	0.1	ND	Resample
GEW-002	1/14/2016	55	43	ND	ND	ND	ND	
GEW-003	9/10/2015	49	36	2.8	13	0.1	ND	See Note 1
GEW-003	10/12/2015	47	35	2.9	15	0.1	ND	See Note 1 and 3
GEW-003	11/10/2015	50	40	ND	8.7	0.1	ND	
GEW-003	12/14/2015	42	37	ND	20	ND	ND	
GEW-003	1/14/2016	52	39	ND	6.7	0.1	ND	
GEW-004	9/10/2015	53	40	ND	6.3	0.1	ND	
GEW-004	10/12/2015	54	40	ND	5.8	0.1	ND	
GEW-004	11/10/2015	49	40	ND	10	0.1	ND	
GEW-004	12/14/2015	45	37	ND	16	ND	ND	
GEW-004	1/14/2016	52	40	ND	7	0.1	ND	
GEW-005	9/10/2015	52	38	ND	10	0.1	ND	
GEW-005	10/12/2015	47	35	1.7	16	ND	ND	See Note 3
GEW-005	11/10/2015	44	36	ND	19	0.03	ND	
GEW-005	12/15/2015	41	34	ND	23	ND	ND	
GEW-005	1/14/2016	42	34	ND	24	ND	ND	
GEW-006	9/10/2015	55	38	ND	6.5	ND	ND	
GEW-006	11/10/2015	51	40	ND	8.1	ND	ND	
GEW-006	1/14/2016	52	37	ND	10	ND	ND	
GEW-007	9/11/2015	57	40	ND	ND	ND	ND	
GEW-007	11/11/2015	56	41	ND	ND	ND	ND	
GEW-007	1/14/2016	57	41	ND	ND	ND	ND	
GEW-007	1/27/2016	56	39	ND	4	ND	ND	
GEW-008	9/11/2015	49	47	ND	ND	0.7	ND	
GEW-008	10/12/2015	50	46	ND	ND	1.3	ND	
GEW-008	11/11/2015	49	47	ND	ND	2.1	ND	
GEW-008	12/15/2015	42	42	1.8	8.6	1.4	ND	See Note 3
GEW-008	1/27/2016	50	47	ND	ND	1.6	ND	
GEW-009	9/11/2015	51	40	1.5	7	0.8	ND	See Note 1
GEW-009	10/12/2015	52	41	ND	5.1	0.8	ND	
GEW-009	11/11/2015	46	39	2	12	0.4	ND	See Note 1 and 3
GEW-009	12/15/2015	39	40	ND	19	0.3	ND	
GEW-009	1/27/2016	51	41	ND	6.7	0.5	ND	
GEW-040	9/8/2015	56	40	ND	ND	ND	ND	
GEW-040	10/12/2015	57	40	ND	ND	ND	ND	
GEW-040	11/10/2015	52	37	2.4	8.5	ND	ND	See Note 1 and 3
GEW-040	12/14/2015	54	38	1.9	6.6	ND	ND	See Note 3
GEW-040	1/14/2016	57	41	ND	ND	ND	ND	

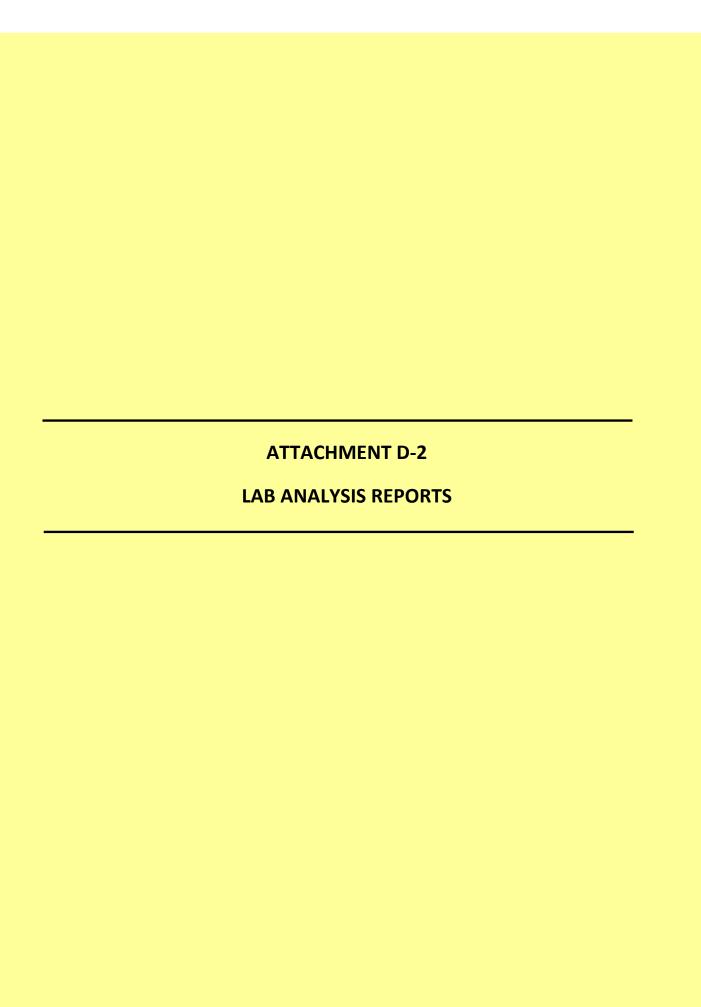
		Methane	CO ₂	O ₂ /Argon	Nitrogen	Hydrogen	Carbon	
Well Name	Date Sampled	metriarie	002		Title Ogen	nyar ogen	Monoxide	Comments
				(%)			(ppm)	
GEW-041R	9/8/2015	56	40	ND	3.6	ND	ND	
GEW-041R	11/10/2015	47	37	1.6	15	ND	ND	See Note 3
GEW-041R	1/14/2016	56	42	ND	ND	ND	ND	
GEW-042R	9/8/2015	55	41	ND	ND	ND	ND	
GEW-042R	10/12/2015	56	41	ND	ND	ND	ND	
GEW-042R	11/10/2015	42	35	5	18	ND	ND	See Note 1 and 3
GEW-042R	12/14/2015	49	40	2.3	8.3	ND	ND	See Note 3
GEW-042R	1/14/2016	55	42	ND	ND	ND	ND	
GEW-043R	9/8/2015	54	41	ND	ND	0.2	ND	
GEW-043R	11/11/2015	53	44	ND	ND	ND	ND	
GEW-043R	1/14/2016	55	43	ND	ND	0.2	ND	
GEW-044	9/10/2015	55	38	ND	5.9	ND	ND	
GEW-044	11/10/2015	47	37	ND	15	ND	ND	
GEW-044	1/14/2016	56	40	ND	ND	ND	ND	
GEW-045R	9/10/2015	58	39	ND	ND	ND	ND	
GEW-045R	10/12/2015	58	38	ND	ND	ND	ND	
GEW-045R	11/10/2015	58	39	ND	ND	ND	ND	
GEW-045R	12/14/2015	57	38	ND	3.9	ND	ND	
GEW-045R	1/14/2016	56	43	ND	ND	ND	ND	
GEW-046R	9/10/2015	53	40	ND	5	0.1	ND	
GEW-046R	10/12/2015	56	41	ND	ND	0.1	ND	
GEW-046R	11/10/2015	53	41	ND	4.7	0.1	ND	
GEW-046R	12/14/2015	47	39	ND	13	ND	ND	
GEW-046R	1/14/2016	54	41	ND	4.7	0.1	ND	
GEW-047R	9/10/2015	49	38	ND	12	0.1	ND	
GEW-047R	10/12/2015	47	37	ND	15	ND	ND	
GEW-047R	11/10/2015	41	37	ND	21	0.1	ND	
GEW-047R	12/14/2015	37	33	ND	29	ND	ND	
GEW-047R	1/14/2016	40	35	ND	24	0.05	ND	
GEW-048	9/10/2015	53	39	ND	7.5	ND	ND	
GEW-048	10/12/2015	55	39	ND	4.9	ND	ND	
GEW-048	11/10/2015	53	40	ND	5.7	ND	ND	
GEW-048	12/15/2015	49	38	ND	12	ND	ND	
GEW-048	1/14/2016	52	39	ND	8.4	ND	ND	
GEW-049	9/10/2015	50	35	2.9	12	0.1	ND	See Note 1
GEW-049	10/12/2015	54	39	ND	6.2	0.1	ND	000110101
GEW-049	11/10/2015	46	37	ND	15	0.1	ND	
GEW-049	12/15/2015	46	37	ND	16	ND	ND	
GEW-049	1/27/2016	45	34	ND ND	20	0.1	ND	+
GEW-049	9/10/2015	56	39	ND ND	4.4	0.1	ND ND	
GEW-050	11/10/2015	48	37	ND ND	13	ND	ND	
GEW-050	1/14/2016	53	39	ND ND	7.9	0.1	ND ND	
GEW-051	9/10/2015	54	41	ND ND	ND	1	ND ND	+
GEW-051 GEW-051	11/10/2015	53	42	ND	3.3 ND	1	ND	
	1/27/2016	55	41	ND	ND		ND	
GEW-052 GEW-052	9/10/2015	52 43	39 37	ND 1.7	8.1	0.1	ND ND	See Note 1 and
								3
GEW-052	1/14/2016	45	36	ND	19	0.04	ND	
GEW-053	9/11/2015	49	41	ND	ND	5.7	63	
GEW-053	10/12/2015	50	41	ND	ND	5.7	64	
GEW-053	11/11/2015	49	42	ND	3.3	4.8	55	
GEW-053	12/15/2015	49	41	ND	4.8	4.5	51	
GEW-053	1/27/2016	50	41	ND	3.9	4.7	49	

Well Name	Date Sampled	Methane	CO ₂	O ₂ /Argon	Nitrogen	Hydrogen	Carbon Monoxide	Comments
					(ppm)			
GEW-054	9/11/2015	51	41	ND	ND	4.3	34	
GEW-054	10/28/2015	52	41	ND	3.5	2.2	ND	
GEW-054	11/11/2015	52	43	ND	ND	2.6	ND	
GEW-054	12/15/2015	50	42	ND	ND	5.1	39	
GEW-054	1/27/2016	53	42	ND	ND	4.0	ND	
GEW-055	9/10/2015	48	39	2.6	9.4	1.4	ND	
GEW-055	10/12/2015	50	40	2	7.3	1.4	30	See Note 3
GEW-055	11/11/2015	52	43	ND	3.2	1.2	ND	
GEW-055	12/15/2015	51	41	ND	5.8	1.8	ND	
GEW-055	1/27/2016	54	42	ND	ND	1.0	ND	

Notes: (1) Based on the comparison of field to laboratory readings, oxygen to balance gas ratios, and historical concentrations, the sample was determined to be suspect due to oxygen introduction which likely occurred during sample collection or laboratory analytical methods. (2) MDNR also collected duplicate LFG samples at these locations during this sampling period. (3) Based on the oxygen verification readings taken with an Envision meter, it was determined there is a sample train leak. (4) Based on the oxygen verification readings taken with an Envision meter, it was determined that the readings are accurate. (5) Flare station gas concentration data is an average of FL-100, FL-120, and FL-140.

Well Name	Date Sampled	Methane	CO ₂	O ₂ /Argon	Nitrogen	Hydrogen	Carbon Monoxide	Comments
	· •			(%)			(ppm)	
				South Quarry				
GEW-010	9/11/2015	40	39	4.3	16	0.6	78	
GEW-010	10/14/2015	42	44	2.9	11	0.6	79	See Note 4
GEW-010	11/11/2015	53	42	ND	3.9	0.6	50	
GEW-010	12/16/2015	54	40	ND	4.4	ND	35	
GEW-010	1/26/2016	53	43	ND	3.0	0.2	ND	
GEW-022R	9/21/2015	0.9	65	ND	ND	29	4,100	
GEW-022R	11/12/2015	0.8	65	ND	ND	30	4,800	
GEW-028R	11/13/2015	0.1	59	ND	4.9	34	3,600	
GEW-028R	1/26/2016	0.1	60	1.5	5.1	33	3,600	
GEW-038	9/11/2015	0.3	46	5.4	19	28	3,000	
GEW-038	10/14/2015	0.3	45	5.6	20	28	3,000	See Note 4
GEW-038	11/11/2015	0.2	33	9.8	35	21	2,100	
GEW-038	12/16/2015	0.2	33	10	36	20	2,100	See Note 4
GEW-038	1/26/2016	0.3	56	2.2	8	33	3,200	
GEW-039	9/11/2015	39	52	ND	4.8	2.3	190	
GEW-039	10/14/2015	39	53	ND	3.9	2.4	170	
GEW-039	11/11/2015	39	55	ND	ND	2.7	170	
GEW-039	12/16/2015	37	54	ND	4.5	3.3	150	
GEW-039	1/26/2016	42	56	ND	ND	0.7	52	
GEW-056R	9/11/2015	0.6	56	ND	ND	39	2,400	
GEW-056R	10/14/2015	12	42	ND	23	22	1,300	
GEW-056R	11/11/2015	14	42	ND	24	18	1,100	
GEW-056R	12/16/2015	1.8	54	ND	5.8	37	2,000	
GEW-056R	1/26/2016	16	39	ND	31	13	700	
GEW-057R	9/18/2015	0.4	52	ND	5.4	38	2,400	
GEW-057R	11/11/2015	0.5	53	ND	3.8	40	2,800	
GEW-057R	1/14/2016	0.4	54	ND	ND	40	2,200	
GEW-058	9/18/2015	0.3	46	4	14	33	2,400	
GEW-058	11/11/2015	3.5	48	3.6	14	30	2,100	See Note 3
GEW-058	1/14/2016	3.8	54	ND	5.5	35	2,100	
GEW-058A	9/18/2015	5.1	55	ND	3.6	34	2,400	
GEW-058A	11/11/2015	0.4	49	3.3	12	35	2,500	
GEW-058A	1/14/2016	0.3	51	2	7.1	39	2,500	
GEW-059R	9/18/2015	1.5	51	ND	ND	41	1,700	
GEW-059R	11/11/2015	8.0	51	ND	4.4	41	1,800	
GEW-059R	1/14/2016	0.9	48	1.9	6.9	41	1,900	See Note 3
GEW-065A	9/21/2015	0.4	57	ND	3.7	36	3,100	
GEW-065A	11/12/2015	0.4	58	ND	ND	37	3,200	
GEW-065A	1/14/2016	0.4	58	ND	ND	36	2,900	
GEW-082R	9/21/2015	8.0	53	ND	3.7	40	2,200	
GEW-082R	11/12/2015	0.9	55	ND	ND	40	2,300	
GEW-082R	1/14/2016	0.8	56	ND	ND	40	2,000	
GEW-086	9/18/2015	12	36	5.3	40	5.6	520	
GEW-086	11/12/2015	10	34	8.7	44	2.7	430	
GEW-090	9/18/2015	5	51	ND	ND	40	2,200	
GEW-090	11/12/2015	5.5	49	ND	3.6	40	2,200	
GEW-090	1/26/2016	5	50	ND	ND	42	1,900	
GEW-102	11/13/2015	2.1	59	ND	3.3	34	2,100	
GEW-102	1/14/2016	2.3	60	ND	ND	34	1,700	
GEW-104	11/13/2015	0.4	43	5.7	21	29	1,500	
GEW-109	9/11/2015	4.8	49	2.5	14	28	2,000	See Note 1
GEW-109	10/14/2015	5.3	50	ND	12	30	2,000	
GEW-109	11/11/2015	5.6	60	ND	ND	31	2,400	
GEW-109	12/16/2015	3.6	42	5	24	25	1,500	See Note 3

Well Name	Date Sampled	Methane	CO ₂	O ₂ /Argon	Nitrogen	Hydrogen	Carbon Monoxide	Comments
	1 ' 1		I	(%)			(ppm)	1
GEW-109	1/26/2016	2.3	36	7.9	34	19	1,300	See Note 4
GEW-110	9/11/2015	7.7	23	11	52	6.6	570	
GEW-110	10/15/2015	3.8	15	14	62	5.2	380	See Note 4
GEW-110	11/11/2015	7.8	43	4.1	23	22	1,400	
GEW-110	12/16/2015	6	33	8.7	39	13	990	See Note 4
GEW-110	1/26/2016	4.2	23	11	51	11	630	See Note 4
GEW-116	11/12/2015	2.8	50	6.2	22	17	1,800	
GEW-117	9/18/2015	4	69	ND	ND	22	2,700	
GEW-117	11/12/2015	3.7	66	ND	4.8	22	2,600	
GEW-120	9/15/2015	11	65	ND	5.1	17	1,600	
GEW-120	11/12/2015	7.6	68	ND	ND	21	2,100	
GEW-120	1/14/2016	15	69	ND	ND	11	880	
GEW-121	9/15/2015	2.2	53	2.7	9.5	31	2,800	
GEW-121	11/12/2015	2.3	46	5	18	28	2,200	See Note 3
GEW-121	1/14/2016	3.8	60	ND	ND	33	2,600	000 14016 3
GEW-121	9/15/2015	5.2	50	2.3	8.3	32	2,500	
GEW-122	11/12/2015	5.2	55	ND	ND	35	2,800	
GEW-122	1/14/2016	3.5	57		ND	37	,	
				ND			3,000	
GEW-123	9/15/2015	6.6	55	3.1	11	23	3,500	0 N-4- 0
GEW-123	11/12/2015	1.6	51	4.9	17	24	3,200	See Note 3
GEW-124	9/15/2015	8.3	56	2.7	9.8	22	2,000	
GEW-124	11/13/2015	7	61	ND	ND	28	2,100	
GEW-124	1/15/2016	6.8	62	ND	ND	27	1,900	
GEW-125	9/18/2015	1.7	57	ND	ND	36	3,200	
GEW-125	11/12/2015	0.5	59	ND	ND	36	3,600	
GEW-126	9/15/2015	5.5	54	ND	ND	36	3,700	
GEW-126	11/12/2015	8.2	54	ND	ND	33	3,300	
GEW-126	1/14/2016	6.2	54	ND	ND	36	3,500	
GEW-127	11/13/2015	0.4	62	ND	ND	33	4,100	
GEW-127	1/14/2016	0.3	65	ND	ND	32	4,400	
GEW-128	11/13/2015	0.7	61	ND	ND	34	3,800	
GEW-128	1/14/2016	0.9	64	ND	ND	32	3,600	
GEW-129	9/15/2015	1.8	58	ND	3.4	34	3,500	
GEW-129	11/13/2015	0.7	58	ND	3.3	36	3,400	
GEW-129	1/14/2016	1.0	62	ND	ND	34	3,300	
GEW-131	9/15/2015	20	44	2.4	8.8	23	1,500	
GEW-131	11/12/2015	20	47	ND	4.6	26	1,700	
GEW-131	1/26/2016	15	51	ND	ND	31	2,100	
GEW-132	11/12/2015	6.9	43	5.9	26	17	1,200	See Note 4
GEW-132	1/14/2016	8.7	50	2.9	15	23	1,700	
GEW-133	11/12/2015	0.4	53	3	11	32	3,800	
GEW-134	9/18/2015	17	57	ND	10	15	990	
GEW-134	11/12/2015	11	43	5.8	28	11	770	See Note 1 and 3
GEW-134	1/14/2016	17	58	ND	13	11	750	1
GEW-135	9/14/2015	3.8	51	2.7	9.8	31	1,900	
GEW-135	9/18/2015	4.7	56	ND	4.9	32	2,000	See Note 2
GEW-135	11/13/2015	4.8	47	4.2	15	28	1.500	See Note 3
GEW-137	11/12/2015	11	29	6.6	52	0.6	71	See Note 3
GEW-137	1/14/2016	13	36	ND	49	0.3	36	
GEW-138	9/14/2015	11	49	1.7	21	16	1,400	
GEW-138	9/18/2015	11	43	2.4	31	11	960	See Note 2
GEW-138	11/12/2015	2.8	23	10	56	8	670	000 11016 2
GEW-138	1/15/2016	13	50	2.2	25	9.2	730	See Note 4


GEW-139 GEW-139 GEW-139 GEW-139 GEW-140 GEW-141 GEW-141 GEW-141 GEW-142 GEW-143 GEW-143 GEW-145 GEW-146 GEW-147 GEW-147 GEW-147 GEW-149 GEW-150 GEW-150	9/14/2015 9/15/2015 11/13/2015 1/14/2016 1/15/2016 9/15/2015 11/13/2015 1/14/2016 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015	14 0.5 0.9 1.4 1.7 2 1.7 1.1 0.2 0.3 0.2 0.8 1.7 3.1 4.9 5.1	49 59 47 54 60 61 60 61 46 49 56 52 18 52 51	(%) 3.5 ND 4 1.8 ND ND 1.6 ND 4.1 2.5 3.3 1.9 2.9 13 ND	19 4.1 19 6.6 ND ND 5.5 ND 15 9.1 12 6.6 10 64	14 34 29 35 35 32 30 33 29 41 35 33 32 22	(ppm) 1,000 4,600 3,300 3,600 3,700 3,500 3,500 3,500 3,500 3,500 2,700	See Note 2 See Note 1 and 3 See Note 3
GEW-139 GEW-139 GEW-139 GEW-140 GEW-141 GEW-141 GEW-141 GEW-143 GEW-143 GEW-144 GEW-145 GEW-146 GEW-147 GEW-147 GEW-147 GEW-149 GEW-150 GEW-150	9/15/2015 11/13/2015 1/14/2016 1/15/2016 9/15/2015 11/13/2015 11/13/2015 9/15/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015	0.5 0.9 1.4 1.7 2 1.7 1.1 0.2 0.3 0.2 0.8 1.7 3.1 4.9 5.1	59 47 54 60 61 60 51 46 49 56 52 18	ND 4 1.8 ND ND 1.6 ND 4.1 2.5 3.3 1.9 2.9	4.1 19 6.6 ND ND 5.5 ND 15 9.1 12 6.6	34 29 35 35 32 30 33 29 41 35 33 32	1,000 4,600 3,300 3,600 3,300 3,700 3,500 3,500 3,500 3,500 3,500	See Note 1 and 3
GEW-139 GEW-139 GEW-140 GEW-141 GEW-141 GEW-141 GEW-142 GEW-143 GEW-143 GEW-145 GEW-146 GEW-147 GEW-147 GEW-147 GEW-149 GEW-150 GEW-150	11/13/2015 1/14/2016 1/15/2016 9/15/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015	0.9 1.4 1.7 2 1.7 1.1 0.2 0.3 0.2 0.8 1.7 3.1 4.9 5.1	47 54 60 61 60 60 51 46 49 56 52 18	4 1.8 ND ND 1.6 ND 4.1 2.5 3.3 1.9 2.9	19 6.6 ND ND 5.5 ND 15 9.1 12 6.6	29 35 35 32 30 33 29 41 35 33 32	3,300 3,600 3,300 3,700 3,500 3,500 3,500 3,500 3,500	See Note 1 and 3
GEW-139 GEW-140 GEW-141 GEW-141 GEW-141 GEW-142 GEW-143 GEW-143 GEW-145 GEW-145 GEW-147 GEW-147 GEW-147 GEW-147 GEW-149 GEW-150 GEW-150	1/14/2016 1/15/2016 9/15/2015 11/13/2015 11/14/2016 11/13/2015 9/15/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015	1.4 1.7 2 1.7 1.1 0.2 0.3 0.2 0.8 1.7 3.1 4.9 5.1	54 60 61 60 51 46 49 56 52 18	1.8 ND ND 1.6 ND 4.1 2.5 3.3 1.9 2.9	6.6 ND ND 5.5 ND 15 9.1 12 6.6 10	35 35 32 30 33 29 41 35 33 32	3,600 3,300 3,700 3,500 3,500 3,500 3,500 3,500	3
GEW-140 GEW-141 GEW-141 GEW-141 GEW-142 GEW-143 GEW-143 GEW-145 GEW-146 GEW-147 GEW-147 GEW-147 GEW-147 GEW-149 GEW-150 GEW-150	1/15/2016 9/15/2015 11/13/2015 1/14/2016 11/13/2015 9/15/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/15/2016 11/12/2015 11/13/2015	1.7 2 1.7 1.1 0.2 0.3 0.2 0.8 1.7 3.1 4.9 5.1	60 61 60 60 51 46 49 56 52 18	ND ND 1.6 ND 4.1 2.5 3.3 1.9 2.9	ND ND 5.5 ND 15 9.1 12 6.6	35 32 30 33 29 41 35 33 32	3,300 3,700 3,500 3,300 3,500 3,500 3,200 3,500	3
GEW-141 GEW-141 GEW-141 GEW-142 GEW-143 GEW-143 GEW-144 GEW-145 GEW-146 GEW-147 GEW-147 GEW-147 GEW-149 GEW-150	9/15/2015 11/13/2015 1/14/2016 11/13/2015 9/15/2015 11/13/2015 11/13/2015 11/13/2015 11/12/2015 9/15/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015	2 1.7 1.1 0.2 0.3 0.2 0.8 1.7 3.1 4.9 5.1	61 60 60 51 46 49 56 52 18	ND 1.6 ND 4.1 2.5 3.3 1.9 2.9	ND 5.5 ND 15 9.1 12 6.6 10	32 30 33 29 41 35 33 32	3,700 3,500 3,300 3,500 3,500 3,200 3,500	3
GEW-141 GEW-141 GEW-142 GEW-143 GEW-143 GEW-144 GEW-145 GEW-146 GEW-147 GEW-147 GEW-147 GEW-147 GEW-149 GEW-150 GEW-150	11/13/2015 1/14/2016 11/13/2015 9/15/2015 11/13/2015 11/13/2015 11/12/2015 9/15/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015 11/13/2015	1.7 1.1 0.2 0.3 0.2 0.8 1.7 3.1 4.9 5.1	60 60 51 46 49 56 52 18	1.6 ND 4.1 2.5 3.3 1.9 2.9	5.5 ND 15 9.1 12 6.6 10	30 33 29 41 35 33 32	3,500 3,300 3,500 3,500 3,200 3,500	3
GEW-141 GEW-142 GEW-143 GEW-143 GEW-144 GEW-145 GEW-146 GEW-147 GEW-147 GEW-147 GEW-147 GEW-149 GEW-150	1/14/2016 11/13/2015 9/15/2015 11/13/2015 11/13/2015 11/13/2015 11/12/2015 9/15/2015 11/13/2015 1/15/2016 11/12/2015 11/13/2015	1.1 0.2 0.3 0.2 0.8 1.7 3.1 4.9 5.1	60 51 46 49 56 52 18 52	ND 4.1 2.5 3.3 1.9 2.9	ND 15 9.1 12 6.6	33 29 41 35 33 32	3,300 3,500 3,500 3,200 3,500	3
GEW-142 GEW-143 GEW-144 GEW-145 GEW-146 GEW-147 GEW-147 GEW-147 GEW-149 GEW-150	11/13/2015 9/15/2015 11/13/2015 11/13/2015 11/13/2015 11/12/2015 9/15/2015 11/13/2015 1/15/2016 11/12/2015 11/13/2015	0.2 0.3 0.2 0.8 1.7 3.1 4.9 5.1 4.9	51 46 49 56 52 18 52	4.1 2.5 3.3 1.9 2.9	15 9.1 12 6.6 10	29 41 35 33 32	3,500 3,500 3,200 3,500	
GEW-143 GEW-143 GEW-144 GEW-145 GEW-146 GEW-147 GEW-147 GEW-147 GEW-149 GEW-150 GEW-150	9/15/2015 11/13/2015 11/13/2015 11/13/2015 11/12/2015 9/15/2015 11/13/2015 1/15/2016 11/12/2015 11/13/2015	0.3 0.2 0.8 1.7 3.1 4.9 5.1 4.9	46 49 56 52 18 52	2.5 3.3 1.9 2.9	9.1 12 6.6 10	41 35 33 32	3,500 3,500 3,200 3,500	Son Note 2
GEW-143 GEW-144 GEW-145 GEW-146 GEW-147 GEW-147 GEW-147 GEW-149 GEW-150	11/13/2015 11/13/2015 11/13/2015 11/12/2015 9/15/2015 11/13/2015 1/15/2016 11/12/2015 11/13/2015	0.2 0.8 1.7 3.1 4.9 5.1 4.9	49 56 52 18 52	3.3 1.9 2.9 13	12 6.6 10	35 33 32	3,200 3,500	San Note 2
GEW-144 GEW-145 GEW-146 GEW-147 GEW-147 GEW-147 GEW-149 GEW-150 GEW-150	11/13/2015 11/13/2015 11/12/2015 9/15/2015 11/13/2015 1/15/2016 11/12/2015 11/13/2015	0.8 1.7 3.1 4.9 5.1 4.9	56 52 18 52	1.9 2.9 13	6.6 10	33 32	3,500	Soo Noto 2
GEW-145 GEW-146 GEW-147 GEW-147 GEW-147 GEW-149 GEW-150 GEW-150	11/13/2015 11/12/2015 9/15/2015 11/13/2015 1/15/2016 11/12/2015 11/13/2015	1.7 3.1 4.9 5.1 4.9	52 18 52	2.9	10	32	•	See Note 2
GEW-146 GEW-147 GEW-147 GEW-147 GEW-149 GEW-150 GEW-150	11/12/2015 9/15/2015 11/13/2015 1/15/2016 11/12/2015 11/13/2015	3.1 4.9 5.1 4.9	18 52	13			•	Soo Noto 2
GEW-147 GEW-147 GEW-147 GEW-149 GEW-150 GEW-150	9/15/2015 11/13/2015 1/15/2016 11/12/2015 11/13/2015	4.9 5.1 4.9	52		64	2	, , , , , , , , , , , , , , , , , , ,	JEE NULE 3
GEW-147 GEW-147 GEW-149 GEW-150 GEW-150	11/13/2015 1/15/2016 11/12/2015 11/13/2015	5.1 4.9		ND	04		220	
GEW-147 GEW-149 GEW-150 GEW-150	1/15/2016 11/12/2015 11/13/2015	4.9	51	ווער ו	3.6	37	2,200	
GEW-147 GEW-149 GEW-150 GEW-150	1/15/2016 11/12/2015 11/13/2015			ND	3.6	38	2,300	
GEW-149 GEW-150 GEW-150	11/12/2015 11/13/2015		54	ND	3.5	36	2,000	+
GEW-150 GEW-150	11/13/2015	9.6	55	2.4	14	18	1,600	See Note 1
GEW-150		9	60	2	7.9	20	1,600	
	1/14/2016	4	63	1.9	6.6	23	1,700	See Note 3
GEW-151	9/15/2015	5.7	50	3.4	14	26	1,800	000110100
GEW-151	11/12/2015	11	56	ND	ND	28	2,200	
GEW-152	9/15/2015	5.9	51	ND	3.4	38	3,000	
GEW-152	11/13/2015	4.1	49	2.3	8.2	35	2,900	See Note 1 and
GEW-153	9/15/2015	20	38	ND	31	9.3	340	3
GEW-153	11/13/2015	20	45	ND	19	15	580	
GEW-154	1/15/2016	21	33	ND	20	24	850	
GEW-154	11/12/2015	4.6	37	9.1	40	9.4	1,100	+
GIW-01	9/11/2015	2.7	67	ND	ND	25	2,600	
GIW-01	10/14/2015	1.4	56	3.7	13	24	2,800	See Note 1 and
GIW-01	11/13/2015	2.6	66	ND	4.4	25	2,700	3
GIW-01	12/9/2015	2.5	68	ND	ND	26	2,500	-
GIW-01	1/26/2016	0.5	16	17	60	6.6	580	See Note 4
GIW-02	9/11/2015	5.2	63	ND	3.1	27	2,500	000110101
GIW-02	10/14/2015	7.8	63	ND	ND	25	2,300	
GIW-02	11/13/2015	4.7	22	12	55	5.8	370	See Note 1
GIW-02	12/10/2015	5.7	33	9	44	8.5	610	See Note 4
GIW-02	1/26/2016	6.4	28	10	47	8.3	510	See Note 4
GIW-03	9/11/2015	0.4	60	ND	ND	36	3,400	
GIW-03	10/14/2015	0.3	41	7.5	27	24	2,300	See Note 4
GIW-03	11/13/2015	0.2	38	8.3	30	23	2,200	
GIW-03	12/10/2015	0.1	24	13	47	14	1,300	See Note 4
GIW-03	1/26/2016	0.4	48	4.7	17	29	2,500	See Note 4
GIW-04	9/11/2015	0.6	43	4.2	15	36	2,100	23371010 F
GIW-04	10/14/2015	0.5	43	4.4	16	36	2,200	See Note 4
GIW-04	11/13/2015	0.5	41	5	18	35	2,200	000 11010 4
GIW-04	12/10/2015	0.5	35	6.9	25	32	1,900	See Note 4
GIW-04	1/26/2016	0.5	50	2	6	41	2,300	See Note 4
GIW-04	9/11/2015	2.4	48	4.4	16	28	1,900	000 11010 4
GIW-05	10/14/2015	1.9	32	10.0	37	18	1,100	See Note 4
GIW-05	11/13/2015	2.6	58	ND	ND	37	1,900	Jee Note 4
GIW-05	12/09/2015	2.3	51	2.3	8.2	35	1,700	See Note 3
GIW-05 GIW-05	1/26/2016	1.7	56	1.7	6	34	1,700	See Note 3

Well Name	Date Sampled	Methane	CO ₂	O₂/Argon	Nitrogen	Hydrogen	Carbon Monoxide	Comments
			•	(%)			(ppm)	
GIW-06	9/11/2015	0.9	59	ND	3.9	34	2,000	
GIW-06	10/14/2015	0.9	57	1.7	6.1	34	1,700	See Note 4
GIW-06	11/13/2015	0.9	56	1.8	6.2	34	1,700	
GIW-06	12/10/2015	1	56	1.8	6.3	34	1,600	See Note 4
GIW-06	1/27/2016	1.0	59	ND	ND	36	1,500	
GIW-07	9/11/2015	25	56	2.5	8.8	7.5	730	
GIW-07	10/14/2015	31	54	1.7	5.8	7.1	700	See Note 4
GIW-07	11/13/2015	30	53	2.2	7.9	6.9	660	
GIW-07	12/10/2015	26	58	ND	4.5	9.6	870	
GIW-07	1/27/2016	29	59	ND	3	8.6	660	
GIW-08	9/11/2015	13	45	3.6	37	1.1	300	
GIW-08	10/14/2015	19	62	2.8	12	5.0	740	See Note 4
GIW-08	11/13/2015	19	56	4	15	5.4	740	
GIW-08	12/09/2015	24	59	2	10	4.7	570	
GIW-08	12/10/2015	24	63	ND	4.9	6.7	860	See Note 2
GIW-08	1/27/2016	26	59	ND	13	2.2	320	
GIW-09	9/11/2015	2.5	17	12	64	4.2	400	
GIW-09	10/14/2015	3	13	15	66	2.2	260	See Note 4
GIW-09	11/13/2015	3.9	13	16	64	2.4	220	
GIW-09	12/10/2015	5	21	14	55	5.4	340	See Note 4
GIW-09	1/27/2016	11.0	31	9	40	8.9	590	See Note 4
GIW-10	9/11/2015	0.3	54	ND	ND	43	3,300	
GIW-10	10/14/2015	3.6	51	ND	ND	42	2,900	
GIW-10	11/13/2015	1.3	50	ND	4.5	42	3,200	
GIW-10	12/10/2015	0.4	42	5.1	18	34	2,500	See Note 1
GIW-10	1/26/2016	0.3	31	7.7	28	32	2,100	See Note 4
GIW-11	9/11/2015	2.9	44	5.4	24	23	2,200	
GIW-11	10/14/2015	2.9	47	4.8	19	26	2,500	See Note 4
GIW-11	11/13/2015	3.2	48	4.2	17	27	2,500	
GIW-11	12/09/2015	2.4	53	2.7	12	29	2,500	See Note 4
GIW-11	1/26/2016	4	46	4.1	19	27	1,900	See Note 4
GIW-12	9/11/2015	7.1	23	9.4	55	5.2	440	
GIW-12	10/14/2015	5.2	20	11	57	5.9	510	See Note 4
GIW-12	11/13/2015	4.3	21	12	56	6.5	530	
GIW-12	12/09/2015	4.2	24	10	55	6.5	470	See Note 4
GIW-12	1/26/2016	4.2	20	11	61	4.9	320	See Note 4
GIW-13	9/11/2015	10	62	ND	5.6	20	1,600	
GIW-13	10/14/2015	8.5	57	ND	7	25	2,000	
GIW-13	11/13/2015	4.3	63	ND	3.2	28	2,500	
GIW-13	12/09/2015	10	58	ND	5.7	25	1,700	
GIW-13	1/26/2016	11.0	58	ND	6.8	22	1,500	
Flare Station ²	9/1/2015	7.9	29.7	10.3	41.7	9.2	870	See Note 5
Flare Station ²	10/6/2015	9.4	33.3	9.0	37.0	9.9	933	See Note 5
Flare Station ²	11/3/2015	10.7	37.3	8.0	32.0	10.7	1,100	See Note 5
Flare Station ²	12/1/2015	10.7	36.2	8.1	33.6	10.7	1000	See Note 6
Flare Station ²	1/5/2016	11.2	37.6	7.7	32.1	10.7	1,000	See Note 6
Flare Station ²	2/2/2016	11.8	37.7	7.8	31.0	10.7	1,050	See Note 6
			l .	nas, oxygen to bal			•	

Notes: (1) Based on the comparison of field to laboratory readings, oxygen to balance gas ratios, and historical concentrations, the sample was determined to be suspect due to oxygen introduction which likely occurred during sample collection or laboratory analytical methods. (2) MDNR also collected duplicate LFG samples at these locations during this sampling period. (3) Based on the oxygen verification readings taken with an Envision meter, it was determined there is a sample train leak. (4) Based on the oxygen verification readings taken with an Envision meter, it was determined that the readings are accurate. (5) Flare station gas concentration data is an average of FL-100, FL-120, and FL-140. (6) Flare station gas concentration data is an average of Outlets 1 & 2.

ND = Analyte not detected in sample.

² = Flare Station Inlet measured at EPA Method 2 flow port (blower outlet)

February 10, 2016

Republic Services

ADE-1461 EPA Methods TO3, TO14A, TO15 SIM & SCAN **ASTM D1946**

TX Cert T104704450-14-6 EPA Methods TO14A, TO15

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

ATTN: Jim Getting 13570 St. Charles Rock Rd. Bridgeton, MO 63044

LABORATORY TEST RESULTS

Project Reference: Bridgeton Landfill

Lab Number: H012804-01/30

Enclosed are results for sample(s) received 1/28/16 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the NELAC Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Jim Getting, Mike Lambrich, Ryan Ayers, Nicholas Bauer and David Randall, Weaver Consultants Group, on 2/05/16.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely.

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

Enclosures

			-		18501 F G	18501 F Gale Ave Suite 130			CHA	N O	CHAIN OF CUSTODY RECORD	ECORD		
\		JI ECHNOLOGY	500		City of Indu	City of Industry, CA 91748	TURN	TURNAROUND TIME	TIME		DELIVERABLES	PAGE:	1 OF	4
	Labor	Laboratories, Inc.			Ph: 626-964-4032	1-4032	Standard		48 hours		EDD 🔲	Condition upon receipt:	on receipt:	
3					Fx: 626-964-5832	5832	Same Day	_	72 hours		EDF		Sealed Yes	2
Project No.:							24 hours	。	96 hours		Level 3		Intact Yes	⊔ g
Project Name: E	Bridgeton Landfill	andfill					Other:	ω	5 day		Level 4		Chilled	deg —
Report To:	Jim Getting			8				BILLING	S S			ANALYSIS REQUEST	EQUEST	
Company: F	Republic Services	rvices		254			P.O. No.:	PO4862452 554+11-0	462 55	4416				
Street:	13570 St. C	13570 St. Charles Rock Rd.	286				Bill to:	Republic Services	Service	14 2 S	-			
City/State/Zip:	Bridgeton, MO 63044	MO 63044						Attn: Jim Getting	Getting					
Phone& Fax:	314-683-3921	21					13570 St. Charles Rock Rd.	Charles F	Rock R					
e-mail:	JGetting@	JGetting@republicservices.com	es.com				Bridgeton, MO 63044	MO 630	44		71			
											H 'C			
LAB USE ONLY	NLY	Canis	Canister Pressures ("hg)	res ("hg)		SAMPLE IDENTIFICATION	∃J9M ∃TA	MPLE	ЯЭИІАТ УДУРЕ	YIRIX -AVA36	фе + Сі			
		Canister ID	Sample Start	Sample End	Lab Receive									
40128040	10+	5834	-21	-4.7	6-	GEW-56R	1/26/2016	844	ပ	LFG	×			
	70-	A7670	-20.78	-5	-3.9	GEW-10	1/26/2016	857	၁	LFG N	×			
	6	3131	-20.9	-4.7	6-	GEW-110	1/26/2016	913	C	LFG N	X AN			
	40-	A7775	-20.75	-4.7	-3.5	GIW-10	1/26/2016	1037	0	LFG N	X AN			
	150	5910	-21.1	-5	1	GIW-4	1/26/2016	1053	၁	LFG N	X AN			
	100	A7747	-20.85	-5	13	GIW-3	1/26/2016			LFG N	NA X			
	5	A7818	-21.1	6.4	12	GIW-2	1/26/2016	1115	CO	LFG N	X AN			
	30	A8055	-20.85	-5	4-	GEW-131	1/26/2016	1457	S	LFG N	X AN			
· →	8	A8076	-21.15	ιŞ	2.5	GEW-90	1/26/2016	1519	O	LFG N	X			
AUTHORIZATION TO PERFORM WORK: Dave Penoyer	овм мовк: Da	ve Penoyer				COMPANY: Republic Services	DATE/TIME:		COMMENTS	TS				
SAMPLED BY: Ryan Ayers	rers					COMPANY: Republic Services	DATE/TIME							

Preservation: H=HCl N=None / Container: B=Bag C=Can V=VOA O=Other Rev. 03 - 5/7/09

DATE/TIME

DATE/RECEIVED BY

1-27-16

METHOD OF TRANSPORT (circle one): Walk-In FedEx UPS Courier ATLI Other

ELINQUISHED BY

DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy

			-		18501 F G	ale Ave Suite 130			E E	O Z	CHAIN OF CUSTODY RECORD	JY KE	CKU			-
	T C	JI ECHNOLOGY	767		City of Industry,	City of Industry, CA 91748	TUR	TURNAROUND TIME	D TIME		DELIVERABLES	BLES	PAGE:	2 OF	4	C 100
	Labor	Laboratories, Inc.			Ph: 626-964-4032	4-4032	Standard		48 hours		EDD		Condition upon receipt:	n receipt:		
55					Fx: 626-964	1-5832	Same Day		72 hours		EDF		0,	Sealed Yes	□ ⁰ N	
Project No.:							24 hours		96 hours		Level 3			Intact Yes	₽	_
Project Name:	Bridgeton Landfill	andfill					Other:		5 day		Level 4		2	Chilled	deg C	Total State
Report To:	Jim Getting							BILL	BILLING	5		AN	ANALYSIS REQUEST	QUEST		
Company:	Republic Services	rvices					P.O. No.:	PO486	PO4862452							
Street:	13570 St. C	13570 St. Charles Rock Rd.					Bill to:	Republ	Republic Services	es						
City/State/Zip:	Bridgeton , MO 63044	MO 63044						Attn: Jii	Attn: Jim Getting	-					13	-
Phone& Fax:	314-683-3921	21					13570 St.	Charles	Charles Rock Rd	۲d.						
e-mail:	JGetting@	JGetting@republicservices.com	s.com		11		Bridgeton, MO 63044	MO 63	044		15					
											н 'C					
LAB USE ONLY	Y INO	Canist	Canister Pressures ("hg)	res ("hg)		SAMPI E IDENTIFICATION	alqn at/	WE NBCE	ЯЭИІА. ПҮРЕ	XIAT	16 + С ои ЕВ∧∀-					
1		Canister ID	Sample Start	Sample End	Lab Receive			N AS IT			IL			-		_
HO12804-16	1-10	A7666	-21	5	-3.9	GEW-38	1/26/2016	838	ပ	LFG	×					
)) - ((5323	-21	-5	2-	GEW-109	1/26/2016	847	ပ	LFG	×					-
	715	A7649	-20.9	-5	-3.5	GEW-39	1/26/2016	006	ပ	LFG	×					
	-(3	5927	-21	-5	2-	GIW-5	1/26/2016	1028	ပ	LFG	×					
	#	5815	-20.9	-5	-3-5	GIW-11	1/26/2016	1042	ပ	LFG	X X					-
	76	4648	-21.1	-5	4-	GIW-12	1/26/2016	1058	၁	LFG	NA ×					10.0
	Y	6130	-21	-5	-3.5	GIW-13	1/26/2016	1115	၁	LFG	NA X					
	17	5818	-21	ς	-3.5	GIW-1	1/26/2016	1125	ပ	LFG	X X					
	8/1-	A8071	-21.2	5	435	GEW-28R	1/26/2016	1406	O	LFG	X ×		2			
NUTHORIZATION TO PERFORM WORK: Dave Penoyer	REORM WORK: Da	ive Penoyer				COMPANY: Republic Services	DATE/TIME:		COMMENTS	STN						

DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy

METHOD OF TRANSPORT (circle one): Walk-In FedEx UPS Courier ATLI Other

Preservation: H=HCI N=None / Container: B=Bag C=Can V=VOA 0=Other Rev. 03 - 5/7/09

DATE/TIME

DATE/RECEIVED BY

DATE/TIME DATE/TIME

COMPANY: Republic Services

DATE/RECEIVED BY

-27-16

SAMPLED BY: Ryan Ayers

RELINQUISHED BY

	CION	>0		18501 E. G	18501 E. Gale Ave., Suite 130	TION	IMICOV				CHAIN OF CUSTODY RECORD	ECORU PAGE		Ğ	
				City of Industry,	stry, CA 91748	IUKN	I UKNAKOUND IIME	IIME		DEL	DELIVERABLES	PAGE:	2	5	4
Laboratories, Inc.				Ph: 626-964-4032	-4032	Standard		48 hours		Ш	EDO	Condition	Condition upon receipt:);	
				FX: 626-964	-5832	Same Day		72 hours		Ш			Sealed Yes	Yes	 ≥
						24 hours		96 hours		ב	Level 3		Intact	Intact Yes	□ %
Bridgeton Landfill						Other:		5 day		Le	Level 4		Chilled		- deg C
Jim Getting							BILLING	NG		_		ANALYSIS REQUEST	REQUES	_	
Republic Services						P.O. No.:	PO4862452	452							
13570 St. Charles Rock Rd.						Bill to:	Republic	Republic Services	SS						
Bridgeton, MO 63044							Attn: Jin	Attn: Jim Getting							
314-683-3921						13570 St. Charles Rock Rd.	Charles	Rock R	ن						
JGetting@republicservices.com	s.com					Bridgeton, MO 63044	MO 630	44			15				
											н 'С				
Canister Pressures ("hg)	er Pressure	9	(gh") se		SAMPLE IDENTIFICATION	∃J¶N ∃TA	MPLE	rainer Ayy	TRIX	-AVA3:) + 9t				
Canister ID Sample Start Sam		Sam	Sample End	Lab Receive							-61a				
3130 -20.9	-20.9		5	+-	GEW-51	1/27/2016	936	ပ	LFG	AA	×				
9 20 4658 -21	-21		-4.85	-3-5	GEW-54	1/27/2016	954	C	LFG	NA	×				
A8064 -20.85	-20.85		6.4	-4	GEW-8	1/27/2016	1012	O	LFG	NA A	×				
A7744 -20.8	-20.8		-4.95	-4	GIW-9	1/27/2016	1057	ပ	LFG	NA	×				
5331 m -20.75	-20.75		-5	-4	GIW-8	1/27/2016	1112	C	LFG	NA	×				
5829 -20.85	-20.85		-4.9	-4	GIW-7	1/27/2016	1124	၁	LFG	AA	×				
5825 -20.4	-20.4	_	6.4	-4	GIW-6	1/27/2016	1138	ပ	LFG	Ā	×				
-W A8086 -20.9	-20.9	\rightarrow	-5	4	GEW-49	1/27/2016	930	C	LFG	AA	×				
A8061 -21	-21		ç,	+	GEW-53	1/27/2016	826	ပ	LFG	Ą	×				

AUTHORIZATION TO PERFORM WORK: DAVE Penoyer	COMPANY: Republic Services	DATE/ IIME:	COMMENTS
SAMPLED BY: Ryan Ayers	COMPANY: Republic Services	DATE/TIME	
RELINGUISHED BY 1/00 1/00	DATE/RECEIVED BY	DATE/TIME	
RELINGUISHED BY THEY EX	DATE/RECRIVED BY 1/28 PATE/TIME (25)	S DATE/TIME (25/1	
RELINQUISHED BY	DATE/ RECEIVED BY	DATE/TIME	
METHOD OF TRANSPORT (circle one): Walk-In FedEx UPS Courier ATLI	Other		
DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy		Preservation: H=H	Preservation: H=HCl N=None / Container; B=Bag C=Can V=VOA O=Other Rev. 03 - 5/7/09

		1	II:	18501 E. Gal	le Ave Suite 130			CHA	NON	CHAIN OF CUSTODY RECORD	ECORD		
				City of Indusi	City of Industry, CA 91748	TURN	TURNAROUND TIME	TIME		DELIVERABLES	PAGE:	4 OF	4
	Laboratories, Inc.	Ċ,		Ph: 626-964-4032	4032	Standard		48 hours	П		Condition up	Condition upon receipt:	
333				FX: 626-964-5832	5832	Same Day		72 hours	П	EDF		Sealed Yes	□ 8
Project No.:						24 hours		96 hours		Level 3		Intact Yes	☐ 2
Project Name: Bridg	Bridgeton Landfill					Other:	3	5 day		Level 4		Chilled	O geb —
Report To: Jim (Jim Getting						BILLING	NG.			ANALYSIS REQUEST	REQUEST	
Company: Repu	Republic Services				1880 900	P.O. No.:	PO4862452	152					
Street: 1357	13570 St. Charles Rock Rd.	Rd.				Bill to:	Republic Services	Service	υ S				
City/State/Zip: Bridg	Bridgeton, MO 63044						Attn: Jim Getting	Getting					
Phone& Fax: 314-	314-683-3921					13570 St. (Charles Rock Rd.	Rock R	J.				
e-mail: JGe	JGetting@republicservices.com	vices.com				Bridgeton, MO 63044	MO 630	44		71-			
										H ,O			
		Canister Pressures ("hg)	ures ("hg)						- ∀\⁄				
LAB USE ONLY	Canister ID	Sample Start	Sample End	Lab Receive	SAMPLE IDENTIFICATION	AMAS TAG	amas Bmit	CONTAI T\YTD	ATAM IBSBA99 IOIT	9 † 61 0			
HO12824-	-16 5306	-21	-5	+-	GEW-55	1/27/2016	948	ပ	LFG NA	×			
\	29 5269	-20.8	-5	-4	GEW-9	1/27/2016	626	၁	LFG NA	×			
`\ →	30 5308	-21	-5	-3.5	GEW-7	1/27/2016	1009	ပ	LFG NA	×			
UTHORIZATION TO PERFORM WORK: Dave Penoyer	чокк: Dave Penoyer				COMPANY: Republic Services	DATE/TIME:		COMMENTS	TS				
AMPLED BY: Ryan Ayers					COMPANY: Republic Services	DATE/TIME							
KELINQUISHED BY	Theese	1-47-16	1 400		DATE/RECEIVED BY	DATE/TIME							
RELINQUISHED BY	发	•			DATE/ RECEIVED BY	S DATE/TIME	14						
ELINQUISHED BY	2				DATE/RECEIVED BY	одте/тіме							
METHOD OF TRANSPORT (circle one):	ORT (circle one): W	Walk-In FedEx	-	Courier ATLI	Other								
DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy	& Yellow - Lab Copies	/ Pink - Custome	ır Copy			Preservati	ion: H= HC	N=None	/ Contair	Preservation: H=HCl N=None / Container: B=Bag C=Can V=VOA O=Other	IN V=VOA O		Rev. 03 - 5/7/09

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/28/16

Matrix:

Air

Reporting Units:

% V/V

ASTM D1946

				_					
Lab No.:	H0128	804-01	H012	804	4-02	H0128	304-03	H0128	304-04
Client Sample I.D.:	GEW	/-56R	GEV	W-	10	GEV	V-110	GIV	V-10
Date/Time Sampled:	1/26/1	6 8:44	1/26/1	168	8:57	1/26/1	6 9:13	1/26/10	5 10:37
Date/Time Analyzed:	2/2/16	10:26	2/2/16	510	0:41	2/2/16	10:55	2/2/16	11:10
QC Batch No.:	160202	GC8A1	160202	GG	C8A1	160202	GC8A1	160202	GC8A1
Analyst Initials:	A	S	A	\S		A	S	A	S
Dilution Factor:	2	.8	2	.9		2	.8	2	.9
	Result	RL	Result	T	RL	Result	RL	Result	RL
ANALYTE	% V/V	% v/v	% v/v		% v/v	% v/v	0/₀ V/V	% v/v	% v/v
Hydrogen	13	2.8	0.16	d	0.029	11	2.8	32	2.9
Carbon Dioxide	39	0.028	43		0.029	23	0.028	31	0.029
Oxygen/Argon	ND	1.4	ND		1.4	11	1.4	7.7	1.4
Nitrogen	31	2.8	3.0	I	2.9	51	2.8	28	2.9
Methane	16	0.0028	53		0.0029	4.2	0.0028	0.30	0.0029
Carbon Monoxide	0.070	0.0028	ND		0.0029	0.063	0.0028	0.21	0.0029
									17

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch: 160203GC8A1

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 2-4-16

Page 3 of 12 H012804

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/28/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H0128	304-05	H0128	804-06	H0128	304-07	H0128	304-08
Client Sample I.D.:	GIV	W-4	GI	W-3	GIV	₩-2	GEW	/-131
Date/Time Sampled:	1/26/10	6 10:53	1/26/10	6 11:06	1/26/10	6 11:18	1/26/16	6 14:57
Date/Time Analyzed:	2/2/16	11:24	2/2/16	11:39	2/2/16	11:53	2/2/16	12:08
QC Batch No.:	160202	GC8A1	160202	GC8A1	160202	GC8A1	160202	GC8A1
Analyst Initials:	A	S	А	S	A	S	A	S
Dilution Factor:	2	.8	2	.8	2	.8	3.	.0
ANALYTE	Result % v/v	RL % v/v						
Hydrogen	41	2.8	29	2.8	8.3	2.8	31	3.0
Carbon Dioxide	50	0.028	48	0.028	28	0.028	51	0.030
Oxygen/Argon	1.8	1.4	4.7	1.4	9.7	1.4	ND	1.5
Nitrogen	6.3	2.8	17	2.8	47	2.8	ND	3.0
Methane	0.50	0.0028	0.39	0.0028	6.4	0.0028	15	0.0030
Carbon Monoxide	0.23	0.0028	0.25	0.0028	0.051	0.0028	0.21	0.0030
			<u> </u>					

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

page 1 of 1

Date_ 2-4-16

Page 4 of 12 H012804

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/28/16

Matrix:

Air

Reporting Units:

% v/v

ASTM D1946

Lab No.:	H012	804-09	H0128	804-10	H0128	804-11	H0128	04-12
Client Sample I.D.:	GEV	W-90	GEV	W-38	GEV	V-109	GEV	V-39
Date/Time Sampled:	1/26/1	6 15:19	1/26/1	6 8:38	1/26/1	68:47	1/26/10	5 9:00
Date/Time Analyzed:	2/2/16	12:23	2/2/16	12:38	2/2/16	12:52	2/2/16	13:07
QC Batch No.:	160202	GC8A1	160202	GC8A1	160202	GC8A1	1602020	GC8A1
Analyst Initials:	A	AS .	A	S ·	A	S	A	S
Dilution Factor:	2	.9	2	.9	2	.8	2.	9
ANALYTE	Result % v/v	RL % v/v						
Hydrogen	42	2.9	33	2.9	19	2.8	0.72 d	0.029
Carbon Dioxide	50	0.029	56	0.029	36	0.028	56	0.029
Oxygen/Argon	ND	1.4	2.2	1.4	7.9	1.4	ND	1.4
Nitrogen	ND	2.9	8.0	2.9	34	2.8	ND	2.9
Methane	4.8	0.0029	0.30	0.0029	2.3	0.0028	42	0.0029
Carbon Monoxide	0.19	0.0029	0.32	0.0029	0.13	0.0028	0.0052	0.0029
·						27		

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch: 160203GC8A1

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 7-4-16

Page 5 of 12 H012804

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/28/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

T 7 7.7	TT0404	20110	TTO 101	20141	TT0104	00115	TY0106	00116
Lab No.:	H0128	304-13	H0128	804-14	H0128	804-15	HU128	304-16
Client Sample I.D.:	GIV	W-5	GIV	V-11	GIV	V-12	GIV	V-13
Date/Time Sampled:	1/26/10	6 10:28	1/26/1	6 10:42	1/26/1	6 10:58	1/26/10	5 11:15
Date/Time Analyzed:	2/2/16	13:21	2/2/16	13:36	2/2/16	13:50	2/2/16	14:05
QC Batch No.:	160202	GC8A1	160202	GC8A1	160202	GC8A1	160202	GC8A1
Analyst Initials:	A	S	Α	LS	A	S	A	S
Dilution Factor:	2	.8	2	.9	3	.0	2.	.9
	Result	RL	Result	RL	Result	RL	Result	RL
ANALYTE	% v/v	% v/v	% v/v	% V/V	% v/v	% v/v	% v/v	% v/v
Hydrogen	34	2.8	27	2.9	4.9	3.0	22	2.9
Carbon Dioxide	56	0.028	46	0.029	20	0.030	58	0.029
Oxygen/Argon	1.7	1.4	4.1	1.4	11	1.5	ND	1.4
Nitrogen	5.9	2.8	19	2.9	61	3.0	6.8	2.9
Methane	1.7	0.0028	4.0	0.0029	4.2	0.0030	11	0.0029
Carbon Monoxide	0.14	0.0028	0.19	0.0029	0.032	0.0030	0.15	0.0029

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 2-4-16

Page 6 of 12 H012804

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/28/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H0128	304-17	H012	304-18	H01:	280)4-19	H0128	304-20
Client Sample I.D.:	GI/	W-1	GEW	7-28R	GE	EW	-51	GEV	W-54
Date/Time Sampled:	1/26/10	5 11:25	1/26/1	6 14:06	1/27	/16	9:36	1/27/1	6 9:54
Date/Time Analyzed:	2/2/16	16:01	2/2/16	16:15	2/2/1	61	16:30	2/2/16	16:44
QC Batch No.:	160202	GC8A2	160202	GC8A2	16020)2G	C8A2	160202	GC8A2
Analyst Initials:	A	S	A	S		AS		Ą	S
Dilution Factor:	2.	.9	2	.9		3.0		2.	.9
	Result	RL	Result	RL	Result	f	RL	Result	RL
ANALYTE	% v/v	% v/v	% v/v	% v/v	% v/v		% V/V	% v/v	% v/v
Hydrogen	6.6	2.9	33	2.9	1.0	d	0.030	4.0	2.9
Carbon Dioxide	16	0.029	60	0.029	41		0.030	42	0.029
Oxygen/Argon	17	1.4	1.5	1.4	ND		1.5	ND	1.4
Nitrogen	60	2.9	5.1	2.9	ND		3.0	ND	2.9
Methane	0.50	0.0029	0.071	0.0029	55		0.0030	53	0.0029
Carbon Monoxide	0.058	0.0029	0.36	0.0029	ND		0.0030	ND	0.0029

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch: 160203GC8A1

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 2-41-16

Page 7 of 12 H012804

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/28/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H01280)4-21	H0128	804-22	H0128	04-23	H0128	304-24
Client Sample I.D.:	GEW	7-8	GI	W-9	GIW	V-8	GI	W-7
Date/Time Sampled:	1/27/16	10:12	1/27/1	6 10:57	1/27/16	11:12	1/27/1	6 11:24
Date/Time Analyzed:	2/2/16	16:59	2/2/16	17:13	2/2/16	17:28	2/2/16	17:42
QC Batch No.:	160202G	C8A2	160202	GC8A2	1602020	GC8A2	160202	GC8A2
Analyst Initials:	AS		А	S	AS	3	A	S
Dilution Factor:	3.0)	3	.0	3.0)	3	.0
ANALYTE	Result % v/v	RL % v/v						
Hydrogen	1.6 d	0.030	8.9	3.0	2.2 d	0.030	8.6	3.0
Carbon Dioxide	47	0.030	31	0.030	59	0.030	59	0.030
Oxygen/Argon	ND	1.5	9.3	1.5	ND	1.5	ND	1.5
Nitrogen	ND	3.0	40	3.0	13	3.0	3.0	3.0
Methane	50	0.0030	11	0.0030	26	0.0030	29	0.0030
Carbon Monoxide	ND ·	0.0030	0.059	0.0030	0.032	0.0030	0.066	0.0030

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch: 160203GC8A1

Reviewed/Approved By:

Mark Johnson Operations Manager

The cover letter is an integral part of this analytical report

Date Z-4-16

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/28/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H0128	804-25	H0128	04-26	H0128	804-27	H01280	4-28
Client Sample I.D.:	GIV	W-6	GEW	7-49	GEV	W-53	GEW	-55
Date/Time Sampled:	1/27/10	6 11:38	1/27/16	9:30	1/27/1	6 9:38	1/27/16	9:48
Date/Time Analyzed:	2/2/16	17:57	2/2/16	18:11	2/2/16	18:26	2/2/16 1	8:40
QC Batch No.:	160202	GC8A2	1602020	GC8A2	160202	GC8A2	160202G	C8A2
Analyst Initials:	A	S	AS	3	A A	S	AS	
Dilution Factor:	3	.0	3.0)	3	.0	3.0	
ANALYTE	Result % v/v	RL % v/v	Result	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v
Hydrogen	36	3.0	0.058 d	0.030	4.7	3.0	0.99 d	0.030
Carbon Dioxide	59	0.030	34	0.030	41	0.030	42	0.030
Oxygen/Argon	ND	1.5	ND	1.5	ND	1.5	ND	1.5
Nitrogen	ND	3.0	20	3.0	3.9	3.0	ND	3.0
Methane	1.0	0.0030	45	0.0030	50	0.0030	54	0.0030
Carbon Monoxide	0.15	0.0030	ND	0.0030	0.0049	0.0030	ND	0.0030

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch: 160203GC8A1

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

AirTECHNOLOGY Laboratories, Inc. -

page 1 of 1

Date 2-4-16

Client: Republic Services

Jim Getting Attn:

Bridgeton Landfill Project Name:

Project No.:

NA

Date Received:

01/28/16

Matrix:

Air

Reporting Units: % v/v

Ţ.		ASTM I)1946					
Lab No.:	H01280)4-29	H01280	04-30				
Client Sample I.D.:	GEV	V-9	GEV	V-7				
Date/Time Sampled:	1/27/16	9:59	1/27/16	10:09		T1		
Date/Time Analyzed:	2/2/16	18:55	2/2/16	19:09				
QC Batch No.:	160202G	C8A2	1602020	GC8A2				
Analyst Initials:	AS		AS	3				
Dilution Factor:	3.0)	2.9)				
ANALYTE	Result % v/v	RL % v/v	Result % v/v	RL % v/v			0.0	
Hydrogen	0.50 d	0.030	ND d	0.029	-			
Carbon Dioxide	41	0.030	39	0.029				
Oxygen/Argon	ND	1.5	ND	1.4			-	
Nitrogen	6.7	3.0	3.7	2.9				

0.0030

0.0030

56

ND

0.0029

0.0029

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Carbon Monoxide

Methane

d = Reported from a secondary analysis. QC Batch: 160203GC8A1

Reviewed/Approved By:

Mark Johnson Operations Manager

51

ND

The cover letter is an integral part of this analytical report

Date 2-4-16

Page 9 of 12

H012804

Date: Z-5-16

QC Batch No.: 160202GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method	Blank	L	CS	L	CSD		
Date/Time Analyzed:	2/2/16	9:51	2/2/1	16 9:21	2/2/	16 9:35		
Analyst Initials:	A	S		AS		AS		22
Datafile:	02feb	007	02f	eb005	021	èb006		
Dilution Factor:	1.	0		1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	83	70-130%	84	70-130%	0.9	<30
Carbon Dioxide	ND	0.010	97	70-130%	94	70-130%	3.0	<30
Oxygen/Argon	ND	0.50	110	70-130%	109	70-130%	0.8	<30
Nitrogen	ND	1.0	109	70-130%	108	70-130%	0.9	<30
Methane	ND	0.0010	98	70-130%	98	70-130%	0.4	<30
Carbon Monoxide	ND	0.0010	104	70-130%	105	70-130%	1.3	<30

ND = Not Detected (Below RL)

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

QC Batch No.: 160202GC8A2

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method	Blank	L	CS	L	CSD		
Date/Time Analyzed:	2/2/16	15:46	2/2/1	6 15:03	2/2/1	6 15:17		
Analyst Initials:	A	S		AS	6	AS		
Datafile:	02feb	031	02f	eb028	02f	eb029		
Dilution Factor:	1.	0		1.0		1.0		
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	83	70-130%	83	70-130%	0.2	<30
Carbon Dioxide	ND	0.010	95	70-130%	93	70-130%	1.9	<30
Oxygen/Argon	ND	0.50	109	70-130%	109	70-130%	0.2	<30
Nitrogen	ND	1.0	108	70-130%	108	70-130%	0.2	<30
Methane	ND	0.0010	100	70-130%	100	70-130%	0.3	<30
Carbon Monoxide	ND	0.0010	108	70-130%	109	70-130%	1.0	<30

ND = Not Detected (Below RL)

Reviewed/Approved By:

Mark J. Johnson

Operations Manager

Date: 7-5-16

QC Batch #

160203GC8A1

Matrix:

Air

Units:

% v/v

QC for Low Level Hydrogen Analysis

			NAME OF TAXABLE PARTY.					
Lab No.:	Blar	ık	L	CS	L	CSD		
Date Analyzed:	2/3/2016	8:43	2/3/20	16 8:34	2/3/20	16 8:39		
Analyst Initials:	AS	3	A	S	I	AS		
Dilution Factor:	1.0)	1	.0]	1.0		
ANALYTE	Results	RL	%Rec	Criteria	%Rec	Criteria	RPD	Criteria
Hydrogen	ND	0.01	92	70-130	93	70-130	0.5	<20
			-					

ND = Not Detected (Below RL)

RL = PQL X Dilution Factor

Reviewed/Approved By:

Mark Johnson

Operations Manager

January 28, 2016

ADE-1461 EPA Methods TO3, TO14A, TO15 SIM & SCAN

TX Cert T104704450-14-6 EPA Methods TO14A, TO15

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

Republic Services ATTN: Jim Getting 13570 St. Charles Rock Rd. Bridgeton, MO 63044

LABORATORY TEST RESULTS

Project Reference: Bridgeton Landfill

Lab Number:

H011806-01/42

Enclosed are results for sample(s) received 1/18/16 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the NELAC Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Jim Getting, Mike Lambrich, Ryan Ayers and David Randall, Weaver Consultants Group, on 1/27/16.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely,

Operations Manager

MJohnson@AirTechLabs.com

Enclosures

	700 TO 141 I	18501 E. Gale Ave Suite 130			CHAI	NOF.	CHAIN OF CUSTODY RECORD	CORD		
	I ECHNOLOGY	City of Industry, CA 91748	TURN	TURNAROUND TIME	TIME		DELIVERABLES	PAGE:	1 OF	75
	Laboratories, Inc.	Ph: 626-964-4032	Standard	8	48 hours		EDD 🔲	Condition upon receipt:	n receipt:	
337		FX: 626-964-5832	Same Day	□ ''	72 hours	_	EDF	27.5	Sealed Yes	□ º
Project No.:			24 hours	ъ П	96 hours		Level 3		Intact Yes	□ %
Project Name: Bridget	Bridgeton Landfill		Other:				Level 4		Chilled	O geb —
Report To: Jim Getting	etting			BILLING	NG		A	ANALYSIS REQUEST	QUEST	
Company: Repub	Republic Services		P.O. No.:	PO5544106	90					
Street: 13570	13570 St. Charles Rock Rd.		Bill to:	Republic	Republic Services					
City/State/Zip: Bridge	Bridgeton , MO 63044		,	Attn: Jim Getting	Getting					
Phone& Fax: 314-68	314-683-3921		13570 St. (Sharles	Charles Rock Rd		7			
e-mail: JGetti	JGetting@republicservices.com		Bridgeton, MO 63044	MO 630	44		:н 'O			
LAB USE ONLY	SAMPLE IDENTI	ENTIFICATION	SAMPLE STAD	SAMPLE TIME	СОИТАІИЕР. ДТҮПҮРЕ МАТЯІХ	-AVRESERVA-	D1849 + C			
H011806-01		GEW-40	1/14/2016	755	C	LFG NA	×			
1 -02		GEW-41R	1/14/2016	807	C	LFG NA	×			
50-		GEW-42R	1/14/2016	816	C	LFG NA	×			
3		GEW-43R	1/14/2016	850	C	LFG NA	×			
707		GEW-44	1/14/2016	902	C	LFG NA	×			
20-		GEW-45R	1/14/2016	914	C	LFG NA	×			
9	7	GEW-46R	1/14/2016	937	C	LFG NA	×			
80_		GEW-2	1/14/2016	945	C	LFG NA	×			
8-		GEW-3	1/14/2016	954	C	LFG NA	×			
2-		GEW-4	1/14/2016	1002	C	LFG NA	×			
AUTHORIZATION TO PERFORM WORK: Dave Penoyer		COMPANY: Republic Services	DATE/TIME:	0	COMMENTS	S				gal
SAMPLED BY: Ryan Ayers	COMPANY:	COMPANY: Republic Services	DATE/TIME							
RELINQUISHED BY	PATE/TIME 1400	RECEIVED BY RECEIVED BY	DATE/TIME DATE/TIME							

DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy

METHOD OF TRANSPORT (circle one): Walk-In FedEx UPS Courier

DATE/TIME

ATLI Other_

Preservation: H=HCl N=None / Container: B=Bag_C=Can V=VOA O=Other Rev. 03 - 5/7/09

C			01 E Cale Ave Suite 130			SH.	AIN C	FCU	CHAIN OF CUSTODY RECORD	CORD		
	し世	JI ECHNOLOGY	of Industry, CA 91748	TUR	TURNAROUND TIME	D TIME		DELI	DELIVERABLES	PAGE:	2 OF	ιΩ
-	Labor		626-964-4032	Standard		48 hours			EDD	Condition u	Condition upon receipt:	
551			626-964-5832	Same Day		72 hours		П	EDF		Sealed Yes	□ 8
Project No.:				24 hours		96 hours		[e	Level 3		Intact Yes	₽
Project Name:	Bridgeton Landfill	andfill		Other:				Le	Level 4		Chilled	O Gep —
Report To:	Jim Getting				BILL	BILLING	ř	_	A	ANALYSIS REQUEST	REQUEST	
Company:	Republic Services	ervices		P.O. No.:	PO5544106	1106						
Street:	13570 St. C	13570 St. Charles Rock Rd.		Bill to:	Republi	Republic Services	Se			1		
City/State/Zip:	Bridgeton, MO 63044	MO 63044			Attn: Jin	Attn: Jim Getting	1					
Phone& Fax:	314-683-3921	21		13570 St. Charles Rock Rd.	Charles	Rock I	3d.		7			
e-mail:	JGetting@	JGetting@republicservices.com		Bridgetor, MO 63044	MO 63	044		П	ZH 'C			
LAB USE ONLY	ONLY	SAMPLE IDENTIFICATION	TIFICATION	alqn at/	NPLE	AINER 39YT	XIAT	-AVA-	C + 9t			
				NAS 40	AA2 IT	соит ОТУ		FIT	761a			
4011800	1 -9	GEW-47R	.7R	1/14/2016	1023							
	ひー	GEW-5	-5	1/14/2016	1030							
	-13	GEW-48	48	1/14/2016	1046							
	4-	GEW-6	9-	1/14/2016	1053							
	51	GEW-50	20	1/14/2016	1101							
	9-1	GEW-52	52	1/14/2016	1108			Н				
	1	GEW-7	.7	1/14/2016	1116							
	-18	GEW-150	20	1/14/2016	1137							
	115	GEW-58A	18A	1/14/2016	1349							
1	2-	GEW-58	28	1/14/2016	1356							

AUTHORIZATION TO PERFORM WORK: Dave Penoyer	COMPANY: Republic Services	DATE/TIME:	COMMENTS
SAMPLED BY: Ryan Ayers	COMPANY: Republic Services	DATE/TIME	
RELINQUISHED BY DATETIME	RECEIVED BY	DATE/TIME	
RELINQUISHED PATE/TIME	IME RECEWED BY	V/ I PATENTIME 1024	
RELINQUISHED BY DATE/TIME	ME RECEIVED BY	бателіме	
METHOD OF TRANSPORT (circle one): Walk-In FedEx UPS Courier ATLI Other	lalk-In FedEx UPS Courier A	TLI Other	
DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy	/ Pink - Customer Copy	Preservation: H=HC	Preservation: H=HCl N=None / Container: B=Bag C=Can V=VOA O=Other Rev. 03 - 5/7/09

	2		<u>∟</u> 8	∟ 8	deg —																	
	OF	ų.	Yes	Intact Yes		ı.						ж.										
	3	on receip	Sealed Yes	Intact	Chilled	EQUES																
ORD	PAGE:	Condition upon receipt:				ANALYSIS REQUEST																
CHAIN OF CUSTODY RECORD		ပိ				ANA						-						,				
FODY	DELIVERABLES			<u></u>	4										J				J			
CUS-	DELIVE	EDD	EDF	Level 3	Level 4						зн С	D1946 + C	L	×	×	×	×	×	×	×	×	×
N OF				_								МАТЯІХ -AVЯЭВЭЯЧ	LFG NA									
CHAII	ME	48 hours	72 hours	96 hours			σ.	Republic Services	etting	ck Rd		QTY/TYPE	C	C	o o	0) O	C	C		C	C
•	TURNAROUND TIME	48 h	72 h	96 h		BILLING	PO5544106	ublic So	Attn: Jim Getting	es Ro	33044	TIME							11.2	၁		
	NARO				83	8	P05	Repl	Attn:	Charl	, MO	3J4MA2	1404	1415	1424	1435	1444	817	849	606	924	951
	TUF	Standard	Same Day	24 hours	Other:		P.O. No.:	Bill to:		13570 St. Charles Rock Rd.	Bridgeton, MO 63044	ajamas atad	1/14/2016	1/14/2016	1/14/2016	1/14/2016	1/14/2016	1/14/2016	1/14/2016	1/14/2016	1/14/2016	1/14/2016
The second of th	TECHNOLOGY OF Industry, CA 91748	Laboratories, Inc. 626-964-4032	020-964-5832		Landfill	6	Services	13570 St. Charles Rock Rd.	Bridgeton, MO 63044	921	JGetting@republicservices.com	SAMPLE IDENTIFICATION	GEW-57R	GEW-59R	GEW-65A	GEW-102	GEW-82R	GEW-137	GEW-134	GEW-120	GEW-121	GEW-123 132-90 Marie
		Odel Labo	777	Project No.:	Project Name: Bridgeton Landfill	Report To: Jim Getting	Company: Republic Services	Street: 13570 St. (City/State/Zip: Bridgeton,	Phone& Fax: 314-683-3921	e-mail: JGetting@	LAB USE ONLY	H21806-21	1-11	-13	ガー	-15	-76	-M	-18	62-	1 -30

AUTHORIZATION TO PERFORM WORK: Dave Penoyer		COMPANY: Republic Services	DATE/TIME:	COMMENTS	
SAMPLED BY: Ryan Ayers	COMPANY:	COMPANY: Republic Services	DATE/TIME	10 contro per la mensionalia	
RELINGWINEDBY 1-15	1-15-16 1706	RECEIVED BY	DATE/TIME		
RELINQUISHED BY EX	DATE/TIME	RECEIVED BY	1 19 TIME 1124		
RELINQUISHĒD BY	DATE/TIME	REČEWEĎ BY	DATE/TIME		
METHOD OF TRANSPORT (circle one): Walk-In		FedEx UPS Courier ATLI Other	Other		30¢
DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy	Copies / Pink - Cust	omer Copy	Preservation: H=HC	Preservation: H=HCI N=None / Container: B=Bag C=Can V=VOA O=Other Rev. 03 - 5/7/09	Rev. 03 - 5/7/09

	2		₽	2	O geb —																		
	4 OF	on receipt:	Sealed Yes	Intact Yes	Chilled	EQUEST																	
CORD	PAGE:	Condition upon receipt:				ANALYSIS REQUEST																	
CHAIN OF CUSTODY RECORD	ABLES					A																	
USTC	DELIVERABLES	EDD	EDF	Level 3	Level 4						ZH 'C	ာ	+ 97610	×	×	×	×	×	×	×	×	×	×
OF C	۵											-\	AVABSBA9 NOIT	NA	NA	NA	NA	NA	N A	NA	NA	NA	¥
HAIN		ص بو	ص «	<u>ي</u>				ices	ing	Rd.		ŀ	XIATAM	LFG									
ວ	D TIME	48 hours	72 hours	96 hours		BILLING	4106	ic Serv	m Gett	Rock	044		CONTAINER QTY/TYPE	ပ	ပ	ပ	ပ	ပ	ပ	O	ပ	ပ	ပ
	TURNAROUND TIME					BILL	PO5544106	Republic Services	Attn: Jim Getting	Charles	MO 63		SAMPLE TIME	1055	1123	1437	1451	1506	1518	1531	1037	1055	1143
	TUR	Standard	Same Day	24 hours	Other:		P.O. No.:	Bill to:		13570 St. Charles Rock Rd.	Bridgeton, MO 63044		SAMPLE STAG	1/14/2016	1/14/2016	1/14/2016	1/14/2016	1/14/2016	1/14/2016	1/14/2016	1/15/2016	1/15/2016	1/15/2016
The Gale Ave Suite 130	>	626-964-4032	626-964-5832								<u>mo:</u>		SAMPLE IDENTIFICATION	GEW-122	GEW-126	GEW-139	GEW-141	GEW-129	GEW-128	GEW-127	GEW-124	GEW-138	GEW-154
	I ECHNOLOG	Laboratories, Inc.			Bridgeton Landfill	Jim Getting	Republic Services	13570 St. Charles Rock Rd.	Bridgeton , MO 63044	314-683-3921	JGetting@republicservices.com			0-31	-31	-33	-34	-35	-36	-37	-38	-34	700
	₹	=		Project No.:	Project Name:	Report To:	Company:	Street:	City/State/Zip:	Phone& Fax:	e-mail:	The state of the s	LAB USE ONLY	708/194	_								1

AUTHORIZATION TO PERFORM WORK: Dave Penoyer		COMPANY: Republic Services	DATE/TIME:	COMMENTS	
SAMPLED BY: Ryan Ayers	COMPANY: F	COMPANY: Republic Services	DATE/TIME		
RELINQUISHED BY (-15")	1-15-16 1706	RECEIVED BY	DATE/TIME		
RELINQUISHER BY DATE	DATE/TIME	RECEIVED BY	1 18 DATESTIME 1/24		
RELINQUISHED BY DATE	DATE/TIME	RECEIVED BY	DATE/TIME		
METHOD OF TRANSPORT (circle one): Walk-In FedEx	Walk-In FedE	x UPS Courier ATLI Other	ATLI Other		
DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy	es / Pink - Custo	mer Copy	Preservation: H=H(Preservation: H=HCl N=None / Container: B=Bag C=Can V=VOA O=Other Rev. 03 - 5/7/09	Rev. 03 - 5/7/09

								DATE/TIME		DATE/TIME	RELINQUISHED BY
							THE	DATE/TIME	RECEIVED BY	DATE/TIME	RELINQUISHED BY A
								DATE/TIME	RECEIVED BY	DATE/TIME /-15-16 / 700	RELINQUISHED BY
								DATE/TIME	œ	COMPANY	SAMPLED BY: Ryan Ayers
					NTS	COMMENTS		DATE/TIME:	company: Republic Services	22	AUTHORIZATION TO PERFORM WORK: Dave Penoyer
		4	-		\exists						
			×	¥	LFG	ပ	1233	1/15/2016	GEW-140)	77- 9
			×	NA NA	LFG	ပ	1208	1/15/2016	GEW-147	0	14-2081/04
			D19 1 6 + C	-AVESERVA- TION	XIRTAM	СОИТ А ІИЕ <i>В</i> ОТУЛҮРЕ	SAMPLE TMIT	SAMPLE BTAQ	SAMPLE IDENTIFICATION	SAMPLE	LAB USE ONLY
						044	MO 63	Bridgeton, MO 63044	<u>n</u>	JGetting@republicservices.com	e-mail: JGetting
					3d.	Rock F	Charles	13570 St. Charles Rock Rd.		3921	Phone& Fax: 314-683-3921
						Attn: Jim Getting	Attn: Jir			Bridgeton, MO 63044	City/State/Zip: Bridgeton
					se	Republic Services	Republi	Bill to:		13570 St. Charles Rock Rd.	Street: 13570 St.
						1106	PO5544106	P.O. No.:		Services	Company: Republic Services
	ANALYSIS REQUEST	ANALYS				BILLING	BILL			ng	Report To: Jim Getting
O geb —	Chilled		el 4	Level 4				Other:		ı Landfill	Project Name: Bridgeton Landfill
 %	Intact Yes		□ 8 I 3	Level 3	П	96 hours		24 hours			Project No.:
□ 2	Sealed Yes			EDF		72 hours		Same Day	626-964-5832		
	Condition upon receipt:	Conditio		EDD		48 hours		Standard		Laboratories, Inc.	ge7 V V V
2	5 OF	PAGE:	DELIVERABLES	DELIV		D TIME	TURNAROUND TIME	TUR	of Industry, CA 91748	TECHNOLOG	
	۵	RECOR	CHAIN OF CUSTODY RECORD	F CUS	O NIA	CH			1	1	

Rev. 03 - 5/7/09

Preservation: H=HCI N=None / Container: B=Bag C=Can V=VOA O=Other

METHOD OF TRANSPORT (circle one): Walk-In FedEx UPS Courier ATLI Other_DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/18/16

Matrix:

Air

Reporting Units:

% v/v

ASTM D1946

Lab No.:	H0118	06-01	H0118	06-02	H0118	06-03	H0118	06-04
Client Sample I.D.:	GEW	GEW-40		GEW-41R		-42R	GEW-43R	
Date/Time Sampled:	1/14/16	7:55	1/14/16	8:07	1/14/16	8:16	1/14/16	8:50
Date/Time Analyzed:	1/20/16 10:16		1/20/16	10:31	1/20/16	10:45	1/20/16	11:00
QC Batch No.:	160120GC8A1		1601200	GC8A1	1601200	C8A1	1601200	GC8A1
Analyst Initials:	AS	AS		AS		AS		3
Dilution Factor:	3.2	2	3.2	2	3.2		3.2	
ANALYTE	Result % v/v	RL % v/v						
Hydrogen	ND d	0.032	ND d	0.032	ND d	0.032	0.18 d	0.032
Carbon Dioxide	41	0.032	42	0.032	42	0.032	43	0.032
Oxygen/Argon	ND	1.6	ND	1.6	ND	1.6	ND	1.6
Nitrogen	ND	3.2	ND	3.2	ND	3.2	ND	3.2
Methane	57	0.0032	56	0.0032	55	0.0032	55	0.0032
Carbon Monoxide	ND	0.0032	ND	0.0032	ND	0.0032	ND	0.0032
							N .	

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch: 160122GC8A1

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Page 2 of 16

H011806

Page 3 of 16 H011806

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/18/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	TT01100) 6 O E	H01180	06.06	H01180	6.07	H01180	16.09
Lab No.:	HUITO	H011806-05		11011000-00		11011000-07		70-00
Client Sample I.D.:	GEW-44		GEW-	45R	GEW-	46R	GEW-2	
Date/Time Sampled:	1/14/16	9:05	1/14/16	9:14	1/14/16	9:37	1/14/16	9:45
Date/Time Analyzed:	1/20/16	11:15	1/20/16	11:30	1/20/16	11:44	1/20/16	11:59
QC Batch No.:	160120G	160120GC8A1		GC8A1	160120G	C8A1	160120G	C8A1
Analyst Initials:	AS	AS		}	AS		AS	
Dilution Factor:	3.2	,	3.2	2	3.2		3.2	
ANALYTE	Result % v/v	RL % v/v	Result	RL % v/v	Result % v/v	RL % v/v	Result	RL % v/v
Hydrogen	ND d	0.032	ND d	0.032	0.092 d	0.032	ND d	0.032
Carbon Dioxide	40	0.032	43	0.032	41	0.032	43	0.032
Oxygen/Argon	ND	1.6	ND	1.6	ND	1.6	ND	1.6
Nitrogen	ND	3.2	ND	3.2	4.7	3.2	ND	3.2
Methane	56	0.0032	56	0.0032	54	0.0032	55	0.0032
Carbon Monoxide	ND	0.0032	ND	0.0032	ND	0.0032	ND	0.0032
-								

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch: 160122GC8A1

Reviewed/Approved By:

Operations Manager

Page 4 of 16 H011806

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/18/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H01180	06-09	H01180	06-10	H01180)6-11	H01180)6-12
Client Sample I.D.:	GEW-3		GEV	GEW-4		47R	GEW-5	
Date/Time Sampled:	1/14/16	9:54	1/14/16	10:02	1/14/16	10:23	1/14/16	10:30
Date/Time Analyzed:	1/20/16 12:13		1/20/16	12:28	1/20/16	12:42	1/20/16	12:57
QC Batch No.:	160120G	160120GC8A1		C8A1	160120G	C8A1	160120G	C8A1
Analyst Initials:	AS	AS			AS		AS	
Dilution Factor:	3.2	2	3.2	2	3.2		3.2	
ANALYTE	Result % v/v	RL % v/v						
Hydrogen	0.100 d	0.032	0.097 d	0.032	0.048 d	0.032	ND d	0.032
Carbon Dioxide	39	0.032	40	0.032	35	0.032	34	0.032
Oxygen/Argon	ND	1.6	ND	1.6	ND	1.6	ND	1.6
Nitrogen	8.4	3.2	6.7	3.2	24	3.2	24	3.2
Methane	52	0.0032	52	0.0032	40	0.0032	42	0.0032
Carbon Monoxide	ND	0.0032	ND	0.0032	ND	0.0032	ND	0.0032

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch: 160122GC8A1

Reviewed/Approved By:

Operations Manager

Page 5 of 16 H011806

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/18/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H01180)6-13	H01180	06-14	H01180)6-15	Н011806-16	
Client Sample I.D.:	GEW	GEW-48		V-6	GEW	-50	GEW-52	
Date/Time Sampled:	1/14/16	10:46	1/14/16	10:53	1/14/16	11:01	1/14/16	11:08
Date/Time Analyzed:	1/20/16	13:11	1/20/16	13:26	1/20/16	13:41	1/20/16	13:55
QC Batch No.:	160120G	160120GC8A1		C8A1	160120G	C8A1	160120G	C8A1
Analyst Initials:	AS	AS			AS		AS	
Dilution Factor:	3.2	2	3.2		3.2		3.2	
ANALYTE	Result % v/v	RL % v/v						
Hydrogen	ND d	0.032	ND d	0.032	0.080 d	0.032	0.037 d	0.032
Carbon Dioxide	39	0.032	37	0.032	39	0.032	36	0.032
Oxygen/Argon	ND	1.6	ND	1.6	ND	1.6	ND	1.6
Nitrogen	8.4	3.2	10	3.2	7.9	3.2	19	3.2
Methane	52	0.0032	52	0.0032	53	0.0032	45	0.0032
Carbon Monoxide	ND	0.0032	ND	0.0032	ND	0.0032	ND	0.0032

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch: 160122GC8A1

Reviewed/Approved By: Mark Johnson Operations Manager

The cover letter is an integral part of this analytical report

page 1 of 1

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/18/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

F								
Lab No.:	H0118	06-17	H0118	806-18	H0118	806-19	H0118	306-20
Client Sample I.D.:	GEW-7		GEW-150		GEW-58A		GEW-58	
Date/Time Sampled:	1/14/16	11:16	1/14/1	6 11:37	1/14/1	6 13:49	1/14/10	6 13:56
Date/Time Analyzed:	1/20/16	14:10	1/20/1	6 14:24	1/20/1	6 14:39	1/20/10	6 14:53
QC Batch No.:	1601200	C8A1	160120	GC8A1	160120	GC8A1	160120	GC8A1
Analyst Initials:	AS	3	A	S	AS		A	S
Dilution Factor:	3.2	2	3.2		3.4		3.4	
	Result	RL	Result	RL	Result	RL	Result	RL
ANALYTE	% V/V	% v/v	% v/v	% v/v	% v/v	% v/v	% v/v	% v/v
Hydrogen	ND d	0.032	23	3.2	39	3.4	35	3.4
Carbon Dioxide	41	0.032	63	0.032	51	0.034	54	0.034
Oxygen/Argon	ND	1.6	1.9	1.6	2.0	1.7	ND	1.7
Nitrogen	ND	3.2	6.6	3.2	7.1	3.4	5.5	3.4
Methane	57	0.0032	3.8	0.0032	0.32	0.0034	3.8	0.0034
Carbon Monoxide	ND	0.0032	0.17	0.0032	0.25	0.0034	0.21	0.0034

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch: 160122GC8A1

Reviewed/Approved By:

Operations Manager

The cover letter is an integral part of this analytical report

Page 6 of 16

H011806

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/18/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

T I M	TT0114	207.21	77011	006.00	TT0111	006.22	TT0116	207.24
Lab No.:	H0118	306-21	H011	806-22	H011806-23		H0118	306-24
Client Sample I.D.:	GEW-57R		GEW	GEW-59R		V-65A	GEW-102	
Date/Time Sampled:	1/14/10	5 14:04	1/14/1	6 14:15	1/14/10	6 14:24	1/14/10	6 14:35
Date/Time Analyzed:	1/20/10	6 16:46	1/20/1	6 17:01	1/20/1	6 17:15	1/20/10	5 17:30
QC Batch No.:	160120	GC8A2	160120	GC8A2	160120	GC8A2	160120	GC8A2
Analyst Initials:	A	AS		AS		AS		S
Dilution Factor:	3	.4	3.4		3.4		3.4	
	Result	RL	Result	RL	Result	RL	Result	RL
ANALYTE	% v/v	% v/v	% v/v	% V/V	% v/v	% V/V	% v/v	% v/v
Hydrogen	40	3.4	41	3.4	36	3.4	34	3.4
Carbon Dioxide	54	0.034	48	0.034	58	0.034	60	0.034
Oxygen/Argon	ND	1.7	1.9	1.7	ND	1.7	ND	1.7
Nitrogen	ND	3.4	6.9	3.4	ND	3.4	ND	3.4
Methane	0.44	0.0034	0.86	0.0034	0.36	0.0034	2.3	0.0034
Carbon Monoxide	0.22	0.0034	0.19	0.0034	0.29	0.0034	0.17	0.0034
			920					

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:	MARCH. 4	
• • • • • • • • • • • • • • • • • • • •	///Mark Johnson	

Operations Manager

Page 7 of 16

H011806

Page 8 of 16 H011806

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/18/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H0118	806-25	H0118	06-26	H0118	806-27	H0118	306-28
Client Sample I.D.:	GEW	GEW-82R		GEW-137		V-134	GEW-120	
Date/Time Sampled:	1/14/1	6 14:44	1/14/16	8:17	1/14/1	6 8:49	1/14/1	6 9:09
Date/Time Analyzed:	1/20/1	6 17:45	1/20/16	17:59	1/20/1	6 18:14	1/20/10	5 18:28
QC Batch No.:	160120	GC8A2	1601200	C8A2	160120	GC8A2	160120	GC8A2
Analyst Initials:	A	S	AS	}	А	S	A	S
Dilution Factor:	3	.4	3.2	3.2		3.2		.2
	Result	RL	Result	RL	Result	RL	Result	RL
ANALYTE	% v/v	% v/v	% v/v	% v/v	% v/v	% V/V	% v/v	% v/v
Hydrogen	40	3.4	0.31 d	0.032	11	3.2	11	3.2
Carbon Dioxide	56	0.034	36	0.032	58	0.032	69	0.032
Oxygen/Argon	ND	1.7	ND	1.6	ND	1.6	ND	1.6
Nitrogen	ND	3.4	49	3.2	13	3.2	ND	3.2
Methane	0.77	0.0034	13	0.0032	17	0.0032	15	0.0032
Carbon Monoxide	0.20	0.0034	0.0036	0.0032	0.075	0.0032	0.088	0.0032

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

d = Reported from a secondary analysis. QC Batch: 160122GC8A1

Reviewed/Approved By: Operations Manager

Page 9 of 16 H011806

Client:

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/18/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H0118	306-29	H0118	806-30	H0118	806-31	H0118	306-32
Client Sample I.D.:	GEV	GEW-121		GEW-132		V-122	GEW-126	
Date/Time Sampled:	1/14/1	69:24	1/14/1	6 9:51	1/14/1	6 10:55	1/14/10	5 11:23
Date/Time Analyzed:	1/21/1	68:16	1/21/1	6 8:31	1/21/1	6 8:45	1/21/1	6 9:00
QC Batch No.:	160120	GC8A2	160120	GC8A2	160120	GC8A2	160120	GC8A2
Analyst Initials:	A	S	А	AS		AS		S
Dilution Factor:	3	3.2		3.2		3.2		.2
14	Result	RL	Result	RL	Result	RL	Result	RL
ANALYTE	% v/v	% v/v	% v/v	% V/V	% v/v	% v/v	% v/v	% v/v
Hydrogen	33	3.2	23	3.2	37	3.2	36	3.2
Carbon Dioxide	60	0.032	50	0.032	57	0.032	54	0.032
Oxygen/Argon	ND	1.6	2.9	1.6	ND	1.6	ND	1.6
Nitrogen	ND	3.2	15	3.2	ND	3.2	ND	3.2
Methane	3.8	0.0032	8.7	0.0032	3.5	0.0032	6.2	0.0032
Carbon Monoxide	0.26	0.0032	0.17	0.0032	0.30	0.0032	0.35	0.0032

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Operations Manager

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/18/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H0118	806-33	H011	806-34	H011	806-35	H0118	806-36	
Client Sample I.D.:	GEW-139		GEW-141		GEW-129		GEW-128		
Date/Time Sampled:	1/14/1	6 14:37	1/14/1	6 14:51	1/14/1	6 15:06	1/14/10	6 15:18	
Date/Time Analyzed:	1/21/1	6 9:15	1/21/1	69:30	1/21/1	69:44	1/21/1	6 9:59	
QC Batch No.:	160120			GC8A2	160120	GC8A2	160120	GC8A2	
Analyst Initials:	A	AS		S	Α	AS		S	
Dilution Factor:	3	.4	3	3.4		3.4		3.4	
	Result	RL	Result	RL	Result	RL	Result	RL	
ANALYTE	% v/v								
Hydrogen	35	3.4	33	3.4	34	3.4	32	3.4	
Carbon Dioxide	54	0.034	60	0.034	62	0.034	64	0.034	
Oxygen/Argon	1.8	1.7	ND	1.7	ND	1.7	ND	1.7	
Nitrogen	6.6	3.4	ND	3.4	ND	3.4	ND	3.4	
Methane	1.4	0.0034	1.1	0.0034	0.98	0.0034	0.88	0.0034	
Carbon Monoxide	0.36	0.0034	0.33	0.0034	0.33	0.0034	0.36	0.0034	

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Operations Manager

The cover letter is an integral part of this analytical report

Page 10 of 16

H011806

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/18/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

							T .	
Lab No.:	H011	806-37	H011	806-38	H011	806-39	H011	806-40
Client Sample I.D.:	GEV	GEW-127		GEW-124		V-138	GEW-154	
Date/Time Sampled:	1/14/1	6 15:31	1/15/1	6 10:37	1/15/1	6 10:55	1/15/1	6 11:43
Date/Time Analyzed:	1/21/1	1/21/16 10:13		6 10:28	1/21/1	6 10:42	1/21/1	6 10:57
QC Batch No.:	160120	160120GC8A2		GC8A2	160120	GC8A2	160120	GC8A2
Analyst Initials:	A	AS		AS		AS		S
Dilution Factor:	3	.4	3.2		3.2		3.2	
	Result	RL	Result	RL	Result	RL	Result	RL
ANALYTE	% v/v	% v/v	% v/v	% v/v	% v/v	% v/v	% v/v	% v/v
Hydrogen	32	3.4	27	3.2	9.2	3.2	24	3.2
Carbon Dioxide	65	0.034	62	0.032	50	0.032	33	0.032
Oxygen/Argon	ND	1.7	ND	1.6	2.2	1.6	ND	1.6
Nitrogen	ND	3.4	ND	3.2	25	3.2	20	3.2
Methane	0.29	0.0034	6.8	0.0032	13	0.0032	21	0.0032
Carbon Monoxide	0.44	0.0034	0.19	0.0032	0.073	0.0032	0.085	0.0032

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Operations Manager

The cover letter is an integral part of this analytical report

Page 11 of 16

H011806

Republic Services

Attn:

Jim Getting

Project Name:

Bridgeton Landfill

Project No.:

NA

Date Received:

01/18/16

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	H011806-41		H011	806-42	
Client Sample I.D.:	GEV	GEW-147		V-140	
Date/Time Sampled:	1/15/1	6 12:08	1/15/1	6 12:33	
Date/Time Analyzed:	1/21/1	6 14:18	1/21/1	6 14:33	
QC Batch No.:	160121	160121GC8A1		GC8A1	
Analyst Initials:	A	S -	A	S	
Dilution Factor:	3.2		3.2		
ANALYTE	Result % v/v	RL % v/v	Result % v/v	RL % v/v	
Hydrogen	36	3.2	35	3.2	
Carbon Dioxide	54	0.032	60	0.032	
Oxygen/Argon	ND	1.6	ND	1.6	
Nitrogen	3.5	3.2	ND	3.2	
Methane	4.9	0.0032	1.7	0.0032	
Carbon Monoxide	0.20	0.0032	0.33	0.0032	

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Page 12 of 16

H011806

The cover letter is an integral part of this analytical report

Operations Manager

QC Batch No.: 160120GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method Blank		LCS		LCSD			
Date/Time Analyzed:	1/20/16 9:30		1/20/16 8:56		1/20/16 9:10			
Analyst Initials:	AS		AS		AS			
Datafile:	20jan005		20jan003		20jan004			
Dilution Factor:	1.0	0	1.0		1.0			
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	109	70-130%	111	70-130%	2.4	<30
Carbon Dioxide	ND	0.010	100	70-130%	103	70-130%	3.2	<30
Oxygen/Argon	ND	0.50	98	70-130%	101	70-130%	3.2	<30
Nitrogen	ND	1.0	99	70-130%	102	70-130%	3.3	<30
Methane	ND	0.0010	94	70-130%	93	70-130%	0.9	<30
Carbon Monoxide	ND	0.0010	106	70-130%	106	70-130%	0.1	<30
G.	<i>3</i>							

ND = Not Detected (Below RL)

Reviewed/Approved By:	MARL 1	Date: 1/27/16	
	Mark J. Johnson		

Operations Manager

QC Batch No.: 160120GC8A2

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method Blank		LCS		LCSD			
Date/Time Analyzed:	1/20/16 16:03		1/20/16 16:17		1/20/16 16:32			
Analyst Initials:	AS		AS		AS			
Datafile:	20jan031		20jan032		20jan033			
Dilution Factor:	1.	0	1.0		1.0			*
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	109	70-130%	110	70-130%	0.3	<30
Carbon Dioxide	ND	0.010	102	70-130%	102	70-130%	0.2	<30
Oxygen/Argon	ND	0.50	101	70-130%	101	70-130%	0.1	<30
Nitrogen	ND	1.0	102	70-130%	102	70-130%	0.2	<30
Methane	ND	0.0010	102	70-130%	102	70-130%	0.5	<30
Carbon Monoxide	ND	0.0010	109	70-130%	110	70-130%	0.8	<30

ND = Not Detected (Below RL)

Reviewed/Approved By:	mal. 1	Date: 127/16		
7	Mark J. Johason			
	Operations Manager			

QC Batch No.: 160121GC8A1

Matrix:

Air

Units:

% v/v

QC for ASTM D1946

Lab No.:	Method Blank		LCS		LCSD			
Date/Time Analyzed:	1/21/16 14:03		1/21/16 13:34		1/21/16 13:48			
Analyst Initials:	AS		AS		AS			=
Datafile:	21jan012		21jan010		21jan011			
Dilution Factor:	1.0	0	1.0		1.0			
ANALYTE	Results	RL	% Rec.	Criteria	% Rec.	Criteria	%RPD	Criteria
Hydrogen	ND	1.0	111	70-130%	112	70-130%	1.5	<30
Carbon Dioxide	ND	0.010	107	70-130%	106	70-130%	1.1	<30
Oxygen/Argon	ND	0.50	103	70-130%	102	70-130%	0.9	<30
Nitrogen	ND .	1.0	103	70-130%	102	70-130%	0.8	<30
Methane	ND	0.0010	94	70-130%	94	70-130%	0.3	<30
Carbon Monoxide	ND	0.0010	112	70-130%	112	70-130%	0.3	<30

ND = Not Detected (Below RL)

Reviewed/Approved By:	undall-	Ao	Date:	1/27/16	
	Mark J. Johnson	Y			
	Operations Manager				

QC Batch #

160122GC8A1

Matrix:

Air

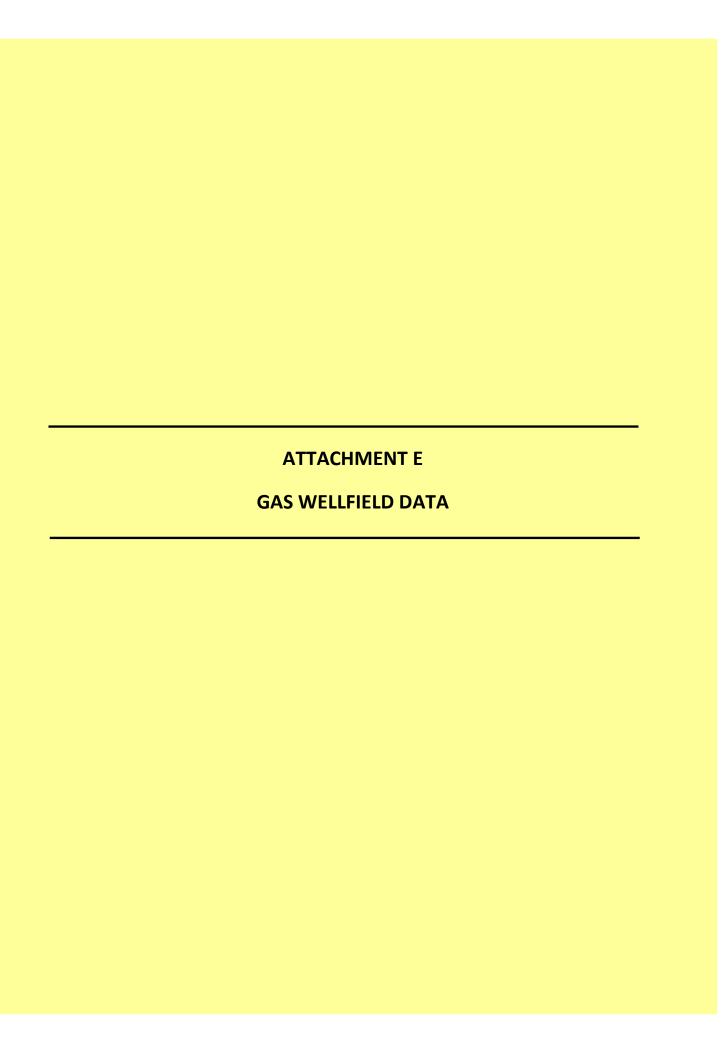
Units:

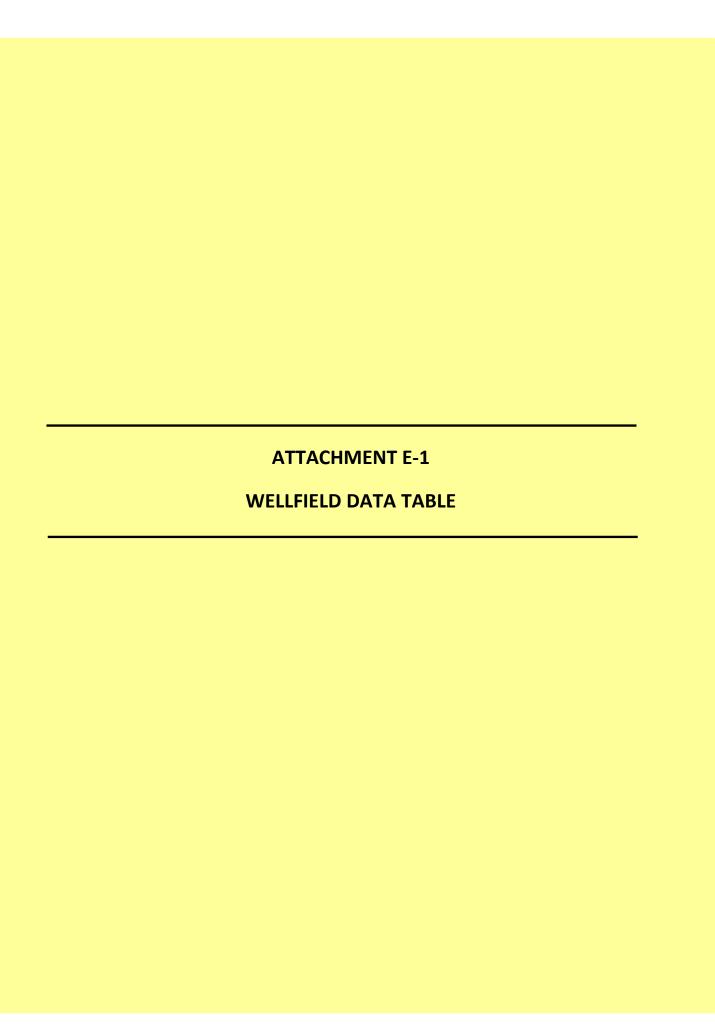
% v/v

	0C	for	Low	Level	Hydrogen	Analysis
--	----	-----	-----	-------	----------	----------

Lab No.:	Blan	ık	L	CS	L	CSD		20 20-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
Date Analyzed:	1/22/201	6 8:36	1/22/20	16 8:26	1/22/2	016 8:31		
Analyst Initials:	AS	3	A	S	1	AS		
Dilution Factor:	1.0)	1	.0	1	1.0		
ANALYTE	Results	RL	%Rec	Criteria	%Rec	Criteria	RPD	Criteria
Hydrogen	ND	0.01	89	70-130	92	70-130	2.5	<20

ND = Not Detected (Below RL)


RL = PQL X Dilution Factor


T	W. V.	W 750
Reviewed	/Approve	d By:

Operations Manager

Date:

The cover letter is an integral part of this analytical report.

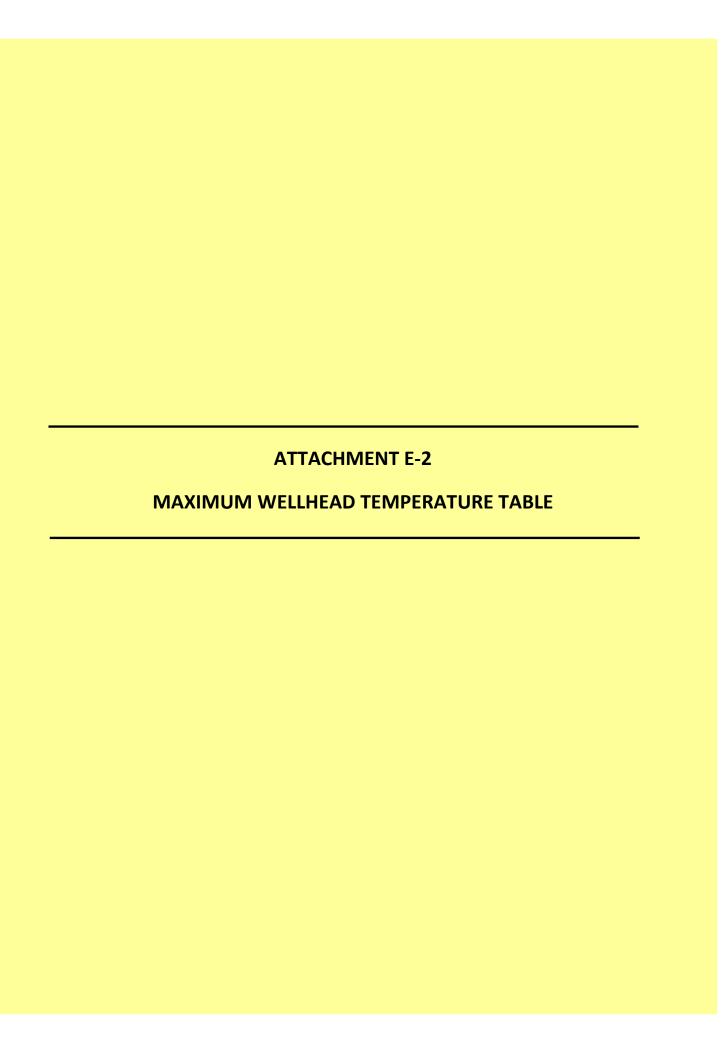
Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
			(% v	ol)		°I	3	sc	fm		H₂O	
GEW-002	1/6/2016 14:22	54.7	38.2	0.0	7.1	119.6		27	27	-0.6	-0.6	-11.3
GEW-002	1/14/2016 9:43	54.9	42.6	0.0	2.5	124.9		20	13	0.2	0.2	-11.3
GEW-002	1/14/2016 9:47	56.1	41.3	0.0	2.6	124.9		23	19	0.1	0.1	-11.0
GEW-002	1/21/2016 13:21	57.4	38.3	0.0	4.3	118.6		18	20	-0.5	-0.5	-7.5
GEW-002	1/28/2016 9:16	54.7	40.8	0.0	4.5	121.8		23	21	-0.8	-0.8	-10.8
GEW-002	1/28/2016 9:17	54.4	41.7	0.0	3.9	121.2		20	14	-0.6	-0.6	-11.6
GEW-003	1/6/2016 14:24	53.0	38.7	0.0	8.3	109.5		0	0	0.3	0.3	-11.0
GEW-003	1/6/2016 14:25	52.4	39.6	0.0	8.0	112.8		15	12	0.2	0.2	-10.7
GEW-003	1/14/2016 9:53	52.0	39.9	0.0	8.1	113.0		24	24	-0.6	-0.6	-10.5
GEW-003	1/14/2016 9:56	52.3	36.4	0.0	11.3	113.3		15	15	-0.6	-0.6	-10.5
GEW-003	1/21/2016 13:24	54.2	35.3	0.0	10.5	110.9		34	34	0.0	0.0	-8.6
GEW-003	1/28/2016 9:20	50.7	38.7	0.0	10.6	110.9		17	14	-0.7	-0.7	-10.8
GEW-003	1/28/2016 9:22	50.8	38.6	0.0	10.6	108.1		0	0	-0.5	-0.5	-11.1
GEW-004	1/6/2016 14:27	52.6	40.0	0.0	7.4	106.0		8	11	0.3	0.3	-10.8
GEW-004	1/6/2016 14:28	54.9	40.6	0.0	4.5	109.5		16	16	0.2	0.2	-11.0
GEW-004	1/14/2016 10:01	53.1	39.9	0.0	7.0	117.8		15	13	-0.5	-0.5	-10.7
GEW-004	1/14/2016 10:04	53.2	38.8	0.0	8.0	117.6		25	25	-0.5	-0.5	-10.7
GEW-004	1/21/2016 13:28	53.0	38.5	0.0	8.5	115.7		15	12	0.0	0.0	-8.4
GEW-004	1/28/2016 9:25	51.6	38.6	0.0	9.8	117.5		17	19	-0.6	-0.6	-11.4
GEW-004	1/28/2016 9:27	51.3	39.6	0.0	9.1	114.5		25	25	-0.4	-0.4	-11.6
GEW-005	1/6/2016 14:35	45.3	38.0	0.0	16.7	95.4		31	27	-0.1	0.0	-10.2
GEW-005	1/14/2016 10:29	42.9	35.1	0.0	22.0	95.2		23	20	-0.4	-0.4	-10.5
GEW-005	1/14/2016 10:33	43.0	32.5	0.0	24.5	92.3		29	30	-0.2	-0.2	-11.0
GEW-005	1/21/2016 13:48	50.9	38.0	0.0	11.1	77.4		0	0	0.6	0.6	-8.0
GEW-005	1/21/2016 13:49	51.0	37.9	0.0	11.1	92.5		30	29	0.4	0.4	-7.5
GEW-005	1/28/2016 10:04	41.2	34.4	0.0	24.4	95.6		23	24	-0.4	-0.4	-11.3
GEW-005	1/28/2016 10:05	41.2	34.9	0.0	23.9	93.4		0	0	-0.2	-0.2	-11.9
GEW-006	1/6/2016 14:39	52.3	38.6	0.0	9.1	88.7		22	16	-0.2	-0.1	-10.2
GEW-006	1/14/2016 10:51	52.2	37.1	0.0	10.7	89.5		13	11	-0.3	-0.3	-10.5
GEW-006	1/14/2016 10:55	52.0	34.7	0.0	13.3	89.7		13	13	-0.3	-0.3	-10.7
GEW-006	1/21/2016 14:25	53.2	37.3	0.0	9.5	87.8		14	14	0.0	0.0	-8.2
GEW-006	1/28/2016 10:10	51.1	37.0	0.0	11.9	89.9		20	20	-0.4	-0.4	-10.7
GEW-006	1/28/2016 10:11	51.1	37.4	0.0	11.5	89.2		15	15	-0.3	-0.3	-12.4
GEW-007	1/6/2016 14:46	54.8	38.4	0.0	6.8	94.6		11	13	-2.2	-2.2	-10.3
GEW-007	1/14/2016 11:14	57.2	41.0	0.0	1.8	95.9		7	6	-2.6	-2.6	-11.0
GEW-007	1/14/2016 11:18	57.4	36.7	0.0	5.9	96.4		28	28	-2.6	-2.6	-11.0
GEW-007	1/22/2016 8:51	57.9	39.5	0.0	2.6	91.5		10	10	-3.6	-3.6	-12.4
GEW-007	1/27/2016 10:07	57.4	38.0	0.0	4.6	93.4		10	10	-3.1	-3.1	-11.3
GEW-007	1/27/2016 10:11	57.7	40.1	0.0	2.2	93.6		12	13	-3.1	-3.1	-11.0
GEW-008	1/6/2016 15:08	51.1	43.5	0.0	5.4	112.5		20	20	-0.9	-0.9	-10.5
GEW-008	1/15/2016 9:06	52.7	43.8	0.0	3.5	112.5		23	24	-1.4	-1.4	-11.7
GEW-008	1/22/2016 8:45	51.2	44.8	0.0	4.0	111.8		26	26	-1.5	-1.5	-12.0

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
			(% v	ol)		°F	3	scf	m		H₂O	
GEW-008	1/27/2016 10:06	50.4	44.4	0.0	5.2	112.2		20	22	-0.9	-0.9	-11.2
GEW-008	1/27/2016 10:13	51.4	44.6	0.2	3.8	111.6		16	21	-0.8	-0.8	-10.9
GEW-009	1/6/2016 15:05	49.3	41.3	0.0	9.4	122.1		0	0	-0.2	-0.2	-16.3
GEW-009	1/15/2016 8:59	52.4	40.4	0.0	7.2	122.3		13	13	-0.4	-0.4	-17.1
GEW-009	1/22/2016 8:48	51.0	41.6	0.0	7.4	119.6		14	8	-0.3	-0.3	-16.2
GEW-009	1/27/2016 9:58	53.2	40.9	0.0	5.9	121.0		0	11	-0.1	-0.2	-10.3
GEW-009	1/27/2016 10:02	52.7	39.0	0.0	8.3	121.2		0	0	-0.1	-0.1	-12.7
GEW-010	1/5/2016 14:13	56.7	40.0	0.3	3.0	61.9				-2.8	-2.8	-16.4
GEW-010	1/5/2016 14:14	56.8	39.2	0.2	3.8	63.3		2	3	-4.5	-4.5	-16.1
GEW-010	1/11/2016 14:20	48.5	46.4	0.5	4.6	52.6		4	5	-8.2	-8.3	-17.0
GEW-010	1/21/2016 10:24	34.4	51.3	0.0	14.3	28.3		43	43	-0.2	-0.2	-16.2
GEW-010	1/26/2016 8:52	54.6	42.7	0.2	2.5	35.0		3	3	-4.9	-4.8	-13.6
GEW-010	1/26/2016 9:00	55.2	42.2	0.3	2.3	35.3		4	3	-4.9	-4.9	-13.2
GEW-022R	1/26/2016 13:52	1.5	66.7	0.4	31.4	192.6				1.5	0.1	1.3
GEW-022R	1/26/2016 13:53	1.1	66.6	0.2	32.1	192.8				1.5	0.3	2.2
GEW-028R	1/26/2016 14:03	0.0	62.3	0.8	36.9	178.2				-14.7	-14.7	-14.7
GEW-028R	1/26/2016 14:08	0.0	51.9	2.6	45.5	178.2				-14.2	-14.7	-14.7
GEW-038	1/5/2016 13:53	0.4	48.0	4.0	47.6	50.8		10	3	0.0	-0.1	-16.1
GEW-038	1/5/2016 13:55	0.4	50.6	3.1	45.9	50.9		3	1	-0.1	0.0	-15.8
GEW-038	1/11/2016 14:19	0.3	46.3	5.8	47.6	42.7		11	2	-0.5	-0.6	-17.4
GEW-038	1/11/2016 14:19	0.3	46.4	6.0	47.3	42.7		9	3	-0.6	-0.6	-17.1
GEW-038	1/21/2016 10:11	0.7	28.9	8.5	61.9	26.8		4	7	-0.4	-0.6	-15.5
GEW-038	1/21/2016 10:12	0.3	43.4	6.8	49.5	27.2		9	9	-0.2	-0.3	-16.0
GEW-038	1/26/2016 8:36	0.4	54.9	2.1	42.6	32.4		11	12	-0.1	-0.1	-12.8
GEW-038	1/26/2016 8:40	0.2	54.9	2.1	42.8	32.1		6	5	-0.1	-0.1	-13.1
GEW-039	1/5/2016 13:58	34.1	52.5	0.1	13.3	133.3				-1.6	-1.6	-16.6
GEW-039	1/5/2016 13:59	36.4	48.9	0.0	14.7	133.3				-1.6	-1.6	-16.1
GEW-039	1/11/2016 14:24	34.2	53.2	0.2	12.4	134.0				-1.6	-1.6	-18.2
GEW-039	1/11/2016 14:24	37.2	50.9	0.2	11.7	134.1				-1.5	-1.5	-18.0
GEW-039	1/21/2016 10:15	32.9	59.6	0.2	7.3	67.8				0.6	0.6	-0.5
GEW-039	1/21/2016 10:16	42.3	55.0	0.0	2.7	73.8				0.6	0.6	-0.6
GEW-039	1/26/2016 8:58	44.4	51.8	0.2	3.6	120.4				0.1	0.1	-22.9
GEW-039	1/26/2016 9:03	43.8	51.8	0.0	4.4	120.2				-0.1	-0.1	-23.3
GEW-040	1/6/2016 13:38	62.0	36.9	0.0	1.1	82.9		41	41	0.3	0.3	-11.1
GEW-040	1/6/2016 13:39	59.8	39.2	0.0	1.0	85.7		11	10	-0.1	-0.1	-11.3
GEW-040	1/12/2016 7:56	61.4	36.5	0.1	2.0	81.1		0	0	-0.5	-0.5	-11.7
GEW-040	1/14/2016 7:52	58.7	40.3	0.0	1.0	84.0		12	15	0.0	0.0	-11.0
GEW-040	1/14/2016 7:57	59.6	38.7	0.0	1.7	84.5		18	19	0.0	0.0	-10.9
GEW-040	1/20/2016 11:25	59.0	40.1	0.1	0.8	86.9		0	0	-0.2	-0.2	-12.7
GEW-040	1/28/2016 8:54	58.3	40.7	0.1	0.9	84.9		36	37	-0.2	-0.2	-11.3
GEW-041R	1/6/2016 13:57	57.9	35.7	0.0	6.4	99.9		0	12	0.2	0.2	-11.1
GEW-041R	1/6/2016 13:58	58.7	39.6	0.0	1.7	102.1		14	8	0.1	0.1	-11.1

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
		1	(% v	ol)		°I	=	scf	fm		H₂O	
GEW-041R	1/14/2016 8:04	57.7	40.7	0.0	1.6	103.2		0	5	0.0	0.0	-10.7
GEW-041R	1/14/2016 8:09	58.3	39.8	0.0	1.9	103.0		16	20	0.0	0.0	-10.8
GEW-041R	1/20/2016 11:28	53.5	41.2	0.0	5.3	44.9		0	0	0.7	0.7	1.2
GEW-041R	1/20/2016 11:28	52.1	42.7	0.0	5.2	47.0		0	0	0.7	0.7	1.0
GEW-041R	1/28/2016 8:55	58.8	40.4	0.1	0.7	102.6		34	34	-0.1	-0.1	-10.8
GEW-042R	1/6/2016 14:00	55.4	40.2	0.0	4.4	111.6		27	29	-1.1	-1.0	-3.9
GEW-042R	1/14/2016 8:14	56.4	42.5	0.0	1.1	109.5		9	7	-0.7	-0.8	-3.5
GEW-042R	1/14/2016 8:18	57.2	41.3	0.0	1.5	110.1		12	15	-0.7	-0.7	-3.2
GEW-042R	1/20/2016 11:31	55.7	41.6	0.0	2.7	103.8		15	7	-0.8	-0.8	-5.6
GEW-042R	1/28/2016 9:01	58.1	38.9	0.0	3.0	94.6		11	8	-0.7	-0.8	-2.9
GEW-043R	1/6/2016 14:04	56.4	41.3	0.0	2.3	126.3		54	54	-0.9	-0.9	-10.3
GEW-043R	1/14/2016 8:48	56.2	41.9	0.0	1.9	126.5		27	27	-0.4	-0.4	-10.8
GEW-043R	1/14/2016 8:53	56.4	42.0	0.0	1.6	128.1		22	15	-0.3	-0.3	-11.1
GEW-043R	1/20/2016 11:35	55.5	41.3	0.0	3.2	128.7		16	22	0.3	0.3	-12.0
GEW-043R	1/20/2016 11:36	56.1	41.9	0.0	2.0	129.3		25	25	0.1	0.1	-12.5
GEW-043R	1/28/2016 9:02	58.1	37.6	0.0	4.3	130.8		22	30	-0.4	-0.4	-10.8
GEW-043R	1/28/2016 9:03	56.7	41.2	0.0	2.1	129.9		24	28	-0.1	-0.1	-11.1
GEW-044	1/6/2016 14:07	55.5	40.8	0.0	3.7	72.0		33	34	-1.2	-1.3	-10.8
GEW-044	1/14/2016 9:03	56.5	41.1	0.0	2.4	72.9		13	13	-0.8	-0.8	-6.2
GEW-044	1/14/2016 9:07	57.5	38.8	0.0	3.7	73.1		34	32	-0.7	-0.7	-4.0
GEW-044	1/20/2016 11:39	55.8	40.4	0.0	3.8	71.3		0	0	-0.4	-0.4	-6.8
GEW-044	1/28/2016 9:07	56.3	39.9	0.0	3.8	72.2		3	3	-0.2	-0.2	-4.7
GEW-045R	1/6/2016 14:09	56.5	41.4	0.0	2.1	79.7		16	10	-0.2	-0.1	-11.0
GEW-045R	1/14/2016 9:12	56.0	42.6	0.0	1.4	82.8		13	5	-0.1	-0.1	-10.8
GEW-045R	1/14/2016 9:17	56.6	42.2	0.0	1.2	83.2		5	11	-0.2	-0.2	-10.8
GEW-045R	1/20/2016 11:42	56.4	40.8	0.0	2.8	77.3		10	10	-0.1	-0.1	-12.2
GEW-045R	1/28/2016 9:10	56.9	40.2	0.0	2.9	82.0		7	5	0.4	0.4	-11.1
GEW-045R	1/28/2016 9:12	56.7	41.8	0.0	1.5	83.2		7	6	-0.3	-0.3	-10.9
GEW-046R	1/6/2016 14:11	54.2	41.5	0.0	4.3	88.4		12	10	0.2	0.2	-11.1
GEW-046R	1/6/2016 14:12	54.0	41.4	0.0	4.6	91.7		26	26	0.1	0.1	-11.1
GEW-046R	1/14/2016 9:22	53.8	41.4	0.0	4.8	92.9		0	0	-0.2	-0.3	-11.0
GEW-046R	1/14/2016 9:40	55.0	39.4	0.0	5.6	93.2		17	17	-0.2	-0.2	-11.1
GEW-046R	1/20/2016 11:45	53.0	41.7	0.0	5.3	91.1		0	9	-0.2	-0.2	-12.3
GEW-046R	1/28/2016 9:11	54.0	40.3	0.0	5.7	91.3		10	10	-0.2	-0.2	-11.4
GEW-047R	1/6/2016 14:33	47.1	38.4	0.0	14.5	109.0		0	0	0.0	-0.1	-10.5
GEW-047R	1/14/2016 10:21	40.4	35.2	0.1	24.3	110.2		17	16	-0.4	-0.4	-10.2
GEW-047R	1/14/2016 10:26	41.2	34.2	0.2	24.4	105.6		37	38	-0.2	-0.2	-10.8
GEW-047R	1/21/2016 13:42	56.5	38.3	0.0	5.2	63.7		0	0	0.5	0.5	-8.0
GEW-047R	1/21/2016 13:44	55.4	40.5	0.0	4.1	94.4		28	28	0.3	0.3	-7.4
GEW-047R	1/28/2016 10:01	44.7	34.9	0.3	20.1	110.4		0	0	-0.4	-0.4	-11.4
GEW-047R	1/28/2016 10:02	44.7	36.0	0.2	19.1	106.7		0	0	-0.3	-0.3	-11.7
GEW-048	1/6/2016 14:37	52.3	37.9	0.0	9.8	103.6		30	30	-0.2	-0.2	-10.5

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
	Ī	•	(% v	ol)		°I	=	scf	fm		H₂O	
GEW-048	1/14/2016 10:45	53.5	38.4	0.0	8.1	103.6		16	12	-0.3	-0.3	-9.5
GEW-048	1/14/2016 10:49	52.8	36.4	0.0	10.8	103.6		17	16	-0.2	-0.3	-6.0
GEW-048	1/21/2016 14:13	54.3	38.5	0.0	7.2	99.8		17	11	0.2	0.2	-5.4
GEW-048	1/21/2016 14:16	53.9	38.7	0.0	7.4	102.1		19	22	-0.1	-0.1	-5.8
GEW-048	1/28/2016 10:06	51.6	32.9	0.1	15.4	103.2		31	30	-0.8	-0.9	-11.0
GEW-048	1/28/2016 10:07	51.2	37.8	0.0	11.0	102.6		0	0	-0.5	-0.5	-8.6
GEW-049	1/6/2016 14:50	49.0	37.4	0.1	13.5	109.9		34	34	-1.4	-1.4	-5.9
GEW-049	1/6/2016 14:51	48.5	37.4	0.0	14.1	109.8		20	22	-1.0	-1.0	-4.5
GEW-049	1/15/2016 8:45	53.2	34.8	0.0	12.0	109.2		15	15	-0.7	-0.8	-6.2
GEW-049	1/21/2016 14:44	56.7	36.8	0.0	6.5	106.7		35	39	-0.1	-0.1	-4.6
GEW-049	1/27/2016 9:28	46.7	35.3	0.1	17.9	107.4		0	0	-0.5	-0.5	-3.6
GEW-049	1/27/2016 9:32	46.1	33.5	0.0	20.4	104.5		0	0	-0.3	-0.3	-4.8
GEW-049	1/28/2016 10:08	50.4	35.4	0.0	14.2	108.1		12	13	-0.1	-0.1	-6.2
GEW-050	1/6/2016 14:41	52.4	38.2	0.0	9.4	106.1		36	35	-0.1	0.0	-5.9
GEW-050	1/14/2016 11:00	54.0	37.4	0.0	8.6	106.3		33	33	-0.2	-0.2	-5.0
GEW-050	1/14/2016 11:03	53.4	35.7	0.0	10.9	106.3		34	34	-0.2	-0.2	-4.3
GEW-050	1/21/2016 14:30	54.7	37.7	0.0	7.6	103.2		34	0	0.0	-0.1	-4.0
GEW-050	1/28/2016 10:10	51.0	36.8	0.0	12.2	106.3		15	20	-0.3	-0.3	-8.0
GEW-051	1/6/2016 14:53	53.7	39.6	0.0	6.7	125.1		21	20	-0.3	-0.3	-10.2
GEW-051	1/15/2016 8:47	58.7	40.6	0.0	0.7	125.1		14	14	-0.6	-0.6	-11.4
GEW-051	1/21/2016 14:48	55.0	40.1	0.0	4.9	120.4		0	0	0.5	0.6	-10.3
GEW-051	1/21/2016 14:49	54.9	40.7	0.0	4.4	122.9		0	0	0.4	0.4	-10.5
GEW-051	1/27/2016 9:30	56.0	40.6	0.0	3.4	122.5		11	9	-0.4	-0.4	-10.0
GEW-051	1/27/2016 9:38	57.2	39.5	0.1	3.2	123.0		8	18	-0.3	-0.3	-10.7
GEW-052	1/6/2016 14:44	47.7	36.8	0.0	15.5	111.8		33	33	0.0	0.0	-10.3
GEW-052	1/14/2016 11:07	45.4	36.2	0.0	18.4	112.6		33	33	-0.1	-0.1	-11.1
GEW-052	1/14/2016 11:11	46.0	33.5	0.0	20.5	112.3		13	13	0.0	0.0	-11.0
GEW-052	1/21/2016 14:37	49.9	35.9	0.0	14.2	109.3		34	34	-0.1	-0.1	-10.1
GEW-053	1/6/2016 14:55	50.1	40.0	0.0	9.9	137.6		19	19	-0.3	-0.3	-10.3
GEW-053	1/6/2016 14:56	50.7	40.9	0.0	8.4	138.0		18	16	-0.3	-0.3	-10.6
GEW-053	1/15/2016 8:50	54.1	40.1	0.0	5.8	137.9		20	16	-0.8	-0.8	
GEW-053	1/15/2016 8:51	53.5	42.0	0.0	4.5	138.3		15	14	-0.8	-0.8	_
GEW-053	1/21/2016 15:09	51.7	40.7	0.0	7.6	136.6		21	16	0.0	0.0	
GEW-053	1/21/2016 15:10	51.5	41.3	0.0	7.2	136.9		13	19	0.0	0.0	-10.9
GEW-053	1/27/2016 9:37	51.4	40.8	0.0	7.8	137.3		16	18	-0.7	-0.6	-11.0
GEW-053	1/27/2016 9:40	51.0	38.0	0.0	11.0	137.3		15	19	-0.7	-0.7	-10.8
GEW-054	1/6/2016 15:00	52.5	39.3	0.0	8.2	147.6		35	36	-1.0	-1.0	-10.7
GEW-054	1/6/2016 15:00	52.7	40.8	0.0	6.5	147.6		33	27	-1.0	-1.0	-10.7
GEW-054	1/15/2016 8:54	53.0	41.4	0.0	5.6	150.5		32	35	-1.2	-1.2	-12.2
GEW-054	1/15/2016 8:54	53.3	43.4	0.0	3.3	150.5		34	35	-1.1	-1.2	-12.4
GEW-054	1/21/2016 15:15	52.8	36.9	0.0	10.3	154.7		32	37	-0.6	-0.5	-10.5
GEW-054	1/21/2016 15:17	51.5	43.4	0.0	5.1	154.9		47	41	-0.8	-0.9	-9.4

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
		1	(%	vol)		°F	=	scf	m		H₂O	
GEW-054	1/27/2016 9:49	52.9	41.7	0.0	5.4	145.1		41	41	-2.7	-2.8	-10.2
GEW-054	1/27/2016 9:56	54.5	40.6	0.2	4.7	143.9		0	0	-1.3	-1.3	-10.9
GEW-055	1/6/2016 15:02	51.1	41.8	0.0	7.1	120.2		11	13	-0.1	-0.1	-10.5
GEW-055	1/15/2016 8:57	55.4	42.7	0.0	1.9	121.2		0	0	-0.4	-0.5	-11.9
GEW-055	1/21/2016 15:19	53.4	42.4	0.0	4.2	118.8		8	7	0.2	0.2	-11.0
GEW-055	1/21/2016 15:20	53.7	42.1	0.0	4.2	121.2		31	31	0.0	0.0	-11.2
GEW-055	1/27/2016 9:47	54.6	42.1	0.0	3.3	122.1		10	11	-0.7	-0.6	-10.9
GEW-055	1/27/2016 9:51	55.0	41.8	0.0	3.2	122.8		0	0	-0.7	-0.7	-11.2
GEW-056R	1/5/2016 14:07	11.0	34.7	0.3	54.0	165.1				-6.0	-6.0	-8.7
GEW-056R	1/5/2016 14:08	11.1	36.6	0.3	52.0	165.5				-6.1	-6.0	-10.3
GEW-056R	1/11/2016 14:16	12.8	33.9	0.5	52.8	164.6				-6.8	-7.3	-13.9
GEW-056R	1/11/2016 14:16	12.6	36.0	0.5	50.9	164.6				-6.8	-7.0	-12.7
GEW-056R	1/21/2016 10:20	14.1	47.2	0.0	38.7	161.8				-6.7	-6.7	-12.0
GEW-056R	1/21/2016 10:21	16.4	43.3	0.0	40.3	162.1				-6.8	-6.8	-15.5
GEW-056R	1/26/2016 8:38	17.3	39.7	0.0	43.0	161.0				-5.1	-5.3	-10.2
GEW-056R	1/26/2016 8:47	17.7	40.3	0.1	41.9	161.4				-5.2	-5.4	-10.0
GEW-057B	1/28/2016 10:35	1.8	49.2	1.8	47.2	100.8				-7.8	-7.4	-8.0
GEW-057R	1/14/2016 14:03	0.6	56.4	1.0	42.0	161.8				-8.2	-8.2	-8.1
GEW-057R	1/14/2016 14:06	0.6	56.5	0.6	42.3	162.3				-7.8	-7.3	-7.6
GEW-058	1/14/2016 13:53	4.4	56.5	0.7	38.4	184.6				-10.7	-10.3	-10.8
GEW-058	1/14/2016 13:57	4.1	54.5	0.8	40.6	184.4				-10.3	-9.8	-10.7
GEW-058A	1/14/2016 13:47	0.6	52.0	1.3	46.1	165.9				-5.9	-6.2	-8.9
GEW-058A	1/14/2016 13:51	0.3	54.4	1.3	44.0	167.8				-5.8	-6.2	-10.5
GEW-059R	1/14/2016 14:13	1.1	57.7	0.0	41.2	186.1				-9.7	-9.7	-0.1
GEW-059R	1/14/2016 14:18	0.8	59.6	0.0	39.6	186.3				-9.3	-9.2	0.2
GEW-065A	1/14/2016 14:23	0.6	63.9	0.0	35.5	180.3				-11.1	-9.8	-10.5
GEW-065A	1/14/2016 14:27	0.4	59.1	0.2	40.3	180.8				-10.2	-11.2	-10.5
GEW-066	1/14/2016 16:17	0.0	1.3	20.5	78.2	70.2				-13.7	-13.8	-0.1
GEW-067A	1/28/2016 10:50	7.8	32.8	7.4	52.0	165.0				-0.7	-0.9	-7.0
GEW-067A	1/28/2016 10:51	7.6	35.8	7.6	49.0	158.1				-1.1	-1.4	-9.2
GEW-077	1/27/2016 11:16	0.2	56.9	3.2	39.7	65.9				-12.0	-11.8	-12.4
GEW-080	1/27/2016 11:19	0.2	35.4	14.8	49.6	49.6				-12.3	-12.7	-12.7
GEW-080	1/27/2016 11:19	0.0	20.2	15.0	64.8	51.5				-13.0	-13.3	-13.3
GEW-082R	1/14/2016 14:43	1.4	62.3	0.0	36.3	196.6				-12.7	-13.1	-15.8
GEW-082R	1/14/2016 14:47	1.8	59.3	0.0	38.9	196.6				-13.1	-12.9	-15.1
GEW-086	1/27/2016 10:52	18.5	37.5	5.2	38.8	86.8				-2.3	-2.3	-10.3
GEW-086	1/27/2016 10:52	17.0	40.1	5.2	37.7	87.0				-2.4	-2.5	-11.2
GEW-089	1/28/2016 10:41	8.0	35.0	10.6	46.4	82.6				-0.9	-0.9	-10.4
GEW-089	1/28/2016 10:42	8.8	33.8	10.3	47.1	86.1				-1.0	-1.0	-10.4
GEW-090	1/26/2016 15:14	5.8	52.4	0.3	41.5	185.2				-11.8	-13.1	-12.2
GEW-090	1/26/2016 15:22	5.3	51.4	0.2	43.1	184.7				-12.0	-13.7	-12.2
GEW-102	1/14/2016 14:33	3.7	63.8	0.0	32.5	144.0				-19.0	-18.7	-18.8

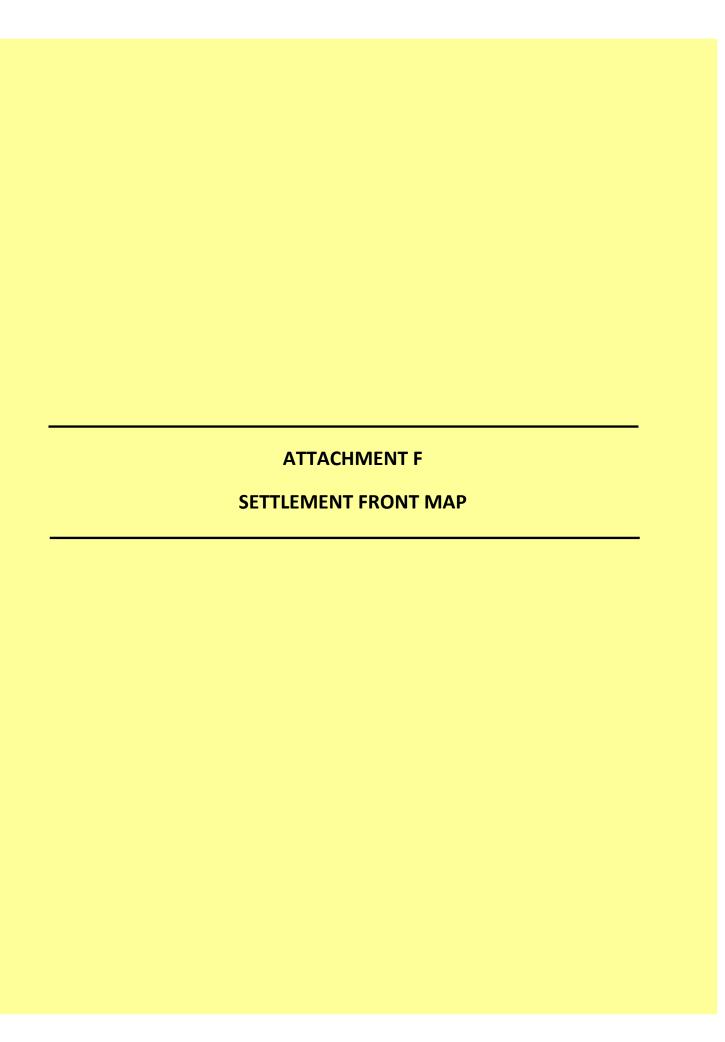

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
		<u>'</u>	(% v	ol)	•	°I	=	sci	fm		H₂O	
GEW-102	1/14/2016 14:37	3.3	57.4	0.3	39.0	142.2				-18.8	-18.9	-18.8
GEW-109	1/5/2016 14:02	8.0	51.7	0.0	40.3	61.1		3	4	-2.6	-2.6	-16.6
GEW-109	1/11/2016 14:22	6.0	41.7	4.2	48.1	47.9		5	4	-2.8	-2.8	-17.5
GEW-109	1/21/2016 10:20	9.3	49.3	0.3	41.1	25.4		4	5	-0.6	-0.6	-0.6
GEW-109	1/26/2016 8:45	2.8	36.1	8.8	52.3	32.5		6	6	-18.2	-18.2	-21.8
GEW-109	1/26/2016 8:50	2.2	20.7	12.5	64.6	32.1		7	9	-20.2	-20.2	-22.0
GEW-110	1/5/2016 14:26	4.3	27.0	10.8	57.9	79.5		10	15	-0.2	-0.2	-16.4
GEW-110	1/5/2016 14:27	4.6	29.6	11.0	54.8	79.1		7	7	-0.3	-0.3	-16.8
GEW-110	1/11/2016 14:23	10.7	23.9	12.7	52.7	51.8		12	14	-0.3	-0.3	-18.3
GEW-110	1/11/2016 14:25	6.4	22.8	12.5	58.3	51.5		11	10	-0.2	-0.2	-18.0
GEW-110	1/21/2016 10:23	5.9	29.4	14.3	50.4	97.1		8	8	-0.1	-0.1	-0.3
GEW-110	1/21/2016 10:23	5.3	25.3	14.5	54.9	98.0		8	8	-0.1	-0.1	-0.4
GEW-110	1/26/2016 9:07	4.0	24.7	12.1	59.2	87.8		10	9	-0.1	-0.1	-13.8
GEW-110	1/26/2016 9:15	4.2	24.3	12.4	59.1	88.4		2	10	-0.1	-0.2	-14.5
GEW-116	1/26/2016 14:46	4.4	57.0	2.8	35.8	35.5		3	0	-9.3	-8.8	-13.8
GEW-117	1/26/2016 14:44	5.5	56.2	2.0	36.3	57.4				-13.3	-13.3	-13.6
GEW-120	1/14/2016 9:05	16.7	65.8	0.0	17.5	172.7				-3.4	-3.4	-3.6
GEW-120	1/14/2016 9:13	16.0	64.7	0.1	19.2	173.1				-3.4	-3.4	-3.4
GEW-121	1/14/2016 9:18	4.3	60.0	0.0	35.7	186.3				-14.2	-14.8	-14.1
GEW-121	1/14/2016 9:28	4.3	58.0	0.1	37.6	186.3				-14.7	-15.1	-15.2
GEW-122	1/14/2016 10:48	4.1	57.6	0.1	38.2	190.8				-11.3	-11.3	-11.4
GEW-122	1/14/2016 10:59	4.0	54.6	0.1	41.3	190.5				-10.3	-10.7	-10.7
GEW-123	1/14/2016 9:35	9.6	49.5	4.2	36.7	170.7				-17.0	-16.7	-17.2
GEW-123	1/14/2016 9:37	10.2	53.0	4.3	32.5	170.8				-16.3	-16.6	-15.9
GEW-124	1/14/2016 11:05	3.9	50.8	3.1	42.2	83.7				-16.6	-16.5	-16.4
GEW-124	1/15/2016 10:32	7.7	62.4	0.1	29.8	157.6				-16.0	-16.0	-16.1
GEW-124	1/15/2016 10:40	7.1	57.4	0.1	35.4	157.5				-15.6	-16.3	-15.7
GEW-125	1/14/2016 11:09	0.2	57.9	0.2	41.7	190.2				-16.4	-16.3	-16.4
GEW-125	1/14/2016 11:11	0.3	59.0	0.1	40.6	190.2				-16.2	-16.3	-16.1
GEW-125	1/15/2016 10:23	0.2	24.9	6.9	68.0	71.2				-16.7	-17.0	-17.0
GEW-125	1/15/2016 10:25	0.2	26.0	6.4	67.4	70.0				-17.0	-17.3	-17.2
GEW-126	1/14/2016 11:18	7.2	54.2	0.0	38.6	189.1				-17.1	-17.1	-16.7
GEW-126	1/14/2016 11:27	6.4	51.7	0.1	41.8	189.1				-16.5	-16.7	-16.1
GEW-127	1/14/2016 11:32	0.6	58.7	0.3	40.4	183.0				-16.1	-15.7	-16.7
GEW-127	1/14/2016 11:33	0.3	63.0	0.1	36.6	183.0				-15.2	-16.2	-16.7
GEW-127	1/14/2016 15:24	0.2	62.0	0.1	37.7	184.6				-16.8	-16.8	-17.2
GEW-127	1/14/2016 15:33	0.2	65.1	0.2	34.5	184.6				-15.7	-17.3	-16.7
GEW-128	1/14/2016 11:38	1.4	59.5	0.2	38.9	180.8				-16.8	-16.6	-17.2
GEW-128	1/14/2016 11:40	1.3	60.7	0.1	37.9	180.8				-16.2	-15.9	-16.9
GEW-128	1/14/2016 15:12	1.5	61.7	0.2	36.6	181.9				-15.1	-15.1	-16.7
GEW-128	1/14/2016 15:20	1.4	61.8	0.2	36.6	181.9			·	-15.4	-16.2	-17.4
GEW-129	1/14/2016 11:44	1.2	57.0	0.1	41.7	165.4				-12.3	-12.3	-16.9

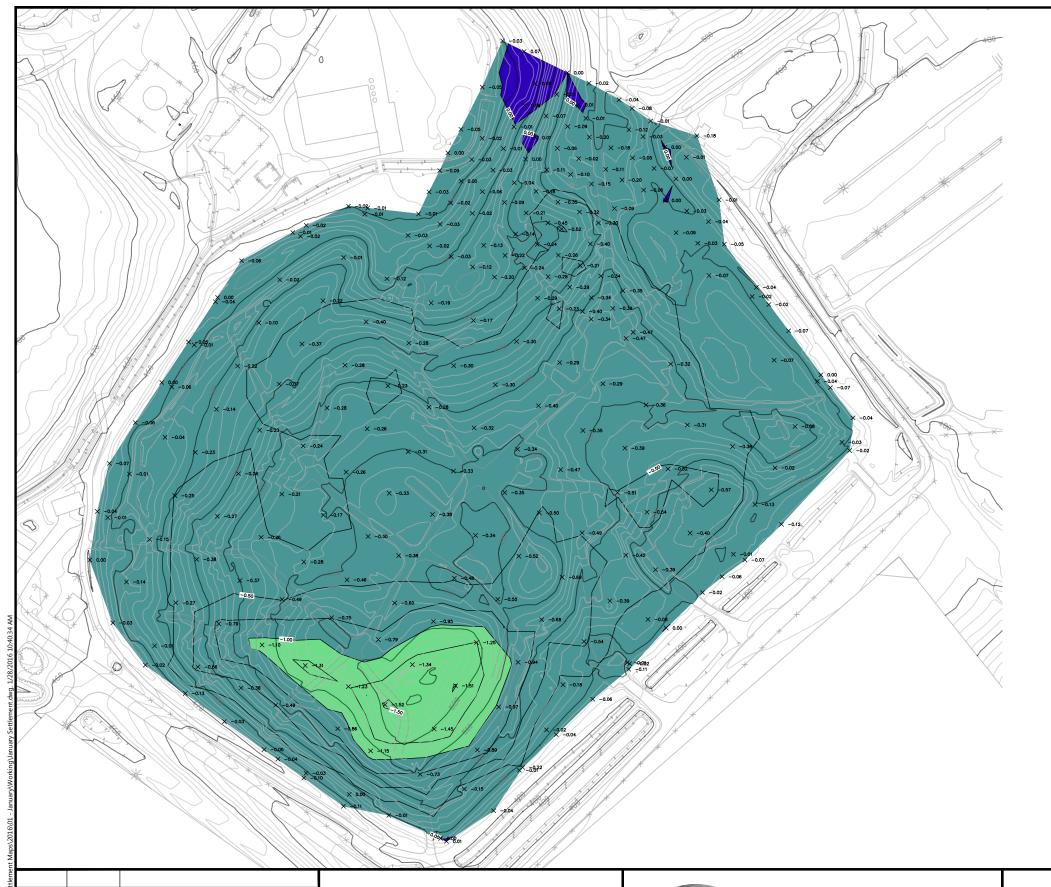
Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
		•	(% v	ol)	•	°I	=	sc	fm		H₂O	
GEW-129	1/14/2016 11:46	1.3	60.4	0.0	38.3	165.0				-14.7	-15.7	-16.6
GEW-129	1/14/2016 14:57	1.2	60.6	0.1	38.1	165.0				-16.3	-16.3	-17.4
GEW-129	1/14/2016 15:08	0.9	63.7	0.1	35.3	165.0				-13.9	-14.5	-14.8
GEW-131	1/26/2016 14:53	15.4	54.8	0.0	29.8	177.2				-7.0	-7.0	-13.1
GEW-131	1/26/2016 15:01	16.1	53.1	0.1	30.7	177.2				-7.6	-7.6	-13.1
GEW-132	1/14/2016 9:43	9.2	48.0	2.9	39.9	171.7				-14.4	-14.7	-15.5
GEW-132	1/14/2016 9:54	10.0	50.4	2.8	36.8	171.7				-13.7	-13.7	-13.7
GEW-133	1/14/2016 8:57	0.5	34.6	10.1	54.8	63.3		8	6	-16.7	-16.8	-16.7
GEW-133	1/14/2016 8:59	1.0	49.8	4.0	45.2	64.7		9	2	-16.8	-17.1	-17.2
GEW-134	1/14/2016 8:44	18.0	54.8	0.4	26.8	162.3				-17.3	-17.1	-17.4
GEW-134	1/14/2016 8:52	18.3	55.4	0.4	25.9	163.2				-17.1	-17.1	-17.6
GEW-135	1/14/2016 8:37	5.1	42.4	6.1	46.4	155.4				-13.7	-10.4	-16.4
GEW-135	1/14/2016 8:38	5.4	41.8	6.2	46.6	154.1				-12.2	-11.5	-10.7
GEW-136	1/14/2016 8:29	3.4	26.8	12.9	56.9	112.8				-13.7	-13.7	-14.0
GEW-136	1/14/2016 8:31	2.9	23.8	13.6	59.7	111.6				-6.9	-6.8	-16.9
GEW-137	1/14/2016 8:07	13.5	35.4	0.5	50.6	119.4				-14.7	-14.7	-15.0
GEW-137	1/14/2016 8:23	13.3	36.3	0.4	50.0	121.5				-14.7	-14.4	-15.0
GEW-138	1/15/2016 10:49	14.3	49.5	1.5	34.7	148.5				-2.8	-2.8	-14.7
GEW-138	1/15/2016 10:58	14.4	49.1	1.6	34.9	152.9				-2.7	-2.7	-14.1
GEW-139	1/14/2016 11:57	1.9	53.2	1.3	43.6	183.0				-7.9	-7.7	-14.9
GEW-139	1/14/2016 11:58	2.0	55.4	1.3	41.3	183.0				-10.7	-10.7	-14.9
GEW-139	1/14/2016 14:31	2.0	52.4	1.6	44.0	181.0				-11.5	-11.5	-15.5
GEW-139	1/14/2016 14:40	1.8	55.0	1.7	41.5	181.2				-11.0	-11.4	-15.2
GEW-140	1/15/2016 12:26	2.4	60.3	0.0	37.3	160.5				18.2	18.2	18.5
GEW-140	1/15/2016 12:36	2.4	56.9	0.2	40.5	137.3				19.0	19.0	19.1
GEW-141	1/14/2016 11:51	1.4	57.9	0.1	40.6	154.5				-17.6	-17.3	-17.5
GEW-141	1/14/2016 11:52	1.4	61.0	0.1	37.5	157.5				-17.9	-17.4	-17.2
GEW-141	1/14/2016 14:45	1.1	58.7	0.2	40.0	157.9				-17.9	-18.2	-17.7
GEW-141	1/14/2016 14:53	1.4	59.7	0.3	38.6	153.7				-17.7	-18.2	-17.7
GEW-142	1/15/2016 11:12	0.3	54.8	0.1	44.8	88.2				7.1	7.1	7.2
GEW-142	1/15/2016 11:14	0.2	60.3	0.0	39.5	88.0				7.4	7.4	7.4
GEW-143	1/15/2016 11:18	0.2	51.4	3.6	44.8	94.2				-17.5	-17.2	-17.6
GEW-143	1/15/2016 11:19	0.2	51.3	3.1	45.4	93.6				-17.4	-17.2	-17.4
GEW-144	1/15/2016 11:28	0.4	32.3	11.5	55.8	70.2				-12.6	-11.3	-12.7
GEW-144	1/15/2016 11:29	0.4	34.8	10.4	54.4	70.7				-13.6	-13.6	-14.1
GEW-145	1/29/2016 11:50	0.0	6.0	21.8	72.2	80.3				-15.6	-16.6	-16.5
GEW-145	1/29/2016 11:52	0.0	3.8	22.1	74.1	86.0				-16.1	-15.6	-16.4
GEW-146	1/15/2016 11:03	7.2	31.5	9.0	52.3	69.5				-7.3	-7.7	-15.8
GEW-146	1/15/2016 11:05	7.3	30.0	9.0	53.7	70.0				-9.7	-9.6	-14.1
GEW-147	1/15/2016 12:01	5.9	54.7	0.1	39.3	191.6				-16.7	-17.0	-16.5
GEW-147	1/15/2016 12:12	5.6	56.1	0.2	38.1	191.9				-16.6	-16.5	-17.0
GEW-148	1/27/2016 11:12	0.4	21.2	15.4	63.0	43.7				-11.8	-12.2	-12.5

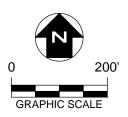
Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
			(% v	/ol)		°	-	scf	m		H₂O	
GEW-148	1/27/2016 11:12	0.4	20.3	15.3	64.0	45.2				-11.8	-12.3	-12.1
GEW-149	1/15/2016 11:53	10.4	32.0	9.0	48.6	123.7		27	28	-1.3	-1.2	-18.0
GEW-149	1/15/2016 11:54	10.0	33.4	8.8	47.8	120.7		15	17	-0.5	-0.5	-18.0
GEW-150	1/14/2016 11:35	6.4	66.0	0.0	27.6	184.6				-8.0	-8.0	-7.8
GEW-150	1/14/2016 11:40	3.3	67.1	0.0	29.6	184.1				-8.5	-8.0	-8.9
GEW-151	1/27/2016 11:06	0.8	26.1	11.8	61.3	47.2				-10.8	-10.8	-11.3
GEW-151	1/27/2016 11:06	0.5	26.8	11.4	61.3	47.3				-9.1	-10.5	-9.7
GEW-154	1/15/2016 11:39	20.8	35.3	1.2	42.7	51.5		8	15	-12.4	-12.7	-12.5
GEW-154	1/15/2016 11:47	23.2	34.3	1.2	41.3	48.9		15	9	-15.4	-15.6	-15.9
GEW-155	1/14/2016 7:58	5.6	26.9	10.6	56.9	111.1				-1.4	-1.3	-13.3
GEW-155	1/14/2016 7:59	5.5	27.0	10.6	56.9	111.6				-1.4	-1.4	-12.8
GEW-156	1/14/2016 11:45	8.3	27.5	11.7	52.5	101.9				-1.1	-1.1	-10.6
GEW-156	1/14/2016 11:45	8.7	26.4	11.8	53.1	102.0				-1.2	-1.1	-9.9
GIW-01	1/5/2016 14:28	5.7	47.9	4.9	41.5	183.0		45	45	-14.4	-14.4	-15.5
GIW-01	1/11/2016 14:32	2.9	46.3	4.9	45.9	166.9		0	27	-16.7	-16.7	-17.0
GIW-01	1/11/2016 14:33	2.8	46.1	4.9	46.2	166.6		13	8	-16.7	-16.7	-17.5
GIW-01	1/21/2016 10:05	0.7	23.1	15.4	60.8	143.6		46	14	-12.6	-13.7	-16.2
GIW-01	1/21/2016 10:06	0.5	19.6	16.1	63.8	143.6		38	41	-12.6	-13.1	-16.3
GIW-01	1/26/2016 11:24	0.5	17.8	18.6	63.1	146.6		0	21	-9.8	-8.9	-13.3
GIW-01	1/26/2016 11:27	0.6	18.6	18.9	61.9	147.2		0	0	-7.9	-8.4	-13.2
GIW-02	1/5/2016 14:13	0.3	44.9	7.5	47.3	54.1		9	8	-0.9	-0.9	-16.3
GIW-02	1/5/2016 14:14	0.3	43.7	7.4	48.6	54.3		7	7	-1.1	-1.0	-16.7
GIW-02	1/14/2016 15:33	1.0	59.5	3.5	36.0	75.5		24	15	-3.1	-3.7	-16.3
GIW-02	1/21/2016 9:59	0.2	35.2	19.0	45.6	26.6		0	0	-1.0	-1.0	-16.0
GIW-02	1/21/2016 10:00	0.0	20.8	20.7	58.5	26.7		0	0	-0.8	-0.8	-16.5
GIW-02	1/26/2016 11:15	6.8	30.9	10.1	52.2	54.9		26	30	-9.8	-9.9	-14.3
GIW-02	1/26/2016 11:22	6.9	29.2	10.4	53.5	54.9		93	88	-9.1	-9.6	-13.7
GIW-03	1/5/2016 14:10	0.1	19.3	9.6	71.0	49.4		15	8	-1.2	-1.3	-15.7
GIW-03	1/5/2016 14:11	0.4	29.1	8.6	61.9	51.2		0	0	-1.2	-1.1	-15.3
GIW-03	1/14/2016 15:31	1.1	65.5	0.1	33.3	75.0		12	12	0.9	0.8	-16.2
GIW-03	1/14/2016 15:32	1.1	64.5	0.0	34.4	75.2		0	0	-0.7	-0.5	-16.8
GIW-03	1/21/2016 9:58	0.5	41.2	7.0	51.3	27.6		0	10	-1.9	-1.9	-15.8
GIW-03	1/21/2016 9:58	0.4	46.4	6.5	46.7	28.0		9	10	-1.9	-2.0	-16.3
GIW-03	1/26/2016 11:03	0.6	53.4	4.5	41.5	35.9		18	10	-0.9	-1.1	-13.7
GIW-03	1/26/2016 11:09	0.2	47.6	4.8	47.4	36.0		0	0	-1.1	-1.1	-13.9
GIW-04	1/5/2016 14:07	0.7	23.0	17.8	58.5	49.3		0	0	-3.3	-3.3	-15.3
GIW-04	1/5/2016 14:08	0.2	18.8	18.1	62.9	50.6		0	0	-4.1	-4.2	-15.3
GIW-04	1/14/2016 15:28	0.3	13.3	17.7	68.7	71.4		0	0	-3.1	-3.1	-16.6
GIW-04	1/14/2016 15:28	0.2	8.3	17.4	74.1	72.3		8	6	-4.0	-4.0	-16.9
GIW-04	1/21/2016 9:54	1.8	20.3	20.6	57.3	22.6		0	0	-3.0	-3.0	-15.9
GIW-04	1/21/2016 9:54	0.6	14.0	20.8	64.6	23.1		0	0	-4.3	-4.3	-16.1
GIW-04	1/26/2016 10:48	0.6	44.0	3.6	51.8	33.3		9	9	-7.7	-7.8	-13.7

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
	Ī		(% v	ol)		٥	=	scf	m		H₂O	1
GIW-04	1/26/2016 10:57	0.7	42.5	3.7	53.1	33.3		9	11	-9.6	-9.6	-14.5
GIW-05	1/5/2016 14:18	2.3	57.2	0.2	40.3	51.7		14	13	15.2	15.6	-15.5
GIW-05	1/5/2016 14:19	2.5	61.3	0.0	36.2	55.8		22	22	8.4	8.4	-15.8
GIW-05	1/11/2016 14:28	9.5	35.3	3.6	51.6	43.1		0	33	-15.8	-15.8	-17.5
GIW-05	1/21/2016 10:17	2.5	59.1	0.0	38.4	25.7		0	0	-8.9	-8.9	-15.2
GIW-05	1/26/2016 10:26	2.1	56.2	2.5	39.2	33.4		38	19	-10.9	-10.4	-11.7
GIW-05	1/26/2016 10:31	2.4	57.3	1.7	38.6	33.3		0	4	-10.4	-10.4	-11.5
GIW-06	1/5/2016 13:54	1.1	33.3	1.1	64.5	47.3		19	0	-15.5	-15.3	-15.0
GIW-06	1/14/2016 15:46	3.3	57.7	2.1	36.9	73.6		0	0	-14.1	-14.1	-16.8
GIW-06	1/21/2016 10:05	5.9	52.3	0.0	41.8	26.3		8	8	-0.1	-0.1	-16.4
GIW-06	1/27/2016 11:33	1.4	58.4	0.0	40.2	46.2		0	7	-12.2	-11.7	-11.8
GIW-06	1/27/2016 11:40	1.4	56.4	0.3	41.9	46.6		7	0	-10.8	-10.7	-12.2
GIW-07	1/5/2016 13:56	1.2	60.9	0.5	37.4	50.5		10	11	-12.8	-12.7	-15.2
GIW-07	1/14/2016 15:44	2.8	55.8	2.7	38.7	73.4		34	0	-16.1	-15.7	-16.8
GIW-07	1/21/2016 10:16	2.6	38.2	3.4	55.8	24.8		12	12	-7.9	-7.9	-15.0
GIW-07	1/27/2016 11:19	29.8	55.3	0.6	14.3	51.9		6	0	-11.2	-11.2	-13.9
GIW-07	1/27/2016 11:27	30.0	55.3	0.5	14.2	51.6		7	8	-11.2	-10.9	-13.1
GIW-08	1/5/2016 13:59	3.6	42.6	10.9	42.9	59.1				-5.3	-5.4	-15.4
GIW-08	1/5/2016 13:59	4.3	38.2	11.1	46.4	59.1				-5.8	-6.1	-16.0
GIW-08	1/14/2016 15:39	3.4	15.2	12.4	69.0	81.0				-3.1	-2.2	-16.8
GIW-08	1/14/2016 15:40	3.4	15.0	12.4	69.2	81.0				-2.8	-2.8	-16.6
GIW-08	1/21/2016 10:11	9.1	26.9	15.1	48.9	40.6				-8.4	-9.8	-16.5
GIW-08	1/21/2016 10:12	8.7	26.8	13.4	51.1	40.6				-9.6	-6.7	-16.3
GIW-08	1/27/2016 11:07	26.3	54.4	0.1	19.2	48.9				-10.4	-10.1	-16.1
GIW-08	1/27/2016 11:14	26.5	54.3	0.1	19.1	48.0				-10.3	-10.4	-14.2
GIW-09	1/5/2016 14:01	8.1	19.4	14.5	58.0	59.7				-7.5	-7.3	-16.2
GIW-09	1/5/2016 14:02	8.3	18.8	14.5	58.4	60.2				-9.3	-5.8	-15.2
GIW-09	1/14/2016 15:37	2.8	27.7	11.7	57.8	81.3				-3.1	-3.1	-16.7
GIW-09	1/14/2016 15:37	2.9	17.2	12.3	67.6	81.3				-3.1	-3.1	-17.0
GIW-09	1/21/2016 10:09	9.5	32.2	12.3	46.0	40.1				-9.0	-8.9	-16.4
GIW-09	1/21/2016 10:10	10.0	29.3	12.7	48.0	40.5				-7.4	-7.5	-16.2
GIW-09	1/27/2016 10:52	11.7	33.1	9.1	46.1	63.5				-4.5	-4.6	-11.2
GIW-09	1/27/2016 10:59	11.7	31.7	9.9	46.7	63.0				-4.5	-4.2	-14.7
GIW-10	1/5/2016 14:04	8.7	17.4	13.2	60.7	48.6		0	0	-7.8	-7.8	-15.5
GIW-10	1/5/2016 14:05	3.6	18.6	10.8	67.0	49.8		4	3	-11.2	-11.2	-15.9
GIW-10	1/14/2016 15:25	0.6	35.1	7.5	56.8	72.5		4	6	-13.6	-13.6	-16.9
GIW-10	1/14/2016 15:26	0.7	35.3	6.5	57.5	71.9		6	9	-15.9	-15.9	-16.4
GIW-10	1/21/2016 10:04	6.5	51.2	0.2	42.1	25.2		8	11	-0.1	-0.1	-15.6
GIW-10	1/26/2016 10:31	0.4	37.3	7.4	54.9	33.5		6	8	-11.9	-11.9	-11.9
GIW-10	1/26/2016 10:39	0.4	21.1	10.4	68.1	33.4		9	8	-12.8	-12.7	-14.2
GIW-11	1/5/2016 14:22	2.7	55.8	4.4	37.1	61.0				-4.4	-4.4	-16.0
GIW-11	1/11/2016 14:30	4.3	47.2	4.7	43.8	57.6				-4.9	-4.8	-17.5

Well Name	Date Sampled	Methane	CO ₂	O ₂	Balance Gas	Init Temp	Adj Temp	Init Flow	Adj Flow	Init Static Press	Adj Static Press	System Pressure
		(% vol)		°F		scfm		H₂O				
GIW-11	1/21/2016 9:53	7.6	32.3	5.8	54.3	43.5				-5.0	-5.0	-16.2
GIW-11	1/21/2016 9:54	6.3	38.2	5.4	50.1	43.8				-5.0	-5.0	-15.9
GIW-11	1/26/2016 10:41	4.1	48.4	4.3	43.2	46.4				-3.9	-3.9	-13.6
GIW-11	1/26/2016 10:44	3.0	38.5	4.7	53.8	46.6				-3.9	-3.9	-13.4
GIW-12	1/5/2016 14:23	2.3	41.7	10.4	45.6	65.4				-3.0	-3.0	-15.7
GIW-12	1/5/2016 14:24	1.8	31.0	11.3	55.9	65.6				-3.0	-3.0	-16.2
GIW-12	1/11/2016 14:31	2.1	25.0	11.9	61.0	65.1				-3.3	-3.3	-17.5
GIW-12	1/11/2016 14:32	2.2	18.8	12.5	66.5	65.4				-3.3	-3.3	-17.1
GIW-12	1/21/2016 9:57	6.8	23.6	9.1	60.5	53.7				-2.9	-3.0	-15.7
GIW-12	1/21/2016 9:58	7.7	20.9	9.3	62.1	53.9				-3.0	-3.0	-15.5
GIW-12	1/26/2016 10:57	4.3	22.5	11.2	62.0	56.1				-2.6	-2.6	-14.1
GIW-12	1/26/2016 11:00	3.7	19.6	11.8	64.9	55.8				-2.6	-2.5	-13.0
GIW-13	1/5/2016 14:26	14.7	47.6	0.6	37.1	57.0				-12.6	-12.7	-12.4
GIW-13	1/11/2016 14:28	16.9	50.7	0.6	31.8	44.1				-13.4	-13.2	-13.4
GIW-13	1/21/2016 10:01	16.6	54.1	0.3	29.0	32.1				-11.2	-11.1	-11.3
GIW-13	1/26/2016 11:12	12.7	57.4	0.3	29.6	35.7				-9.8	-9.9	-9.8
GIW-13	1/26/2016 11:17	12.3	52.8	0.3	34.6	35.7				-9.3	-9.3	-9.4
LCS-5A	1/6/2016 14:58	53.8	42.4	0.0	3.8	91.2				-10.3	-10.3	-10.9
LCS-5A	1/13/2016 13:47	61.1	38.9	0.0	0.0	91.0				-10.3	-10.3	-10.6
LCS-5A	1/21/2016 15:13	57.4	40.1	0.0	2.5	88.7				-10.1	-9.8	-10.1
LCS-6B	1/6/2016 14:30	51.2	40.4	0.4	8.0	60.1		7	7	-1.4	-1.3	-10.3
LCS-6B	1/13/2016 13:51	54.1	38.9	0.4	6.6	59.9		5	5	-0.5	-0.5	-11.2
LCS-6B	1/21/2016 13:35	53.7	38.3	0.8	7.2	36.4		9	9	-0.5	-0.6	-7.9
PGW-60	1/4/2016 8:16	55.8	44.1	0.1	0.0	39.8		10	13	-0.4	-0.3	-8.3
PGW-60	1/20/2016 11:51	61.5	34.0	0.6	3.9	39.3		30	30	-1.0	-1.0	-12.2
PGW-60	1/28/2016 9:18	61.0	37.4	0.3	1.3	49.6		13	7	21.6	21.8	-11.5
PGW-60	1/28/2016 9:19	58.9	39.7	0.1	1.3	48.9		0	11	4.3	4.2	-11.6
SEW-002	1/26/2016 14:06	1.6	11.8	13.5	73.1	36.3		9	0	-12.7	-12.8	-14.1
SEW-002	1/26/2016 14:07	1.6	26.7	11.3	60.4	36.4		4	0	-12.7	-12.8	-14.3
T-56	1/14/2016 10:57	47.8	34.3	0.6	17.3	47.7		21	23	-0.1	-0.1	-10.7


Well Name	Maximum Initial Temperature From All Monthly Wellhead Readings (in °F)				Temp Trend	Comments
	October 2015	November 2015	December 2015	Janaury 2016	><30°F	
GEW-001						
GEW-002	119.9	116.5	122.0	124.9		
GEW-003	119.4	117.3	111.9	113.3		
GEW-004	121.0	120.4	115.0	117.8		
GEW-005	97.3	97.9	93.4	95.6		
GEW-006	94.0	95.0	84.0	89.9		
GEW-007	99.2	96.9	90.5	96.4		
GEW-008	115.0	114.3	111.8	112.5		
GEW-009	126.3	125.4	124.5	122.3		
GEW-010	100.4	77.3	59.9	63.3		
GEW-011		51.5				
GEW-013A						
GEW-014A						
GEW-015						
GEW-016R						
GEW-018B						
GEW-018R		150.1				
GEW-019A						
GEW-020A	110.6	146.2	90.0			
GEW-021A		156.2				
GEW-022R	193.7	192.5	170.0	192.8		
GEW-023A						
GEW-024A						
GEW-025A						
GEW-026R	68.0					
GEW-027A			90.0			
GEW-028R	194.8	195.1	150.0	178.2		
GEW-029						
GEW-030R						
GEW-033R						
GEW-034						
GEW-034A						
GEW-035						
GEW-036						
GEW-037						
GEW-038	101.7	108.6	59.9	50.9		
GEW-039	136.0	136.6	136.0	134.1		
GEW-040	94.8	93.4	87.4	86.9		
GEW-041R	107.2	108.7	95.2	103.2		
GEW-042R	105.2	110.4	99.9	111.6		
GEW-043R	130.5	138.3	127.0	130.8		
GEW-044	90.3	95.6	80.0	73.1		
GEW-045R	92.9	92.1	75.0	83.2		
GEW-046R	100.0	100.1	81.2	93.2		


Well Name	Maximum Initial T	emperature From / °F)	Temp Trend	Comments		
	October 2015	November 2015	December 2015	Janaury 2016	><30°F	
GEW-047R	115.7	115.0	103.5	110.4		
GEW-048	107.0	105.8	101.3	103.6		
GEW-049	113.2	112.5	100.7	109.9		
GEW-050	108.6	109.7	101.5	106.3		
GEW-051	128.0	125.8	122.1	125.1		
GEW-052	115.0	114.7	109.0	112.6		
GEW-053	140.7	139.3	144.0	138.0		
GEW-054	150.9	144.0	147.7	154.9		
GEW-055	129.9	125.1	116.8	122.8		
GEW-056R	171.6	168.8	165.9	165.5		
GEW-057B	158.4	80.0	167.0	100.8	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
GEW-057R	188.5	176.7	185.0	162.3		
GEW-058	187.9	185.7	172.0	184.6		
GEW-058A	181.9	164.0	188.0	167.8		
GEW-059R	186.3	186.8	142.0	186.3		
GEW-061B	92.8	55.3	44.0			
GEW-064A						
GEW-065A	194.2	191.3	192.0	180.8		
GEW-066				70.2		
GEW-067A	186.3	160.0	189.1	165.0		
GEW-068A						
GEW-069R						
GEW-070R						
GEW-071						
GEW-071B						
GEW-072RR						
GEW-073R						
GEW-075						
GEW-076R						
GEW-077	184.1	90.0	111.0	65.9	\	
GEW-078R					7	
GEW-080	90.7	40.0	50.0	51.5		
GEW-081						
GEW-082R	192.5	194.9	180.0	196.6		
GEW-083						
GEW-084						
GEW-085						
GEW-086	106.0	97.1	110.0	87.0		
GEW-087						
GEW-088						
GEW-089	93.6	80.0	55.0	86.1		
GEW-090	189.6	187.4	173.0	185.2	*	
GEW-091						
GEW-100						
GEW-101						


Well Name	Maximum Initial Temperature From All Monthly Wellhead Readings (in °F)				Temp Trend	Comments
	October 2015	November 2015	December 2015	Janaury 2016	><30°F	
GEW-102	85.6	148.8	188.0	144.0		
GEW-103						
GEW-104	97.3	81.5	55.0			
GEW-105	95.2	75.0	45.0			
GEW-106						
GEW-107	89.5	40.0				
GEW-108						
GEW-109	180.9	81.9	102.6	61.1	•	
GEW-110	120.2	133.0	95.6	98.0		
GEW-112						
GEW-113						
GEW-116	88.9	82.5	77.0	35.5		
GEW-117	82.4	115.5	70.0	57.4		
GEW-118						
GEW-120	177.7	186.8	171.2	173.1		
GEW-121	189.1	189.1	187.4	186.3		
GEW-122	183.5	184.6	193.7	190.8		
GEW-123	190.7	193.7	192.6	170.8		
GEW-124	166.4	163.2	111.6	157.6		
GEW-125	91.3	191.9	192.6	190.2		
GEW-126	193.3	191.3	184.6	189.1		
GEW-127	176.2	188.0	186.3	184.6		
GEW-128	182.4	183.5	182.2	181.9		
GEW-129	162.2	159.6	166.4	165.4		
GEW-130						
GEW-131	175.8	161.1	125.1	177.2		
GEW-132	177.7	182.5	181.4	171.7		
GEW-133	103.2	71.2	71.4	64.7		
GEW-134	173.6	176.2	168.3	163.2		
GEW-135	186.3	186.8	178.7	155.4		
GEW-136	134.7	184.6	136.6	112.8		
GEW-137	120.2	115.5	120.1	121.5		
GEW-138	162.7	164.5	157.0	152.9		
GEW-139	188.3	188.5	184.6	183.0		
GEW-140	184.6	185.7	183.0	160.5		
GEW-141	147.7	153.7	148.5	157.9		
GEW-142	159.6	115.2	104.2	88.2		
GEW-143	118.3	109.0	103.0	94.2		
GEW-144	109.0	98.3	71.9	70.7		
GEW-145	85.6	144.2	137.6	86.0		
GEW-146	99.0	89.7	77.3	70.0		
GEW-147	190.2	191.3	184.1	191.9		
GEW-148	172.3	71.4	136.3	45.2		
GEW-149	153.3	172.6	171.7	123.7		
GEW-150	172.7	182.4	136.3	184.6		

Well Name	Maximum Initial Temperature From All Monthly Wellhead Readings (in °F)				Temp Trend	Comments	
	October 2015	November 2015	December 2015	Janaury 2016	><30°F		
GEW-151	93.6	189.2	171.2	47.3			
GEW-152	179.8	192.5					
GEW-153	136.2	130.5	46.2				
GEW-154	191.9	184.1	144.7	51.5			
GEW-155	120.4	122.6	108.6	111.6			
GEW-156	160.1	118.6	124.0	102.0			
GIW-01	188.5	189.1	189.6	183.0			
GIW-02	91.1	77.3	63.8	75.5			
GIW-03	89.6	74.8	63.5	75.2			
GIW-04	92.7	71.2	61.9	72.3			
GIW-05	88.7	61.8	59.3	55.8			
GIW-06	87.5	72.2	60.5	73.6			
GIW-07	89.5	69.5	59.6	73.4			
GIW-08	86.0	68.5	59.2	81.0			
GIW-09	88.3	78.6	66.8	81.3			
GIW-10	90.7	70.9	60.2	72.5			
GIW-11	93.2	74.9	62.2	61.0			
GIW-12	96.2	83.6	74.7	65.6			
GIW-13	87.8	71.7	60.0	57.0			
LCS-1D							
LCS-2D							
LCS-3C							
LCS-4B							
LCS-5A	94.6	94.7	90.0	91.2			
LCS-6B	88.8	79.8	73.0	60.1			
PGW-60	88.3	81.9	60.0	49.6			
SEW-002	78.0	54.3	38.0	36.4			
SEW-012A							
SEW-017R							
SEW-031R							
SEW-032R							
SEW-060R							
SEW-061R							
SEW-062R							
SEW-063							
SEW-064							
SEW-067							
SEW-072R							
SEW-074							
SEW-079R							
T-56	77.0	69.4	40.0	47.7			

^{-- =} Indicates no data available.

NOTES

- EXISTING CONTOURS DEVELOPED FROM SITE AERIAL TOPOGRAPHIC SURVEY BY COOPER AERIAL SURVEYS, CO. ON FEBRUARY 10, 2015.
- 2. FOR CLARITY, NOT ALL SITE FEATURES MAY BE SHOWN.
- ELEVATION DIFFERENCE DETERMINED BY SUBTRACTING SPOT ELEVATIONS SURVEYED ON 12-15-15 FROM SPOT ELEVATIONS SURVEYED ON 1-18-16.
- 4. SURVEY POINTS WERE PERFORMED USING GPS METHODS.
- SETTLEMENT RANGE SURFACE WAS GENERATED FROM THE SPOT ELEVATION DIFFERENCES.
- 6. ELEVATION DIFFERENCES THAT ARE SHOWN AS NEGATIVE INDICATE SPOTS OF SETTLEMENT.
- ANY POINTS THAT ARE NOT A GROUND-TO-GROUND COMPARISON TO THE PREVIOUS MONTH'S POINTS, OR THAT WERE NOT SURVEYED IN THE SAME LOCATION AS THE PREVIOUS MONTH ARE NOT INCLUDED AND WERE NOT USED IN ANY SURFACE GENERATION.

LEGEND

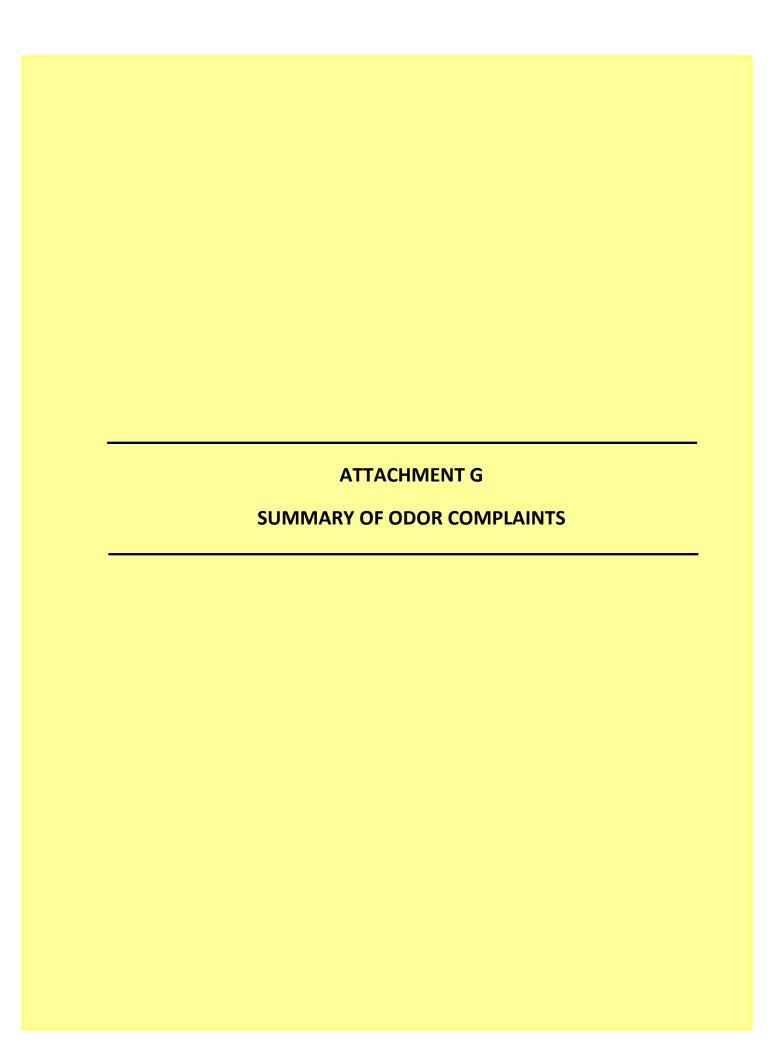
SPOT ELEVATION DIFFERENCE (1-18-16 TO 12-15-15) MINOR ELEVATION CHANGE CONTOUR (0.25 FEET) MAJOR ELEVATION CHANGE CONTOUR (0.50 FEET) SETTLEMENT FRONT CONTOUR FOR AREA WITH 1.35' PER 30 DAYS FOR CURRENT PERIOD OF DAYS (AREA REPRESENTS 1.53' OVER 34 DAYS BASED ON CONVERSION)

ELEVATION CHANGE (FEET)								
Number	Minimum Elev. Change	Area (sq.ft.)	Color					
1	-5.00	-4.00	0.00					
2	-4.00	-3.00	0.00					
3	-3.00	-2.00	0.00					
4	-2.00	-1.00	90613.35					
5	-1.00	0.00	1433658.10					
6	0.00	1.00	16248.61					

BRIDGETON LANDFILL

DESCRIPTION

REV. NO. DATE


CB&I Environmental & Infrastructure, Inc.

CB&I Environmental & Infrastructure, Inc. has prepared this document for a specific project or purpose. All information contained within this document is copyrighted and remains intellectual property of CB&I Environmental & Infrastructure, Inc. This document may not be used or copied, in part or in whole, for any reason without expressed written consent by CB&I Environmental & Infrastructure, Inc

BRIDGETON LANDFILL BRIDGETON, MO

SETTLEMENT MAP DECEMBER 15, 2015 THROUGH JANUARY 18, 2016

ORC APPROVED BY: JPV PROJ. NO.: DATE: FEBRUARY 2016 DRAWN BY:

January 1, 2015 – January 31, 2015 / MDNR ODOR COMPLAINTS

Name: Dan Hofmann

Message: Odor logged January 1, 2016, at 9:00 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol overlapped with the time of observation cited in this concern. No odor associated with the Bridgeton Landfill was observed. The concern location cited is directly adjacent to another known odor source and of significant distance from the Bridgeton Landfill. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 2, 2016, at 7:17 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Winds were of a persistent western origin on this date, placing this location upwind from the Bridgeton Landfill. No odor related to the Bridgeton Landfill was observed during the odor patrols performed on this date. This was not a Bridgeton Landfill odor.

Name: Caitlyn Williams

Message: Odor logged January 2, 2016, at 7:33 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Winds were of a persistent western origin on this date, placing this location upwind from the Bridgeton Landfill. No odor related to the Bridgeton Landfill was observed during the odor patrols performed on this date. This was not a Bridgeton Landfill odor.

Name: Jacobi

Message: Odor logged January 2, 2016, at 10:00 pm strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Winds were of a persistent western origin on this date, placing this location outside the downwind pathway from the Bridgeton Landfill. An odor patrol was performed by Bridgeton Landfill within the hour of the stated observation time, no odor related to the Bridgeton Landfill was observed. This was not a Bridgeton Landfill odor.

Name: Bob Labeaume

Message: Odor logged January 2, 2016, at 9:00 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Winds were of a persistent western origin on this date, placing this location outside the downwind pathway from the Bridgeton Landfill. An odor patrol was performed by Bridgeton Landfill within the hour of the stated observation time, no odor related to the Bridgeton Landfill was observed. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 3, 2016, at 6:30 am strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern location referenced was immediately adjacent to another known odor source, unrelated to the Bridgeton Landfill. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 5, 2016, at 6:50 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Winds were of a persistent south southeastern origin on this date, placing this concern directly upwind of the Bridgeton Landfill and downwind of another known odor source. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 5, 2016, at 7:42 am strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Winds were of a persistent south southeastern origin on this date, placing this concern a significant distance directly upwind of the Bridgeton Landfill. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 5, 2016, at 5:33 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Winds were of a persistent south southeastern origin on this date, placing this concern well upwind of the Bridgeton Landfill. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 5, 2016, at 5:33 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Winds were of a persistent south southeastern origin on this date, placing this concern well upwind of the Bridgeton Landfill. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 5, 2016, at 5:33 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Winds were of a persistent south southeastern origin on this date, placing this concern well upwind of the Bridgeton Landfill. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 6, 2016, at 7:21 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Winds were of a persistent southeastern origin placing this concern location well outside the downwind pathway of the Bridgeton Landfill on this date. This was not a Bridgeton Landfill odor.

Name: Meagan

Message: Odor logged January 6, 2016, at 9:23 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Winds were of a persistent southeastern origin placing this concern location well outside the downwind pathway of the Bridgeton Landfill on this date. This was not a Bridgeton Landfill odor.

Name: Meagan

Message: Odor logged January 6, 2016, at 9:23 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Winds were of a persistent southeastern origin placing this concern location well outside the downwind pathway of the Bridgeton Landfill on this date. This was not a Bridgeton Landfill odor.

Name: Meagan

Message: Odor logged January 6, 2016, at 9:23 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Winds were of a persistent southeastern origin placing this concern location well outside the downwind pathway of the Bridgeton Landfill on this date. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 7, 2016, at 12:21 pm strength of 3

Follow-up: The following concern is of substantial distance from the Bridgeton Landfill in an area with no history of confirmed Bridgeton Landfill odor. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 7, 2016, at 12:21 pm strength of 3

Follow-up: The following concern is of substantial distance from the Bridgeton Landfill in an area with no history of confirmed Bridgeton Landfill odor during a period of eastern winds placing this location well outside the downwind pathway of the Bridgeton Landfill. This is not a Bridgeton Landfill odor.

Name: Meagan

Message: Odor logged January 7, 2016, at 10:20 am strength of 8

Follow-up: The following concern is of substantial distance from the Bridgeton Landfill in an area with no history of confirmed Bridgeton Landfill odor during a period of southeastern winds placing this location well upwind of the Bridgeton Landfill. This is not a Bridgeton Landfill odor.

Name: Meagan

Message: Odor logged January 7, 2016, at 10:20 am strength of 8

Follow-up: The following concern is of substantial distance from the Bridgeton Landfill in an area with no history of confirmed Bridgeton Landfill odor during a period of southeastern winds placing this location well upwind of the Bridgeton Landfill. This is not a Bridgeton Landfill odor.

Name: Jenina Kenessey

Message: Odor logged January 6, 2016, at 11:50 am strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed immediately before the time referenced in this concern. No odor related to the Bridgeton Landfill was observed at any point. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 8, 2016, at 7:45 am strength of 9

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Winds were of a persistent southern to southeastern origin on this date and at the time cited in this concern, placing this concern location directly upwind of the Bridgeton Landfill. No odor was observed during odor patrols on this date. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 4, 2016, at 8:00 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. This concern location is of greater distance from the Bridgeton Landfill than any previously confirmed odor observations and was outside the downwind pathway of the Bridgeton Landfill at the time of this concern. Odor patrols on this date did not observe any off-site odor related to the Bridgeton Landfill. This was not a Bridgeton Landfill odor. This is one of seven submittals received in quick succession on this date featuring similar input data and are believed to have been form the same obviously inaccurate source. This response covers all of these submittals.

Name: m

Message: Odor logged January 8, 2016, at 5:57 pm strength of 6

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. At the time stated in this concern winds were of a southwestern origin placing this location outside of the Bridgeton Landfill's downwind pathway and directly downwind of another known odor source. This was not a Bridgeton Landfill odor.

Name: m

Message: Odor logged January 8, 2016, at 8:27 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. At the time stated in this concern winds were of a southwestern origin placing this location a substantial distance outside of the Bridgeton Landfill's downwind pathway. This was not a Bridgeton Landfill odor.

Name: various

Message: Odor logged January 9, 2016, at 8:52 pm strength of 3

Follow-up: 14 concerns were received on the date of January 9, 2016. Investigation of these concerns reveals that they were clustered around and in the immediate downwind pathway of another known odor source with observed off-site odor emissions on this date. These concerns were not associated with Bridgeton Landfill odor.

Name: Michelle Barbeau

Message: Odor logged January 11, 2016, at 2:51 pm strength of 5

Follow-up: The following concern lacks essential location data.

Name: NA

Message: Odor logged January 11, 2016, at 4:10 pm strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location cited in this concern was immediately downwind of another known odor source throughout the day of this concern. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 12, 2016, at 4:10 pm strength of 7

Follow-up: Six concerns were submitted between 8:04 AM and 8:08 AM all cite locations along the I-70 corridor immediately adjacent to and downwind from another known odor source. This is a clear sign of misattributed odor.

Name: Theresa Ravens

Message: Odor logged January 12, 2016, at 7:16 am strength of 5

Follow-up: The following concern is located directly adjacent to another known odor source with frequent off-site odor emissions, including on the date of this concern. This was not a Bridgeton Landfill odor.

Name: Theresa Ravens

Message: Odor logged January 11, 2016, at 8:00 pm strength of 3

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Winds were calm at the time of this concern, no odor related to the Bridgeton Landfill was observed at

multiple points between this location and the Bridgeton Landfill during odor patrols performed before and after this the time cited in this concern. This location is of greater distance from the Bridgeton Landfill than any previously confirmed odor. The submitter in question previously on this same date erroneously submitted a Bridgeton Landfill concern for what was clearly not a Bridgeton Landfill odor. This is not believed to be a Bridgeton Landfill odor.

Name: Theresa Ravens

Message: Odor logged January 11, 2016, at 7:00 am strength of 10

Follow-up: The following concern is located directly adjacent to another known odor source with frequent off-site odor emissions, including on the date of this concern. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 12, 2016, at 5:26 pm strength of 10

Follow-up: The following concern is located directly adjacent to another known odor source with frequent off-site odor emissions, including on the date of this concern. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 12, 2016, at 5:27 pm strength of 10

Follow-up: The following concern is located directly adjacent to another known odor source with frequent off-site odor emissions, including on the date of this concern. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 12, 2016, at 7:00 pm strength of 8

Follow-up: The following concern is of significant distance from the Bridgeton Landfill and of far closer proximity to another known odor source with frequent off-site odor emissions. Winds were of low velocity/calm at this time. No odor related to the Bridgeton Landfill was observed during multiple odor patrols on this date, both before and after the time of this observation. This was not a Bridgeton Landfill odor.

Name: Jaime Wittmaier

Message: Odor logged January 12, 2016, at 5:20 pm strength of 7

Follow-up: The following concern is of significant distance from the Bridgeton Landfill and of far closer proximity to another known odor source with frequent off-site odor emissions. Winds were of low velocity/calm at this time. No odor related to the Bridgeton Landfill was observed during multiple odor patrols on this date, both before and after the time of this observation. This was not a Bridgeton Landfill odor.

Name: Jaime Wittmaier

Message: Odor logged January 12, 2016, at 5:20 pm strength of 7

Follow-up: The following concern is of significant distance from the Bridgeton Landfill and of far closer proximity to another known odor source with frequent off-site odor emissions. Winds were of low velocity/calm at this time. No odor related to the Bridgeton Landfill was observed during multiple odor patrols on this date, both before and after the time of this observation. This was not a Bridgeton Landfill odor.

Name: Mary Menke

Message: Odor logged January 13, 2016, at 6:40 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location of this concern is located immediately south of the Bridgeton Landfill. Winds were of a persistent southern origin throughout this date, placing this location directly downwind of another known odor source. This was not a Bridgeton Landfill odor.

Name: Theresa Ravens

Message: Odor logged January 14, 2016, at 7:00 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location of this concern is located immediately adjacent to another known odor source with frequent off-site emissions. Winds were of a persistent southwestern origin on this date, placing this location directly downwind of the other odor source and upwind of the Bridgeton Landfill. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 14, 2016, at 4:36 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location of this concern is located immediately adjacent to another known odor source with frequent off-site emissions. Winds were of a persistent southwestern origin on this date, placing this location directly downwind of the other odor source and upwind of the Bridgeton Landfill. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 14, 2016, at 7:37 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location of this concern is located to the southeast of the Bridgeton Landfill. Winds were of a persistent southwestern origin on this date, placing this location outside the downwind pathway of the Bridgeton Landfill and directly downwind of another known odor source with observed off-site odor emissions on this date and time. This was not a Bridgeton Landfill odor.

Name: Kathy Bell

Message: Odor logged January 15, 2016, at 5:08 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location of this concern is located to the southeast of the Bridgeton Landfill. Winds were of a persistent southwestern to western origin at the point of this concern, placing this location outside the downwind pathway of the Bridgeton Landfill. An odor patrol performed shortly after this concern did not observe odor related to the Bridgeton Landfill. Odor related to another source was observed in close proximity to this location on this date. This is not believed to have been a Bridgeton Landfill odor.

Name: Kathy Bell

Message: Odor logged January 15, 2016, at 5:08 pm strength of 10

Follow-up: This concern is a duplicate of a previously submitted concern.

Name: Sharon Bishop

Message: Odor logged January 15, 2016, at 6:39 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location of this concern is located to the east of the Bridgeton Landfill. Winds were of a persistent western origin. An odor related to an unknown source was observed throughout the day in close proximity to this concern location. This was the likely source of this odor but the Bridgeton Landfill cannot be conclusively ruled out at this time. (PBO)

Name: NA

Message: Odor logged January 16, 2016, at 1:46 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location of this concern is located to the southwest of the Bridgeton Landfill. Winds were of a persistent southwestern origin on this date, placing this location outside the downwind pathway of the Bridgeton Landfill and directly downwind of another known odor source with observed off-site odor emissions on this date. This was not a Bridgeton Landfill odor.

Name: David McComber

Message: Odor logged January 16, 2016, at 1:47 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location of this concern is located a substantial distance to the southwest of the Bridgeton Landfill and within significantly closer proximity to another known odor source with frequent off-site odors. Winds were of a persistent southwestern origin placing this location well upwind of the Bridgeton Landfill. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 16, 2016, at 9:56 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location of this concern is located a substantial distance to the southwest of the Bridgeton Landfill and within significantly closer proximity to another known odor source with frequent off-site odors. Winds were of a persistent southwestern origin placing this location well upwind of the Bridgeton Landfill. This was not a Bridgeton Landfill odor.

Name: Rebecca Comer Kelleher

Message: Odor logged January 16, 2016, at 4:00 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location of this concern is located to the southwest of the Bridgeton Landfill and is of closer proximity to another known odor source with frequent off-site odors. Winds were of a persistent southwestern origin placing this location outside the downwind pathway of the Bridgeton Landfill. This was not a Bridgeton Landfill odor.

Name: Bruce Hunt

Message: Odor logged January 18, 2016, at 5:15 pm strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location of this concern is located a significant distance to the southwest of the Bridgeton Landfill and significantly closer to another known odor source. On this date winds were of a

persistent western origin placing this location directly downwind of that other known source. This was not a Bridgeton Landfill odor.

Name: Tabitha Vaughn

Message: Odor logged January 19, 2016, at 6:42 am strength of 3

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location of this concern is of such substantial distance as to render it clearly erroneous.

Name: St Charles Surgery Center

Message: Odor logged January 19, 2016, at 6:51 am strength of 3

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location of this concern is of such substantial distance as to render it clearly erroneous.

Name: Tabitha Vaughn

Message: Odor logged January 19, 2016, at 6:52 am strength of 5

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location of this concern is of such substantial distance as to render it clearly erroneous.

Name: NA

Message: Odor logged January 20, 2016, at 7:00 am strength of 10

Follow-up: On January 20th five concerns were submitted within 12 minutes total with an observation time of 7:00 am to 7:05 am. All concerns reference I-70 as the location. These locations are all immediately adjacent to another known odor source with associated odor observed on this date and at these times. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 20, 2016, at 6:55 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location of this concern is of such substantial distance as to demonstrate it as clearly erroneous.

Name: NA

Message: Odor logged January 20, 2016, at 7:35 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location provided is immediately adjacent to another known odor source with associated odor observed on this date and at a time shortly before the stated time of observation. This was not a Bridgeton Landfill odor.

Name: Mel Leib

Message: Odor logged January 21, 2016, at 6:00 pm strength of 10

Follow-up: The following concern cites a location within the confines of the MSD Bridgeton to Bissell Pump Station 1 area, located inside the Bridgeton Landfill property boundaries. As such any odor observed at this location would not be "off-site" and this concern is therefore invalid.

Name: NA

Message: Odor logged January 20, 2016, at 4:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location provided is immediately adjacent to another known odor source with associated odor observed on this date and at a time shortly after the stated time of observation. This was not a Bridgeton Landfill odor.

Name: Kathy Bell

Message: Odor logged January 22, 2016, at 6:42 am strength of 7

Follow-up: The following concern was investigated by Bridgeton Landfill staff within one hour of receipt. No odor related to the Bridgeton Landfill was observed at multiple points in close proximity with this concern location. This was not a Bridgeton Landfill odor.

Name: Greg and Ellen Wortham

Message: Odor logged January 22, 2016, at 8:32 am strength of 5

Follow-up: The following concern was submitted very shortly after the conclusion of a Bridgeton Landfill odor patrol with multiple observation points in the immediate vicinity of this concern location. No odor related to the Bridgeton Landfill was observed. This was not a Bridgeton Landfill odor.

Name: Daniel Ising

Message: Odor logged January 23, 2016, at 7:52 am strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location of this concern is located a significant distance to the southwest of the Bridgeton Landfill and significantly closer to another known odor source. On this date winds were of a persistent western origin placing this location directly downwind of that other known source. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 26, 2016, at 7:30 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location provided is immediately adjacent to another known odor source with associated odor observed on this date and at a time shortly before the stated time of observation. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 26, 2016, at 7:00 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location provided is immediately adjacent to another known odor source with associated odor observed on the same date and time as the stated time of observation. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 24, 2016, at 3:00 pm strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. This concern was submitted more than two days after the stated observation date and time. Winds were of a persistent southern origin on this date placing this location directly upwind of the Bridgeton Landfill and directly downwind of another known odor source in the area. This was not a Bridgeton Landfill odor.

Name: Kathy Bell

Message: Odor logged January 27, 2016, at 5:36 am strength of 5

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location of this concern is located to the southwest of the Bridgeton Landfill. Winds were of a persistent southwestern origin placing this location outside the downwind pathway of the Bridgeton Landfill and downwind of another known odor source. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 27, 2016, at 7:00 am strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location of this concern is located to the southwest of the Bridgeton Landfill and is immediately adjacent to another known odor source with frequent off-site odors. Winds were of a persistent southwestern origin placing this location outside the downwind pathway of the Bridgeton Landfill. This was not a Bridgeton Landfill odor.

Name: David McComber

Message: Odor logged January 27, 2016, at 8:05 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location of this concern is located to the southwest of the Bridgeton Landfill. Winds were of a persistent southwestern origin placing this location outside the downwind pathway of the Bridgeton Landfill and downwind of another known odor source. A Bridgeton Landfill odor patrol performed shortly after the time cited in this concern detected a garbage odor unrelated to the Bridgeton Landfill at multiple points. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 27, 2016, at 6:23 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location provided is immediately adjacent to another known odor source with associated odor observed on the same date and time as the stated time of observation. Winds on this date place the concern location upwind of the Bridgeton Landfill and downwind of the other known odor source. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 27, 2016, at 11:32 pm strength of 2

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The location provided is immediately adjacent to another known odor source with associated odor observed on the same date and time as the stated time of observation. Winds on this date place the concern location upwind of the Bridgeton Landfill and downwind of the other known odor source. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 28, 2016, at 8:30 am strength of 1

Follow-up: The following concern lacks essential location data.

Name: Neil Monson

Message: Odor logged January 28, 2016, at 7:15 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. On the morning of January 28 a fill project on the northern portion of the south quarry was performing a tie in with the existing liner and odor was observed. Odor controls were employed and the project was completed as expeditiously as possible. As this concern is of a downwind position from the Bridgeton Landfill and corresponds chronologically with this work there is potential for this to have been a Bridgeton Landfill odor.

Name: Mandy Lanham

Message: Odor logged January 28, 2016, at 8:18 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. On the morning of January 28 a fill project on the northern portion of the south quarry was performing a tie in with the existing liner and odor was observed. Odor controls were employed and the project was completed as expeditiously as possible. As this concern is of a downwind position from the Bridgeton Landfill and corresponds chronologically with this work there is potential for this to have been a Bridgeton Landfill odor.

Name: Mandy Lanham

Message: Odor logged January 28, 2016, at 8:18 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. On the morning of January 28 a fill project on the northern portion of the south quarry was performing a tie in with the existing liner and odor was observed. Odor controls were employed and the project was completed as expeditiously as possible. As this concern is of a downwind position from the Bridgeton Landfill and corresponds chronologically with this work there is potential for this to have been a Bridgeton Landfill odor.

Name: Holly Griffin

Message: Odor logged January 28, 2016, at 8:15 am strength of 9

Follow-up: The following concern lacks essential location data.

Name: Margie MENKE

Message: Odor logged January 28, 2016, at 9:09 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Multiple odor patrols performed on this date, including one less than an hour before and another less than an hour after did not observe any odor originating from the Bridgeton Landfill at observation points in close proximity to this concern location. A garbage odor was observed in close proximity at multiple points in close proximity to this location however, and was the likely odor referenced in this concern submittal.

Name: NA

Message: Odor logged January 28, 2016, at 9:22 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. On the morning of January 28 a fill project on the northern portion of the south quarry was performing a tie in with the existing liner and odor was observed. Odor controls were employed and the project was completed as expeditiously as possible. As this concern is of a downwind position from the Bridgeton Landfill and corresponds chronologically with this work there is potential for this to have been a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 28, 2016, at 7:39 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. Bridgeton Landfill staff observed odor at this location shortly before the time cited in this concern. The odor was not consistent with potential odor sources related to the Bridgeton Landfill. The odor was instead of a strong decomposing garbage and/or fecal waste smell. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 28, 2016, at 8:47 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. On the morning of January 28 a fill project on the northern portion of the south quarry was performing a tie in with the existing liner and odor was observed. Odor controls were employed and the project was completed as expeditiously as possible. As this concern is of a downwind position from the Bridgeton Landfill and corresponds chronologically with this work there is potential for this to have been a Bridgeton Landfill odor.

Name: David McComber – AT&T

Message: Odor logged January 28, 2016, at 8:00 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol by Bridgeton Landfill staff observed a garbage/fecal waste odor in close geographical proximity to this concern within the hour referenced in this concern. This was not a Bridgeton Landfill odor.

Name: David Blackwell

Message: Odor logged January 28, 2016, at 7:00 am strength of 4

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol by Bridgeton Landfill staff was performed shortly after the time cited in this concern. No odor related to the Bridgeton Landfill was observed and at the time of this concern this location was of a direct upwind position from the Bridgeton Landfill. A strong garbage/fecal waste odor was present throughout this area on this date and is believed to have originated from a source upwind of this location at the time cited in this concern. This was not a Bridgeton Landfill odor.

Name: Rebecca Tobar

Message: Odor logged January 28, 2016, at 6:30 am strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol by Bridgeton Landfill staff was performed shortly after the time cited in this concern. No odor related to the Bridgeton Landfill was observed and at the time of this concern this location was of a direct upwind position from the Bridgeton Landfill. A strong garbage/fecal waste odor was present throughout this area on this date and is believed to have originated from a source upwind of this location at the time cited in this concern. This was not a Bridgeton Landfill odor.

Name: Rachel Benjamin

Message: Odor logged January 28, 2016, at 8:15 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. On the morning of January 28 a fill project on the northern portion of the south quarry was performing a tie in with the existing liner and odor was observed. Odor controls were employed and the project was completed as expeditiously as possible. As this concern is of a downwind position from the Bridgeton Landfill and corresponds chronologically with this work there is potential for this to have been a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 28, 2016, at 1:00 pm strength of 5

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. On the morning of January 28 a fill project on the northern portion of the south quarry was performing a tie in with the existing liner and odor was observed. Odor controls were employed and the project was completed as expeditiously as possible. As this concern is of a downwind position from the Bridgeton Landfill and corresponds chronologically with this work there is potential for this to have been a Bridgeton Landfill odor.

Name: Robbin Dailey

Message: Odor logged January 28, 2016, at 2:27 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor observation was performed at this location minutes after the time cited in this concern. No odor related to the Bridgeton Landfill was observed.

Name: NA

Message: Odor logged January 28, 2016, at 6:13 pm strength of 6

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. No evidence suggests that this was related to a Bridgeton Landfill odor and instead was likely related to another known odor source of closer proximity to this concern source. This was not a Bridgeton Landfill odor.

Name: Sharon Bishop

Message: Odor logged January 28, 2016, at 8;20 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. On the morning of January 28 a fill project on the northern portion of the south quarry was performing a tie in with the existing liner and odor was observed. Odor controls were employed and the project was completed as expeditiously as possible. As this concern is of a downwind position from the Bridgeton Landfill and corresponds chronologically with this work there is potential for this to have been a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 28, 2016, at 10:18 pm strength of 5

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. No evidence suggests that this was related to a Bridgeton Landfill odor and instead was likely related to another known odor source of closer proximity to this concern source. This was not a Bridgeton Landfill odor.

Name: loretta

Message: Odor logged January 29, 2016, at 12:11 am strength of 10

Follow-up: The following concern failed to provide a real address and/or GPS coordinates for this concern and therefore cannot be investigated.

Name: NA

Message: Odor logged January 29, 2016, at 3:17 am strength of 6

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. No evidence suggests that this was related to a Bridgeton Landfill odor and instead was likely related to another known odor source of closer proximity to this concern source. This was not a Bridgeton Landfill odor.

Name: Margie MENKE

Message: Odor logged January 29, 2016, at 5:00 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed at times before, during, and after the time cited in this concern. No odor related to the Bridgeton Landfill was observed. This was not a Bridgeton Landfill odor.

Name: Debi Disser

Message: Odor logged January 29, 2016, at 7:08 am strength of 3

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed shortly following the time referenced in this concern. A garbage odor unrelated to the Bridgeton Landfill was observed at a point between another known source of odor in the area matching this odor profile and this concern location. This was not a Bridgeton Landfill odor.

Name: Debi Disser

Message: Odor logged January 29, 2016, at 7:09 am strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol was performed shortly following the time referenced in this concern. A garbage odor unrelated to the Bridgeton Landfill was observed at a point between another known source of odor in the area matching this odor profile and this concern location. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 28, 2016, at 8:00 am strength of 9

Follow-up: The following concern lacks necessary location data.

Name: Pauline Tulloch

Message: Odor logged January 28, 2016, at 4:35 pm strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. No evidence suggests that this was related to a Bridgeton Landfill odor and instead was likely related to another known odor source of closer proximity to this concern source. This was not a Bridgeton Landfill odor.

Name: Theresa Ravens

Message: Odor logged January 29, 2016, at 3:46 pm strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. No evidence suggests that this was related to a Bridgeton Landfill odor and instead was likely related to another known odor source of closer proximity to this concern source. This was not a Bridgeton Landfill odor.

Name: Theresa Ravens

Message: Odor logged January 29, 2016, at 7:00 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol performed within the hour of this concern submittal observed a garbage odor unassociated with the Bridgeton Landfill. This was not a Bridgeton Landfill odor.

Name: Theresa Ravens

Message: Odor logged January 29, 2016, at 7:00 am strength of 7

Follow-up: The following concern failed to provide a real address and/or GPS coordinates for this concern and therefore cannot be investigated.

Name: Maria Moehle

Message: Odor logged January 29, 2016, at 5:45 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. No evidence suggests that this was related to a Bridgeton Landfill odor and instead was likely related to another known odor source of closer proximity to this concern source. This was not a Bridgeton Landfill odor.

Name: Caitlyn Williams

Message: Odor logged January 28, 2016, at 6:04 pm strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. No evidence suggests that this was related to a Bridgeton Landfill odor and instead was likely related to another known odor source of closer proximity to this concern source. This was not a Bridgeton Landfill odor.

Name: Emily jacobi

Message: Odor logged January 30, 2016, at 10:22 am strength of 6

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol performed shortly before the observation time cited in this concern noted a garbage odor at points in close proximity to this concern. This was not a Bridgeton Landfill odor.

Name: Emily jacobi

Message: Odor logged January 30, 2016, at 10:22 am strength of 6

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. An odor patrol performed shortly before the observation time cited in this concern noted a garbage odor at points in close proximity to this concern. This was not a Bridgeton Landfill odor.

Name: Robbin Dailey

Message: Odor logged January 30, 2016, at 5:05 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern location cited was persistently upwind of the Bridgeton Landfill on this date and downwind of another odor source with observed off-site odor emissions on this date in close proximity to this concern location. This was not a Bridgeton Landfill odor.

Name: Dawn Chapman

Message: Odor logged January 30, 2016, at 3:15 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern location cited was persistently upwind of the Bridgeton Landfill by a substantial distance on this date. This was clearly not a Bridgeton Landfill odor.

Name: brieann McCormick

Message: Odor logged January 30, 2016, at 5:09 pm strength of 6

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern location cited was persistently upwind of the Bridgeton Landfill on this date and downwind of another odor source with observed off-site odor emissions on this date in close proximity to this concern location. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 30, 2016, at 7:45 pm strength of 10

Follow-up: The following concern lacks necessary location data.

Name: David Blackwell

Message: Odor logged January 30, 2016, at 2:00 pm strength of 3

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern location cited was persistently upwind of the Bridgeton Landfill on this date and downwind of another odor source with observed off-site odor emissions on this date in close proximity to this concern location. This was not a Bridgeton Landfill odor.

Name: Judy McCown

Message: Odor logged January 30, 2016, at 6:30 am strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern location cited was persistently upwind of the Bridgeton Landfill on this date and downwind of another odor source with observed off-site odor emissions on this date in close proximity to this concern location. This was not a Bridgeton Landfill odor.

Name: Abbey Deckard

Message: Odor logged January 29, 2016, at 10:30 pm strength of 8

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern location cited was persistently upwind of the Bridgeton Landfill on this date and

downwind of another odor source with observed off-site odor emissions on this date in close proximity to this concern location. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 28, 2016, at 6:15 pm strength of 7

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern location cited was persistently upwind of the Bridgeton Landfill on this date and downwind of another odor source with observed off-site odor emissions on this date in close proximity to this concern location. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 30, 2016, at 3:00 pm strength of 5

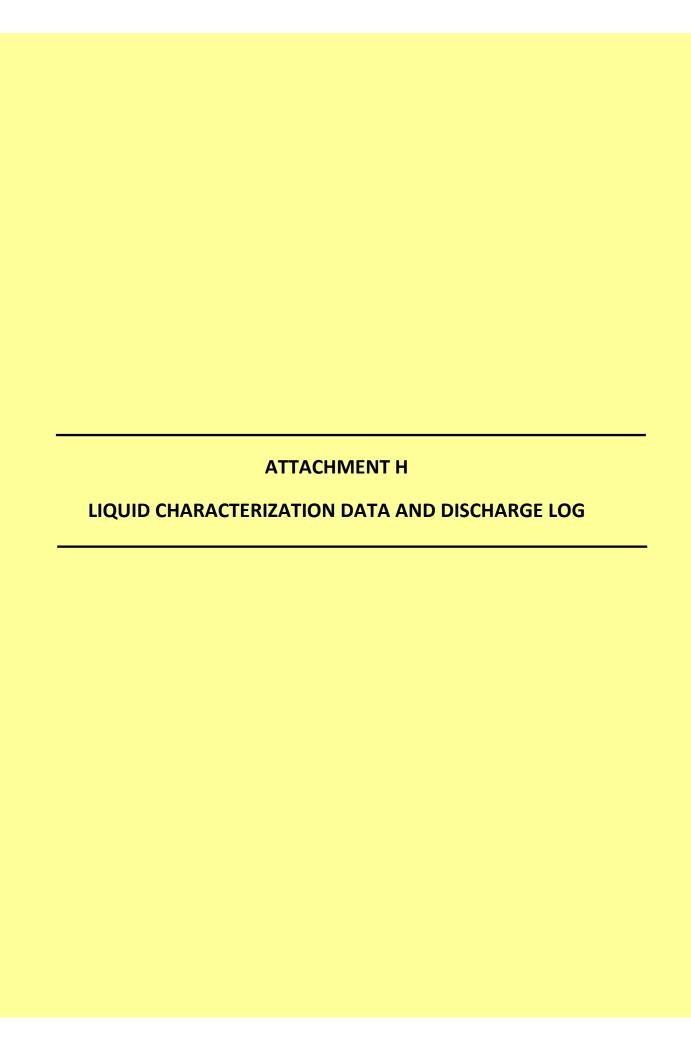
Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern location cited was persistently upwind of the Bridgeton Landfill on this date and downwind of another odor source with observed off-site odor emissions on this date in close proximity to this concern location. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 30, 2016, at 2:15 pm strength of 5

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern location cited was persistently upwind of the Bridgeton Landfill on this date and downwind of another odor source with observed off-site odor emissions on this date in close proximity to this concern location. This was not a Bridgeton Landfill odor.

Name: NA


Message: Odor logged January 30, 2016, at 7:45 am strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern location cited was persistently upwind of the Bridgeton Landfill on this date and downwind of another odor source with observed off-site odor emissions on this date in close proximity to this concern location. This was not a Bridgeton Landfill odor.

Name: NA

Message: Odor logged January 30, 2016, at 1:46 pm strength of 10

Follow-up: The following concern has been investigated by Bridgeton Landfill staff. The concern location cited was persistently upwind of the Bridgeton Landfill on this date and downwind of another odor source with observed off-site odor emissions on this date in close proximity to this concern location. This was not a Bridgeton Landfill odor.

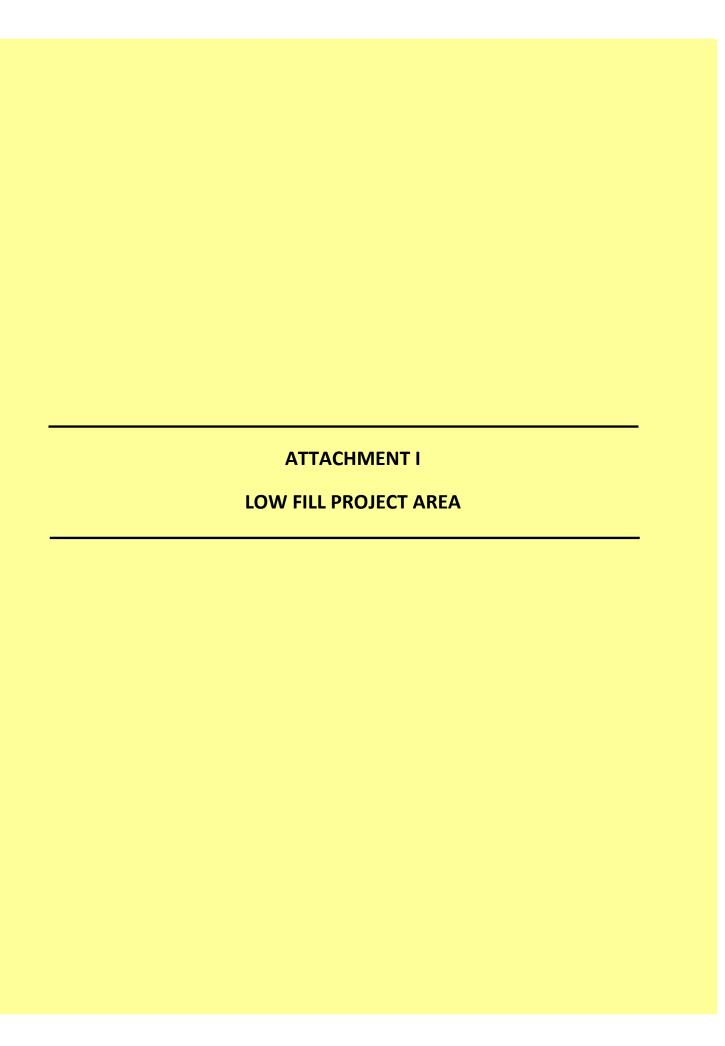
Bridgeton Landfill - Leachate PreTreatment Plant January 2016

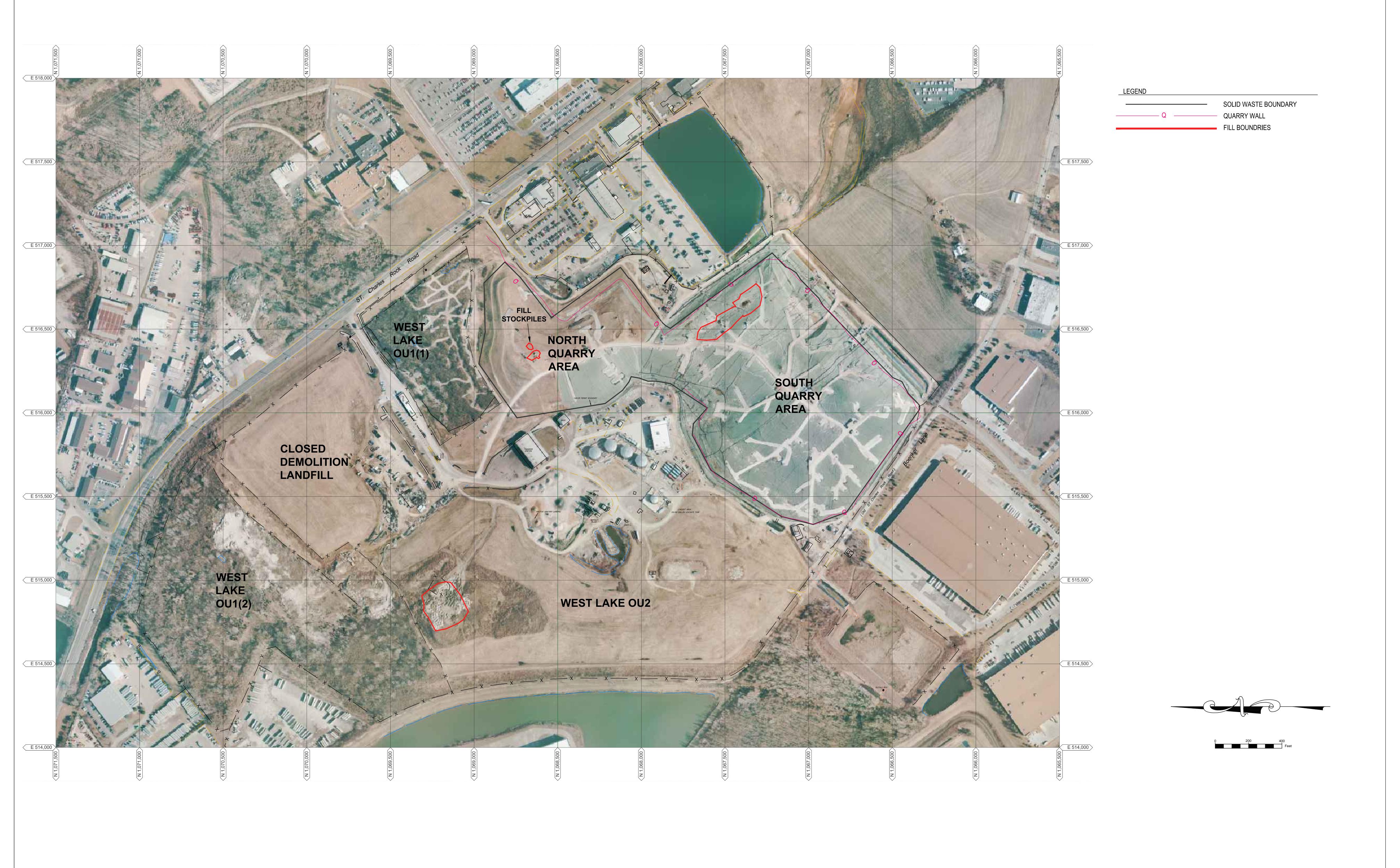
Liquid Characterization Data

Liquid characterization data is made available to MDNR on an ongoing basis. No additional lechate characterization data, beyond that produced for MSD, was collected during the prior month.

Hauled Disposal to MSD - Bissell Point

Date	Waste	Source	Transporter	Quantity
1/1/2016		Tank 1 (T1)	МВІ	0
1/2/2016				0
1/3/2016				0
1/4/2016				0
1/5/2016				0
1/6/2016				0
1/7/2016				0
1/8/2016	LPTP Activated Sludge/ Permeate			0
1/9/2016				0
1/10/2016				0
1/11/2016				0
1/12/2016				0
1/13/2016				0
1/14/2016				0
1/15/2016				0
1/16/2016				0
1/17/2016				0
1/18/2016				0
1/19/2016				0
1/20/2016				0
1/21/2016				0
1/22/2016				0
1/23/2016				0
1/24/2016				0
1/25/2016				0
1/26/2016				0
1/27/2016				0
1/28/2016				0
1/29/2016				0
1/30/2016				0
1/31/2016				0


Total=


0

Direct Discharge to MSD

Date	Waste	Source	Quantity (gal)
1/1/2016		Through Tank AST 97k (MSD Sampling Point 013)	223,913
1/2/2016			230,252
1/3/2016	'		234,174
1/4/2016			230,443
1/5/2016			208,330
1/6/2016			215,165
1/7/2016	LPTP Permeate		236,913
1/8/2016			238,713
1/9/2016			241,600
1/10/2016			137,669
1/11/2016			157,904
1/12/2016			210,556
1/13/2016			205,669
1/14/2016			196,989
1/15/2016			190,336
1/16/2016			179,882
1/17/2016			172,035
1/18/2016			236,249
1/19/2016			160,791
1/20/2016			190,078
1/21/2016			154,182
1/22/2016			206,356
1/23/2016			206,721
1/24/2016			214,389
1/25/2016			231,576
1/26/2016			225,369
1/27/2016			228,130
1/28/2016			234,445
1/29/2016			132,193
1/30/2016			212,608
1/31/2016			219,765

Total = 6,363,395

